Ghent University Academic Bibliography

Advanced

The smallest minimal blocking sets of Q(6, q), q even

Jan De Beule UGent and Leo Storme UGent (2003) JOURNAL OF COMBINATORIAL DESIGNS. 11(4). p.290-303
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
journal title
JOURNAL OF COMBINATORIAL DESIGNS
J. Comb Des.
volume
11
issue
4
pages
290-303 pages
publisher
JOHN WILEY & SONS INC
Web of Science type
Article
Web of Science id
000183814100006
JCR category
MATHEMATICS
JCR impact factor
0.541 (2003)
JCR rank
58/174 (2003)
JCR quartile
2 (2003)
ISSN
1063-8539
language
English
UGent publication?
yes
classification
A1
id
212061
handle
http://hdl.handle.net/1854/LU-212061
date created
2004-04-21 15:49:00
date last changed
2016-12-19 15:38:14
@article{212061,
  author       = {De Beule, Jan and Storme, Leo},
  issn         = {1063-8539},
  journal      = {JOURNAL OF COMBINATORIAL DESIGNS},
  language     = {eng},
  number       = {4},
  pages        = {290--303},
  publisher    = {JOHN WILEY \& SONS INC},
  title        = {The smallest minimal blocking sets of Q(6, q), q even},
  volume       = {11},
  year         = {2003},
}

Chicago
De Beule, Jan, and Leo Storme. 2003. “The Smallest Minimal Blocking Sets of Q(6, Q), q Even.” Journal of Combinatorial Designs 11 (4): 290–303.
APA
De Beule, Jan, & Storme, L. (2003). The smallest minimal blocking sets of Q(6, q), q even. JOURNAL OF COMBINATORIAL DESIGNS, 11(4), 290–303.
Vancouver
1.
De Beule J, Storme L. The smallest minimal blocking sets of Q(6, q), q even. JOURNAL OF COMBINATORIAL DESIGNS. JOHN WILEY & SONS INC; 2003;11(4):290–303.
MLA
De Beule, Jan, and Leo Storme. “The Smallest Minimal Blocking Sets of Q(6, Q), q Even.” JOURNAL OF COMBINATORIAL DESIGNS 11.4 (2003): 290–303. Print.