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Abstract

We present a semiparametric statistical model for the probabilistic index which can be defined
as P {Y ≤ Y ′}, where Y and Y ′ are independent random response variables associated with covari-
ate patterns X and X ′, respectively. A link function defines the relation between the probabilistic
index and a linear predictor. Asymptotic normality of the estimators and consistency of the covari-
ance matrix estimator is established through semiparametric theory. The model is illustrated on an
example.
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1 Introduction

The probabilistic index (PI) is defined in the present setting as the probability

P {Y < Y ′}+
1

2
P {Y = Y ′} ,

which is denoted by P {Y 4 Y ′} and where Y and Y ′ denote independent random variables. The PI
acquired recently an increase of interest in Biostatistics. The PI is accepted as an informative and
intuitive index for quantifying treatment effects, particularly when the treatment does not only act on
the mean response. In a clinical trial for example, the effect of increased dose of a drug on a response
can affect the mean, dispersion and even the tails of the density. The PI summarizes the effect on the
shape of the distribution into a simple effect measure.

If the design of the experiment consists of only two groups, two treatments for example, the
Wilcoxon-Mann-Whitney (WMW) test can be employed to analyse this type of data and provides
an interpretation in terms of the PI. In the presence of confounders, extensions of WMW have been
presented, see for example [1, 2, 3]. However, to our knowledge no method exists for quantifying the
effect of, for example, a continuous predictor on the response in terms of the PI. In this paper we
place the PI in a general regression context allowing to assess effects of predictors on the PI for a
variety of designs. More specifically we propose the probabilistic index model (PIM)

P{Y 4 Y ′|X,X ′} = m(X,X ′;β), (1)

where (Y,X) and (Y ′,X ′) are independently and identically distributed random vectors where the
response Y (Y ′) is associated with predictors X (X ′). Function m defines the relation between
the probabilistic index and the predictors. To keep the method as general as possible, while still
retaining an intuitive interpretation, the model estimation and inference are based on semiparametric
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theory. Therefore no distributional assumptions are required, but the model imposes restrictions on
the distribution.

Section 2 summarizes the asymptotic theory, Section 3 summarizes the relations with other models,
while Section 4 illustrates the interpretation of the model on an example. Note that all these sections
only briefly report on our results. Details can be found elsewhere, see [6]. Section 5 contains some
conclusions.

2 Parameter Estimation and Statistical Inference

Define I {Y 4 Y ′} = I {Y < Y ′}+ 1
2 I {Y = Y ′} in which I {Y < Y ′} and I {Y = Y ′} denote the usual

indicator functions evaluated in the events Y < Y ′ and Y = Y ′, respectively. The PIM (1) can then
also be written as

E
{

I {Y 4 Y ′} |X,X ′
}

= P
{
Y 4 Y ′|X,X ′

}
= m(X,X ′;β) = h(Ztβ), (2)

where h(Ztβ) is used to stress that m(X,X ′;β) depends on X and X ′ through the linear predictor
Ztβ with Z a vector which depends on elements ofX andX ′ and with h the inverse of a link function,
say g.

When (Y1,X1), (Y2,X2), . . ., (Yn,Xn) denotes a sample of n i.i.d. random variables with joint
density function fY X , model formulation (2) suggests that the β parameter vector can be estimated
using the set of pseudo-observations Iij = I {Yi 4 Yj} for all i, j = 1, . . . , n . In particular, model (2)
resembles a conditional moment semiparametric model in which the conditional mean of the pseudo-
observations is specified. We therefore propose to estimate the parameters by solving the estimating
equations

Un(β) =
∑
i,j

U ij(β) =
∑
i,j

∂h(Ztijβ)

∂βt
V −1(h(Ztijβ))(Iij − h(Ztijβ)) = 0, (3)

where V (h(Ztijβ)) = 1
νVar{Iij |Zij}, with ν a scale parameter. Let β̂n denote the solution of (3). This

choice corresponds to the quasi-likelihood estimating equations as used, for example, in the analysis of
binary longitudinal data, where they are also referred to as generalized estimation equations (GEE).
In the present setting, however, the conditional mean does not refer to the mean of the conditional
distribution of the response, but it refers to the mean of the pseudo-observations. Despite the close
relation between our method of estimation and GEE, the asymptotic distributional properties of the
estimator β̂ do not follow immediately from these theories, for the pseudo-observations Iij possess a
more complicated dependence structure than e.g. block independence as in clustered or longitudinal
data. However the pseudo-observations possess the sparse correlation structure of [4] and therefore
the semiparametric theory of [4] directly applies to our setting. Theorem 1 summarizes the most
important distribution theory results for the PIM.

Theorem 1 (Asymptotic normality) Consider the PIM (2) with predictors Zij taking values in
a bounded subset of Rp. Assume

A1 the pseudo-observations are sparsely correlated;

A2 the link function g and the variance function V have three continuous derivatives;

A3 the true parameter β0, is in the interior of a convex parameter space;

A4 there exists a vector W and positive definite matrix T such that

n−2
∑
i,j

Zij →W and n−2
∑
i,j

ZijZ
t
ij → T ;
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A5 lim supn−1Var
(∑

i,j Iij

)
> 0.

Then, as n→∞,
√
n(β̂n−β0) converges in distribution to a multivariate Gaussian distribution with

zero mean and some positive definite variance-covariance matrix Σ.

Theorem 2 (Consistent variance estimator) Under the regularity conditions of Theorem 1, the
variance-covariance matrix Σ can be consistently estimated by the sandwich estimator

nΣ̂β̂n
= n

(∑
i,j

∂U ij(β̂n)

∂βt

)−1(∑
i,j

∑
k,l

φijklU ij(β̂n)U t
kl(β̂n)

)(∑
i,j

∂U ij(β̂n)

∂βt

)−1
,

where the indicator φijkl is defined as φijkl = 1 if Iij and Ikl are correlated and φijkl = 0 otherwise.

Note that in (3) we use the independence working correlation matrix, therefore our proposed estimator
will not be the most efficient one.

3 Relation with other Models

In this section we start from well known models and construct the induced PIM. This gives insights
in how the predictor Z should be constructed from X and X ′ for these cases.

It can be shown that the following relations hold.

• If Y = Xtα+ ε with ε ∼ N(0,σ2) then

P
{
Y 4 Y ′|X,X ′

}
= Φ

(
(X ′ −X)tβ

)
with β =

α√
2σ
,

where Φ denotes the standard normal distribution function.

• If the proportional hazards model hold: λ(y|X) = λ0(y) exp(Xtβ) with λ0(y) the baseline
hazards function then

P
{
Y 4 Y ′|X,X ′

}
= expit

(
(X −X ′)tβ

)
,

with expit(x) = exp(x)/(1 + exp(x)).

• Consider the 2-sample case where the predictor X takes on 2 values, say X = 0 or X = 1 and
consider the model

P {Y 4 Y ′|X,X ′} = g−1{(X ′ −X)β}.

Then the estimator of β, say β̂, is proportional to the Wilcoxon-Mann-Whitney statistic.

These results indicate that Z = X ′ −X is a natural choice for the covariate function.

4 Example

The Mental Health Study (MHS) is a study of mental health for a random sample of 40 adult residents
of Alachua County, Florida. See [5], p.185 for more information. The response variable is Mental
Impairment (MI), which is ordinal with categories 1 (well), 2 (mild symptom formation), 3 (moderate
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symptom formation) and 4 (impaired). Besides the mental impairment, the life index (LI) and the
socioeconomic status (SES) are also reported. The SES is a binary variable coded as 0 (low SES) and
1 (high SES). The LI is a composite measure that quantifies the severity and the number of important
life events such as birth of a child, death in family, divorce, etc. One of the objectives of the study is
to assess whether the SES has an effect on MI. As the average MI score has no clear interpretation,
[5] analysed the data with a cumulative logistic regression model. Here we analyse the data in terms
of the probabilistic index. As it is believed that the LI may be a potential confounder, we propose to
analyse the MHS data with the PIM

logit (P {MI 4MI ′}) = β1(SES′ − SES) + β2(LI ′ − LI). (4)

A basic goodness-of-fit plot revealed no lack-of-fit (plot not shown). The model estimates are given

by β̂1 = −0.74 (SE: 0.34, p-value: 0.03) and β̂2 = 0.20 (0.07, 0.006). The PIM analysis shows that,
at the 5% level of significance, SES and LI have significant effects on the MI score in terms of the PI.
With β̂1 = −0.74 we conclude that of people with equal LI, someone with a high SES has an estimated
probability of expit(−0.74) = 32% to have a larger MI score than someone with a low SES and a 95%
confidence interval is given by [20%, 48%]. People with a low SES are thus more likely to be mentally
impaired than others with a high SES, while all having the same LI. The effect of the LI on MI can be
estimated by the probability expit(β̂2). In particular, among persons with the same SES, those with a
LI of one unit smaller than the LI of another group of people, have a smaller MI score with estimated
probability expit(0.2) = 55% with a 95% confidence interval of [51%, 59%]. Thus, the larger the LI,
the more likely that someone is mentally impaired.

5 Conclusion

In this short communication some of the results related to probabilistic index models are presented,
see [6] for more information. The main focus lies on the use of the probabilistic index, which has an
intuitive interpretation, as a statistic to quantify treatment effects and this within a semiparametric
regression framework.
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