Advanced search
2 files | 377.77 KB

A characterisation result on a particular class of non-weighted minihypers

Jan De Beule (UGent) , Anja Hallez (UGent) and Leo Storme (UGent)
(2012) DESIGNS CODES AND CRYPTOGRAPHY. 63(2). p.159-170
Author
Organization
Abstract
We present a characterisation of {epsilon(1)(q + 1)+ epsilon(0), epsilon(1); n, q}-minihypers, q square, q = p(h), p > 3 prime, h >= 2, q >= 1217, for epsilon(0) + epsilon(1) < q(7/12)/2 - q(1/4)/2. This improves a characterisation result of Ferret and Storme (Des Codes Cryptogr 25(2): 143- 162, 2002), involving more Baer subgeometries contained in the minihyper.
Keywords
Blocking sets, MULTIPLE BLOCKING SETS, Griesmer bound, Minihypers

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 192.88 KB
  • artJanAnjaLeominihypers20110723.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 184.89 KB

Citation

Please use this url to cite or link to this publication:

Chicago
De Beule, Jan, Anja Hallez, and Leo Storme. 2012. “A Characterisation Result on a Particular Class of Non-weighted Minihypers.” Designs Codes and Cryptography 63 (2): 159–170.
APA
De Beule, Jan, Hallez, A., & Storme, L. (2012). A characterisation result on a particular class of non-weighted minihypers. DESIGNS CODES AND CRYPTOGRAPHY, 63(2), 159–170.
Vancouver
1.
De Beule J, Hallez A, Storme L. A characterisation result on a particular class of non-weighted minihypers. DESIGNS CODES AND CRYPTOGRAPHY. 2012;63(2):159–70.
MLA
De Beule, Jan, Anja Hallez, and Leo Storme. “A Characterisation Result on a Particular Class of Non-weighted Minihypers.” DESIGNS CODES AND CRYPTOGRAPHY 63.2 (2012): 159–170. Print.
@article{2140291,
  abstract     = {We present a characterisation of \{epsilon(1)(q + 1)+ epsilon(0), epsilon(1); n, q\}-minihypers, q square, q = p(h), p {\textrangle} 3 prime, h {\textrangle}= 2, q {\textrangle}= 1217, for epsilon(0) + epsilon(1) {\textlangle} q(7/12)/2 - q(1/4)/2. This improves a characterisation result of Ferret and Storme (Des Codes Cryptogr 25(2): 143- 162, 2002), involving more Baer subgeometries contained in the minihyper.},
  author       = {De Beule, Jan and Hallez, Anja and Storme, Leo},
  issn         = {0925-1022},
  journal      = {DESIGNS CODES AND CRYPTOGRAPHY},
  keyword      = {Blocking sets,MULTIPLE BLOCKING SETS,Griesmer bound,Minihypers},
  language     = {eng},
  number       = {2},
  pages        = {159--170},
  title        = {A characterisation result on a particular class of non-weighted minihypers},
  url          = {http://dx.doi.org/10.1007/s10623-011-9542-9},
  volume       = {63},
  year         = {2012},
}

Altmetric
View in Altmetric
Web of Science
Times cited: