Advanced search
1 file | 514.57 KB

The effect of residual stresses on the strain evolution during welding of thin-walled tubes

Author
Organization
Abstract
In many applications, negative effects of residual stresses in the material stemming from the production process, are regularly encountered. These residual stresses in cold-rolled steel tubes are mainly due to two mechanisms: (i) the rolling of the flat plate into a circular cross-section and (ii) afterwards closing this section with a weld bead. This research focuses on the residual stresses due to the welding process. In an experimental setup abstraction is made of the real production process of the tube. A finite element model is built of this experimental setup. Validation of the welding simulations is done by comparing the strain evolution in both the experiment and the simulation. In this validation process, sometimes a discrepancy between the measured strain evolution and the one obtained from the numerical analysis is seen. In this contribution it is numerically investigated how initial residual stresses affect the thermal strain evolution in the tube during the welding process. This is done in two ways: firstly an initial stress field in hoop direction, based on the spring back of the tube when cut is taken as the reference state and secondly the stress/strain state after the first weld is used in stead of the virgin material state. The conclusion for both assumptions is that the strain evolution during the welding is affected by the initial stress/strain state of the material.
Keywords
Residual stresses, FIRE, stainless steel, tube, welding

Downloads

  • Contribution DeStrycker Shemet V4.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 514.57 KB

Citation

Please use this url to cite or link to this publication:

Chicago
De Strycker, Maarten, Wim Van Paepegem, Luc Schueremans, and Dimitri Debruyne. 2011. “The Effect of Residual Stresses on the Strain Evolution During Welding of Thin-walled Tubes.” In Key Engineering Materials, ed. JR Duflou, R Clarke, M Merklein, F Micari, B SHirvani, and K Kellens, 473:298–303. Stafa-Zürich, Switzerland: Trans Tech Publications.
APA
De Strycker, Maarten, Van Paepegem, W., Schueremans, L., & Debruyne, D. (2011). The effect of residual stresses on the strain evolution during welding of thin-walled tubes. In J. Duflou, R. Clarke, M. Merklein, F. Micari, B. SHirvani, & K. Kellens (Eds.), KEY ENGINEERING MATERIALS (Vol. 473, pp. 298–303). Presented at the 14th International Conference on Sheet Metal, Stafa-Zürich, Switzerland: Trans Tech Publications.
Vancouver
1.
De Strycker M, Van Paepegem W, Schueremans L, Debruyne D. The effect of residual stresses on the strain evolution during welding of thin-walled tubes. In: Duflou J, Clarke R, Merklein M, Micari F, SHirvani B, Kellens K, editors. KEY ENGINEERING MATERIALS. Stafa-Zürich, Switzerland: Trans Tech Publications; 2011. p. 298–303.
MLA
De Strycker, Maarten, Wim Van Paepegem, Luc Schueremans, et al. “The Effect of Residual Stresses on the Strain Evolution During Welding of Thin-walled Tubes.” Key Engineering Materials. Ed. JR Duflou et al. Vol. 473. Stafa-Zürich, Switzerland: Trans Tech Publications, 2011. 298–303. Print.
@inproceedings{2115029,
  abstract     = {In many applications, negative effects of residual stresses in the material stemming from the production process, are regularly encountered. These residual stresses in cold-rolled steel tubes are mainly due to two mechanisms: (i) the rolling of the flat plate into a circular cross-section and (ii) afterwards closing this section with a weld bead. This research focuses on the residual stresses due to the welding process. In an experimental setup abstraction is made of the real production process of the tube. A finite element model is built of this experimental setup. Validation of the welding simulations is done by comparing the strain evolution in both the experiment and the simulation. In this validation process, sometimes a discrepancy between the measured strain evolution and the one obtained from the numerical analysis is seen. In this contribution it is numerically investigated how initial residual stresses affect the thermal strain evolution in the tube during the welding process. This is done in two ways: firstly an initial stress field in hoop direction, based on the spring back of the tube when cut is taken as the reference state and secondly the stress/strain state after the first weld is used in stead of the virgin material state. The conclusion for both assumptions is that the strain evolution during the welding is affected by the initial stress/strain state of the material.},
  author       = {De Strycker, Maarten and Van Paepegem, Wim and Schueremans, Luc and Debruyne, Dimitri},
  booktitle    = {KEY ENGINEERING MATERIALS},
  editor       = {Duflou, JR and Clarke, R and Merklein, M and Micari, F and SHirvani, B and Kellens, K },
  issn         = {1013-9826},
  keyword      = {Residual stresses,FIRE,stainless steel,tube,welding},
  language     = {eng},
  location     = {Leuven, Belgium},
  pages        = {298--303},
  publisher    = {Trans Tech Publications},
  title        = {The effect of residual stresses on the strain evolution during welding of thin-walled tubes},
  url          = {http://dx.doi.org/10.4028/www.scientific.net/KEM.473.298},
  volume       = {473},
  year         = {2011},
}

Altmetric
View in Altmetric
Web of Science
Times cited: