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Abstract

In this paper, we consider a discrete-time queueing system with head-of-line priority. First, we will give
some general results on a GI-1-1 queue with priority scheduling. In particular, we will derive expressions for
the probability generating function of the system contents and the cell delay. Some performance measures
(such as mean, variance and approximate tail distributions) of these quantities will be derived, and used to
illustrate the impact and signi7cance of priority scheduling in an ATM output queueing switch.

Scope and purpose

Queueing theory is an important subject in computers and operations research. Bu:ers/queues are used,
e.g., in telecommunication networks, to store information that cannot be transmitted instantaneously. The
study of the bu:er behavior is important since network performance is directly related to it. Queues with a
priority scheduling discipline are an important subject in queueing theory. As a result, these type of queues
are thoroughly studied in the past, especially in continuous time. In discrete-time queueing models on the
other hand, this type of queues is not as widely studied. Discrete-time queueing models are suitable for the
performance evaluation of asynchronous transfer mode (ATM) switches. In ATM, di:erent types of tra=c need
di:erent quality of service (QoS) standards. The delay characteristics of delay-sensitive tra=c (e.g., voice) are
more stringent than those of delay-insensitive tra=c (e.g., data). We can thus give priority to delay-sensitive
tra=c over delay-insensitive tra=c, thus trying to reduce the delay of the delay-sensitive tra=c. This paper
studies the impact of a priority scheduling on the bu:er characteristics.
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1. Introduction

In recent years, there has been much interest in ATM as a promising technology for transport of
high-bandwidth applications. Especially its well-de7ned QoS guarantee makes it extremely suitable
for multimedia applications. Di:erent types of tra=c need di:erent QoS standards. For real-time
applications, it is important that mean delay and delay jitter are not too large, while for non-real-time
applications, the cell loss ratio (CLR) is the restrictive quantity.

In general, one can distinguish two priority categories, which will be referred to as delay priority
and loss priority. Delay priority scheduling tries to reduce the delay of delay-sensitive tra=c (such as
voice). This is done by using a more sophisticated type of scheduling than the simple FIFO schedul-
ing. Priority is given to delay-sensitive tra=c over delay-insensitive tra=c. Several types of delay
priority (or cell scheduling) schemes (such as weighted-round-robin (WRR), weighted-fair-queueing
(WFQ)) have been proposed and analyzed for ATM applications, each with their own speci7c algo-
rithmic and computational complexity (see e.g. [1] and the references therein). On the other hand,
loss-priority schemes attempt to reduce the cell loss of loss-sensitive tra=c (such as data). Again,
various types of loss-priority (or cell discarding) strategies for ATM (such as push-out bu:er (POB),
partial bu:er sharing (PBS)) have been presented in the literature (see e.g. [2]). An overview of
both types of priority can be found in [3].

In this paper, we will focus on the e:ect of head-of-line (HOL) (or non-preemptive) delay-priority
scheduling. We assume that delay-sensitive tra=c has absolute priority over delay-insensitive tra=c,
i.e., when a server becomes idle, a cell of delay-sensitive tra=c, when available, will always be
scheduled next. This is the most drastic type of delay-priority scheduling, but also the easiest one to
implement. In the existing literature, there have been a number of contributions with respect to this
priority scheme. In [4–11], HOL-priority queues have been analyzed with a wide variety of arrival
and service time distributions.

In this paper, we use an analysis based on generating functions for assessing the performance
of ATM bu:ers with a priority scheduling discipline. From these generating functions, we can then
easily calculate expressions for some interesting performance measures, such as mean value, variance
and approximations for the tail distribution of the bu:er contents and cell delay. These closed-form
expressions require virtually no computational e:ort at all, and are well suited for evaluating the
impact of the various system parameters on the overall performance. We will also show that our
results can be applied to the case of an ATM output-queueing switch with HOL priority scheduling.
There have been a number of contributions with respect to switches with output queueing, in the
case of a single tra=c type and a FIFO scheduling discipline, such as [12–14].

The contribution of this paper concerns the model that is considered, the solution technique that
is used, as well as the results that are generated. First, as far as the model is concerned, the main
di:erence with the articles involved with HOL-priority queues listed above is that, for the case
of a multiclass output-queueing switch, the arrival processes of the di:erent types of cells are not
mutually independent. Therefore, the di:erent classes cannot be analyzed separately (i.e., as a model
with server interruptions for low-priority cells as demonstrated in Section 5), which complicates the
analysis. Secondly, we want to show that a generating-functions solution method is extremely suitable
for analyzing this type of bu:ers with a priority scheduling discipline, whereas existing models are
mainly based on matrix-analytic methods. Finally, determining the tail behavior of the bu:er contents
and cell delay is one of the main contributions of the paper. Although these are important quantities
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in the evaluation of QoS of high- and low-priority cell streams, this has received only few attention
up to now. We will also show that the distribution of the bu:er contents and cell delay of low-priority
cells not necessarily has a geometric asymptotic behavior.

The outline is as follows. First, we consider a single queue with a general arrival distribution. In
the following section, we will introduce the mathematical model. In Sections 3 and 4 we will analyze
the steady-state system contents and cell delay. In Section 5, we discuss the results derived in the
former sections and we calculate the moments of the system contents and cell delay in Section
6. We study the tail behavior of the system contents and cell delay in Section 7. We apply the
obtained results to an output queueing switch with Bernoulli arrivals, and discuss the impact of a
HOL priority scheduling discipline in Section 8. Some conclusions are formulated in Section 9.

2. Mathematical model

We consider a discrete-time single-server queueing system with in7nite bu:er space. Time is
assumed to be slotted, where 1 slot equals the transmission time of a cell. There are two types of
tra=c arriving in the system, namely cells of class-1 and cells of class-2. We denote the number of
arrivals of class-j during slot k by aj;k (j = 1; 2). Both types of cell arrivals are assumed to be i.i.d.
from slot to slot and are characterized by the joint probability mass function (pmf) a(m; n),

a(m; n) , Prob[a1; k = m; a2; k = n]

and joint probability generating function (pgf) A(z1; z2),

A(z1; z2) , E[za1 ; k
1 za2 ; k

2 ]:

Notice that the number of cell arrivals from di:erent classes (within a slot) can be correlated.
Further, we denote the total number of arriving cells during slot k by aT;k , a1; k + a2; k and its
pgf is de7ned as AT (z) , E[zaT ;k] = A(z; z). In the same way, we de7ne the marginal pgf’s of
the number of arrivals from class-1 and class-2 during a slot by A1(z) , E[za1 ; k] = A(z; 1) and
A2(z) , E[za2 ; k] = A(1; z), respectively. We furthermore denote the arrival rate of class-j (j = 1; 2)
by �j = A′

j(1) and the total arrival rate by �T = A′
T (1) = A′

1(1) + A′
2(1). The system has one server

that provides the transmission of cells, at a rate of 1 cell per slot. We assume a stable system, i.e.,
�T ¡ 1.

Newly arriving cells can enter service at the beginning of the slot following their arrival slot at
the earliest. Class-1 cells are assumed to have priority over class-2 cells, and within one class the
service discipline is FCFS. Due to the priority scheduling mechanism, it is as if class-1 cells are
stored in front of class-2 cells in the queue. So, if there are any class-1 cells in the queue at the
beginning of a slot, the one with the longest waiting time will be served next. If, on the other hand,
no class-1 cells are present in the queue at the beginning of a particular slot, the class-2 cell with
the longest waiting time, if any, will be served.

3. System contents

In this section, we concentrate on the e:ect of the HOL priority scheduling discipline on the
probability generating function of the steady-state system contents, which represents the number of
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cells in the bu:er. This was already done in [6]—for a more general queueing system—but it is
useful to give the analysis in our special case. We denote the system contents of class-j at the
beginning of slot k by uj;k (j = 1; 2) and the total system contents at the beginning of slot k by
uT;k . Furthermore, we denote the joint pgf of u1; k and u2; k by Uk(z1; z2), i.e.,

Uk(z1; z2) , E[zu1; k
1 zu2; k

2 ]:

The system contents of both types of cells is characterized by the following system equations:

u1; k+1 = [u1; k − 1]+ + a1; k ;

u2; k+1 =

{
[u2; k − 1]+ + a2; k if u1; k = 0;

u2; k + a2; k if u1; k ¿ 0;

where [:]+ denotes the maximum of the argument and 0. The 7rst equation follows from the ob-
servation that class-1 cells are not inNuenced by class-2 cells. A class-2 cell on the other hand can
only be served, if there are no class-1 cells in the system. This leads to the second equation. Using
these system equations, we can form the following relation between Uk+1(z1; z2) and Uk(z1; z2)

Uk+1(z1; z2) = A(z1; z2)
z2Uk(z1; z2) + (z1 − z2)Uk(0; z2) + z1(z2 − 1)Uk(0; 0)

z1z2
: (1)

Since we are interested in the steady-state distribution of the system contents, we de7ne U (z1; z2) as

U (z1; z2) , lim
k→∞

Uk(z1; z2):

Applying this limit in Eq. (1), we 7nd the following expression for U (z1; z2):

U (z1; z2) = A(z1; z2)
(z1 − z2)U (0; z2) + z1(z2 − 1)U (0; 0)

z2(z1 − A(z1; z2))
: (2)

There are two quantities yet to be determined in the right-hand side of Eq. (2), namely the function
U (0; z2) and the constant U (0; 0). Applying RouchPe’s theorem, it can be proven that for a given
value of z2 (|z2|6 1), the equation z1 =A(z1; z2) has one solution in the unit circle for z1, which will
be denoted by Y (z2) in the remainder, and which is implicitly de7ned by Y (z) , A(Y (z); z). Since
Y (z2) is a zero of the denominator of the right-hand side of (2) and since a generating function
remains 7nite in the unit circle, Y (z2) must be a zero of the numerator too. We thus 7nd

U (0; z2) = U (0; 0)
Y (z2)(z2 − 1)
z2 − Y (z2)

:

Substituting this result in Eq. (2) yields

U (z1; z2) = U (0; 0)
A(z1; z2)(z2 − 1)

z2 − Y (z2)
z1 − Y (z2)

z1 − A(z1; z2)
: (3)

U (0; 0) can be found by applying the normalization condition U (1; 1) = 1. Using de l’ Hopi-
tal’s rule gives the expected result for the probability of having an empty system: U (0; 0) = 1 −
�T . From Eq. (3), we easily obtain an expression for the pgf UT (z) describing the total system
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contents

UT (z), lim
k→∞

E[zuT; k ] = U (z; z)

= (1 − �T )
AT (z)(z − 1)
z − AT (z)

: (4)

We can also calculate the pgf Uj(z) (j = 1; 2) of the system contents of class-j, namely

U1(z), lim
k→∞

E[zu1; k ] = U (z; 1)

= (1 − �1)
A1(z)(z − 1)
z − A1(z)

; (5)

U2(z), lim
k→∞

E[zu2; k ] = U (1; z)

= (1 − �T )
A2(z)(z − 1)

z − Y (z)
1 − Y (z)
1 − A2(z)

: (6)

We will discuss these results in Section 5.

4. Cell delay

The cell delay is de7ned as the total amount of time that a cell spends in the system, i.e., the
number of slots between the end of the cell’s arrival slot and the end of its departure slot. In this
section, we will derive expressions for the pgf’s of the cell delay of both classes.

We can analyze the cell delay of class-1 cells as if they are the only type of cells in the system.
This is e.g., done in [15] and the pgf of the cell delay of class-1 cells is given by

D1(z) =
1 − �1

�1

z(A1(z) − 1)
z − A1(z)

: (7)

The analysis of the cell delay of a class-2 cell is more complicated. Consider a logical equivalent
queueing system where all high-priority cells are stored in front of the class-2 cells, and let us tag an
arbitrary class-2 cell that arrives in the system. The amount of time it spends in the system equals

d2 =
[uT; k−1]++f2; k∑

j=1

v0
j + 1; (8)

where slot k is assumed to be the arrival slot of the tagged cell, f2; k is de7ned as the total number
of cells that arrive during the arrival slot of the tagged cell, but which have to be served before it,
and v0

j represents the number of slots it takes for the tagged cell to move one position ahead in the
queue, e.g., from position j to position j − 1 (see Fig. 1). In case of FIFO scheduling, v0

j would
equal 1. For HOL priority scheduling, this is not necessarily the case, since new class-1 cells can
arrive while the tagged cell is waiting in the queue and these class-1 cells have to be served before
the tagged cell. More speci7c, assume that the tagged cell is stored in the jth position in the queue
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Fig. 1. The queueing system.

at the beginning of the lth slot (0 ¡ j6 [uT;k − 1]+ + f2; k). If no class-1 cells arrive during slot l,
v0
j equals 1. If a1; l (¿ 0) class-1 cells arrive during this slot on the other hand, the tagged cell will

move back to position j + a1; l − 1 in the queue at the beginning of slot l + 1, since these class-1
cells have to be served before all class-2 cells, and thus before the tagged one (Fig. 1). If we then
de7ne v1

j; i (j6 i6 j + a1; l − 1) as the number of slots it takes the tagged cell to go from position
i to position i − 1, it is clear that v0

j can be calculated as follows:

v0
j =

a1;l−1∑
i=0

v1
j; j+i + 1: (9)

Now, one can easily see that all v0
j and v1

j; i form a set of mutually independent random variables
since they depend on the number of class-1 cell arrivals during di:erent slots. From a stochastic
point of view, these are i.i.d. variables and, as a result, are characterized by the same pgf V (z).
From Eq. (9), it can be seen that V (z) satis7es

V (z) = zA1(V (z)): (10)

Furthermore, f2; k is the sum of all the class-1 cells that arrive during the same slot as the tagged
one, and of the class-2 cells that have arrived before it during its arrival slot. The pgf of f2; k can
be calculated taking into account that an arbitrary tagged cell is more likely to arrive in a larger
bulk (e.g. [15]), yielding

F2(z) =
AT (z) − A1(z)

�2(z − 1)
: (11)

Using Eqs. (4) and (11) in the z-transform of Eq. (8) eventually gives us the steady-state pgf of
d2, i.e.,

D2(z) =
1 − �T

�2

z(AT (V (z)) − A1(V (z)))
V (z) − AT (V (z))

; (12)

where V (z) is implicitly determined by Eq. (10).

5. Discussion of the results and special relations

In this section, we will discuss some of the results from the former sections. First, we notice
that the pgf of the total system contents (Eq. (4)) is the same as for a single class system with an
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identical cell arrival process described by AT (z). Indeed, since the service time is deterministic and
equal to 1 slot for the two classes, the scheduling has no impact on the total system contents.

Second, we see that the system contents of class-1 cells (Eq. (5)) is not inNuenced by class-2
cells and furthermore that its pgf has the same structure as UT (z). This is of course due to the
HOL priority scheduling. For class-1 cells, it seems as if no class-2 cells are present in the system.
Consequently, since the scheduling is FIFO within class-1, U1(z) and D1(z) ful7ll the following
relation (see [16]):

U1(z) = 1 − �1 + �1D1(z):

It is easily veri7ed that indeed (5) and (7) satisfy this equation.
In the special case that the number of arrivals of class-1 and class-2 cells are uncorrelated, i.e.,

A(z1; z2) = A1(z1)A2(z2), we can calculate the system contents of class-2 cells in an alternative way.
Since class-2 cells can only be served when there are no class-1 cells in the system, we can model
the system, with respect to class-2 cells, in terms of a system with server interruptions. The server
is blocked for class-2 cells if there are class-1 cells waiting to be sent, and it is available if there
are none. We can then calculate the pgf of the duration of busy and idle period of class-1 cells, i.e.,
the time period during which there are class-1 cells in the system (i.e., u1 ¿ 0) and the time period
during which there are no such cells (i.e., u1 = 0), respectively. It is easily veri7ed that the duration
of the idle period is geometrically distributed, i.e., its pgf is given by

I(z) =
(1 − A1(0))z
1 − A1(0)z

: (13)

The calculation of the busy period is a bit more involved, and can be found in [15] for a general
service time distribution. In case of deterministic service times of one slot, it is implicitly given by
the following formula:

B(z) =
A1(z((1 − A1(0))B(z) + A1(0))) − A1(0)

1 − A1(0)
: (14)

Note that the lengths of consecutive busy and idle periods are statistically independent. It is clear that
when the system is busy with respect to class-1 cells, it is blocked for class-2 cells. Therefore, with
respect to class-2 cells, the system can be modelled as a single-server bu:er with server interruptions,
for which the lengths of consecutive available and blocked periods are i.i.d. and their respective
pgf’s are given by Eqs. (13) and (14). Such a queueing system has already been analyzed in [17].
Translating the results from this analysis to our case, the pgf of the system contents of class-2 cells
becomes

U2(z) = (1 − �T )
A2(z)(z − 1)

z − X (z)
1 − X (z)
1 − A2(z)

(15)

with

X (z) = A1(X (z))A2(z):

Eqs. (6) and (15) lead to the same result for U2(z), when X (z) = Y (z). This is the case when the
number of class-1 and class-2 arrivals during a slot are uncorrelated.
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6. Calculation of moments

The functions Y (z) and V (z), de7ned in Sections 3 and 4, can only be explicitly found in case of
some simple arrival processes. Their derivatives for z = 1, necessary to calculate the moments of the
system contents and the cell delay, on the contrary, can be calculated in closed form. For example,
the 7rst derivatives are given by

Y ′(1) =
�2

1 − �1
; V ′(1) =

1
1 − �1

:

Let us de7ne �ij as

�ij ,
@2A(z1; z2)

@zi@zj

∣∣∣∣
z1=z2=1

with i; j = 1; 2. Now we can calculate the mean values of the system contents and cell delay of both
classes by taking the 7rst derivative of the respective pgf’s for z = 1. We 7nd

E[uT ] = �T +
A′′

T (1)
2(1 − �T )

(16)

for the mean value of total system contents,

E[u1] = �1 +
�11

2(1 − �1)
(17)

for the mean system contents of class-1 cells and

E[u2] = �2 +
2�12 + �22

2(1 − �T )
+

�2�11

2(1 − �T )(1 − �1)
(18)

for the mean system contents of class-2 cells. It is easily veri7ed that Eqs. (16)–(18) satisfy E[uT ]=
E[u1] + E[u2].

Furthermore, from Eqs. (7) and (12), we derive the following expressions:

E[d1] = 1 +
�11

2�1(1 − �1)
(19)

and

E[d2] = 1 +
2�12 + �22

2�2(1 − �T )
+

�11

2(1 − �T )(1 − �1)
(20)

for the mean cell delay of a class-1 and a class-2 cell, respectively. We can see from Eqs. (17)–(20)
that Little’s law E[uj] = �jE[dj] (j = 1; 2) is ful7lled for both classes, as expected.

In a similar way, expressions for the variance of system contents and cell delay and some interest-
ing correlation coe=cients can be calculated by taking the appropriate derivatives of the respective
generating functions as well. The expressions are nevertheless too exhaustive, but we will show them
in some 7gures in Section 8.
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7. Tail behavior

Not only the moments of the system contents and cell delay are important, but also, and especially,
the tail distribution of these quantities, which are often used to impose statistical bounds on the
guaranteed QoS for both classes.

From the generating functions of the total system contents, and of the system contents and cell
delay of class-1 and class-2 cells derived in Sections 3 and 4, approximations of the tail probabilities
can be derived using complex contour integration and residue theory. The procedure to 7nd the
corresponding probability mass function of a pgf, frequently used in the following of this section,
is generally described in Appendix A.

In order to determine the asymptotic behavior of the tail distribution, the dominant singularity
of the respective generating functions is important. In e.g. [18] (wherein a single-class ATM queue
with a FIFO scheduling discipline is analyzed), it is proven that the dominant singularity lies on the
positive real axis and is larger than 1.

First we concentrate on the total system contents. Provided that the pgf AT (z) exhibits no long-tail
behavior, which is assumed to be the case here, the dominant singularity zT of UT (z) is a zero of
z−AT (z) and this singularity is a single pole. In the neighborhood of this pole, we can approximate
UT (z) by

UT (z) ≈ KT

zT − z
; (21)

where KT can be found by substituting z = zT in (21). Using residue theory, the tail probability is
easily found to yield

Prob[uT = n] ≈ (1 − �T )
zT − 1

A′
T (zT ) − 1

z−n
T (22)

for large enough n. The system contents of class-1 cells has an identical tail behavior:

Prob[u1 = n] ≈ (1 − �1)
zH − 1

A′
1(zH ) − 1

z−n
H (23)

for large enough n, with zH the dominant singularity on the positive real axis of U1(z), i.e., zH is
a zero of z − A1(z).

The tail behavior of the system contents of class-2 cells is a bit more involved, since it is not a
priori clear what the dominant singularity is of U2(z). This is due to the occurrence of the function
Y (z) in (6), which is only implicitly de7ned. First we take a closer look at that function Y (z). The
7rst derivative of Y (z) is given by

Y ′(z) =
A(2)(Y (z); z)

1 − A(1)(Y (z); z)
(24)

with A(j)(z1; z2) , @A(z1; z2)=@zj (j = 1; 2). Consequently, Y (z) has a singularity, denoted as zB,
where the denominator of Y ′(z) becomes 0, i.e., A(1)(Y (zB); zB) = 1. Since Y (z) remains 7nite in the
neighborhood of zB, this singularity is not a simple pole. Applying the results from [19] one can
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show that in the neighborhood of zB, Y (z) is approximately given by

Y (z) ≈ Y (zB) − KY
√

zB − z (25)

with

KY =

√
2A(2)(Y (zB); zB)
A(11)(Y (zB); zB)

;

which can be found by taking the limit z → zB of (25). A(ij)(z1; z2) is de7ned as @2A(z1; z2)=@zi@zj

(for i; j = 1; 2). From Eq. (25) it becomes obvious that zB is a square-root branch point of Y (z).
Y (z) has thus two real solutions when z ¡ zB (the solution we are interested in is the one where
Y (z) ¡ 1, if z ¡ 1), which coincide at zB, and has no real solution when z ¿ zB. zB is then of course
also a branch point of U2(z). A second potential singularity zL of U2(z) on the real axis is given by
the positive zero of the denominator z − Y (z), and is easily proven to be equal to zT , if zL exists.

The tail behavior of the system contents of class-2 cells is thus characterized by zT or zB, depending
on which is the dominant (i.e., smallest) singularity. Three types of tail behavior may thus occur,
namely when zL = zT ¡ zB, zL = zT = zB and zL does not exist. In those three cases, U2(z) can be
approximated in the neighborhood of its dominant singularity by

U2(z) ≈




K (1)
2

zT − z
if zL = zT ¡ zB;

K (2)
2√

zB − z
if zL = zT = zB;

U2(zB) − K (3)
2

√
zB − z if zL does not exist;

where the constants K (i)
2 (i = 1; 2; 3) can be found by investigating the behavior of U2(z) in the

neighborhood of this dominant singularity. Using residue theory, we 7nd the tail probabilities for
the three possible cases:

Prob[u2 = n] ≈




(1 − �T )
A2(zT )(zT − 1)2

zT (A2(zT ) − 1)(Y ′(zT ) − 1)
z−n
T

1 − �T

KY

√
1

zB"
A2(zB)(zB − 1)2

A2(zB) − 1
n−1=2z−n

B

(1 − �T )KY

2

√
zB

"
A2(zB)(zB − 1)2

(A2(zB) − 1)(zB − Y (zB))2 n−3=2z−n
B

(26)

for large enough n, if zL = zT ¡ zB, if zL = zT = zB, and if zL does not exist, respectively. The 7rst
expression constitutes a typical geometric tail behavior, the third expression is a typical non-geometric
tail behavior and the second expression gives a transition between geometric and non-geometric tail
behavior. The latter two expressions are found from the approximations of the generating functions
by using the theorem from Appendix B (which is a theorem stated in [20]).

Let us now consider the cell delay. The dominant singularity of D1(z) is the same as
the one of U1(z), and we can thus approximate the tail behavior of the delay of class-1
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cells by

Prob[d1 = n] ≈ (1 − �1)
�1

zH − 1
A′

1(zH ) − 1
z−n
H (27)

for large enough n. The tail behavior of the delay of class-2 cells is again a bit more involved
because of the appearance of the function V (z) in (12), which is only implicitly known. The 7rst
derivative of V (z) is given by

V ′(z) =
A1(V (z))

1 − zA′
1(V (z))

; (28)

which, similar as before, indicates that V (z) also has a square root branch point ẑB, with ẑBA′
1(V (ẑB))

= 1. In the neighborhood of ẑB, V (z) is approximately given by

V (z) ≈ V (ẑB) − KV

√
ẑB − z (29)

with

KV =

√
2A1(V (ẑB))
ẑBA′′

1 (V (ẑB))
:

A second singularity of D2(z) is given by the dominant zero ẑL of V (z)−AT (V (z)) on the real axis
and is easily proven to equal zT =A1(zT ), if ẑL exists.

So, D2(z) can be approximated in the neighborhood of his dominant singularity by

D2(z) ≈




K̂ (1)
2

zT

A1(zT )
− z

if ẑL =
zT

A1(zT )
¡ ẑB;

K̂ (2)
2√

ẑB − z
if ẑL =

zT

A1(zT )
= ẑB;

D2(ẑB) − K̂ (3)
2

√
ẑB − z if ẑL does not exist;

where the constants K̂ (i)
2 (i = 1; 2; 3) can be found by investigating D2(z) in the neighborhood of its

dominant singularity. By using residue theory once again, the asymptotic behavior of D2(z) is given
by

Prob[d2 = n] ≈




1 − �T

�2

(zT − A1(zT ))(A1(zT ) − zTA′
1(zT ))

(A1(zT ))2(A′
T (zT ) − 1)

(
zT

A1(zT )

)−n

1 − �T

�2KV
√

ẑB"
ẑBAT (V (ẑB)) − V (ẑB)

A′
T (V (ẑB)) − 1

n−1=2ẑ−n
B

(1 − �T )KV

2�2

√
"=ẑB

(ẑB − 1)(V (ẑB)A′
T (V (ẑB)) − AT (V (ẑB)))

(V (ẑB) − AT (V (ẑB)))2 n−3=2ẑ−n
B ;

(30)

if ẑL = zT =A1(zT ) ¡ ẑB, if ẑL = zT =A1(zT ) = ẑB, and if ẑL does not exist, respectively. The 7rst
expression has a typical geometric tail behavior, the third expression has a typical non-geometric
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tail behavior and the second expression gives a transition between geometric and non-geometric tail
behavior.

A quantity of practical interest is the probability that a cell has a delay that exceeds a bound D.
We 7nd

Prob[d1 ¿ D] ≈ Prob[d1 = D + 1]ẑH

ẑH − 1
(31)

for the probability that the delay of a class-1 cell is larger than a bound D. This can be found by
summing Eq. (27) for all appropriate values of n. Analogously, we can calculate the probability that
a class-2 cell exceeds a bound D by summing Eq. (30) for the appropriate values of n. We 7nd

Prob[d2 ¿ D] ≈




Prob[d2 = D + 1]ẑL

ẑL − 1
if ẑL =

zT

A1(zT )
¡ ẑB;

Prob[d2 = D + 1]ẑB

ẑB − 1
if ẑL =

zT

A1(zT )
= ẑB;

Prob[d2 = D + 1]ẑB

ẑB − 1
if ẑL does not exist;

where we used the approximation that
∑∞

n=D+1 n−az−n ≈ (D + 1)−a ∑∞
n=D+1 z−n, with a = 1

2 or 3
2

and which holds for large enough D. Some similar expressions can be found for the probability that
the system contents exceeds a certain bound.

Since the results obtained in this section are approximate (due to the dominant pole approximative
method), the question remains if the expressions are accurate. From the analysis in [18], it follows
that the approximation of the tail probabilities, obtained through the dominant pole method, are
better when the dominant pole is more dominant (i.e., the higher the moduli of the other poles, the
better the quality of the approximation) and when we go further in the tail of the distribution (i.e.,
when coe=cient n in (22), (23), (26), (27) and (30) is higher). We will show in Section 8 that the
approximate results for the tail probabilities obtained in this section are satisfactory.

8. Application

In this section, we apply our results from the former sections to an ATM output-queueing switch.
We consider a non-blocking output-queueing switch with N inlets and N outlets (Fig. 2). We assume
two types of tra=c. Tra=c of class-1 is delay sensitive (for instance voice) and tra=c of class-2
is assumed to be delay insensitive (for instance data). We investigate the e:ect of HOL priority
scheduling, as presented in the former of this paper.

The cell arrivals on each inlet are assumed to be i.i.d., and generated by Bernoulli process with
arrival rate �T . An arriving cell is assumed to be of class-j with probability �j=�T (j = 1; 2) (�1 +
�2 = �T ). The incoming cells are then routed to the output queue corresponding to their destination,
in an independent and uniform way. Therefore, the output queues behave identically and we can
concentrate on the analysis of 1 output queue. In view of the previous, the arrivals of both types of
cells to an output queue are generated according to a two-dimensional binomial process. It is fully
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Fig. 2. An N × N output queueing switch.

characterized by the following joint pgf:

A(z1; z2) =
(

1 − �1

N
(1 − z1) − �2

N
(1 − z2)

)N

: (32)

Obviously, the number of class-1 and class-2 arrivals at an output queue during a slot are correlated.
This is simply demonstrated by the following observation: when m class-1 cells arrive at the tagged
queue during a slot (06m6N ), the maximum number of class-2 arrivals during the same slot is
limited by N −m. We note that for N going to in7nity, the above expression becomes a product of
two generating functions of Poisson distributions with means �1 and �2, respectively, and as a result,
the arrival process becomes uncorrelated for both classes. In the following, we will investigate the
e:ect of priority scheduling on some performance measures, such as mean value and variance of
system contents and cell delay. We will, when possible, compare with a FIFO scheduling discipline
to show the advantages and disadvantages of a priority scheduling discipline. In the remaining of
this section, we assume a 16 × 16 switch (N = 16). We de7ne $ as the fraction of class-1 arrivals
in the overall tra=c mix (i.e., $ = �1=�T ).

In Figs. 3 and 4, mean value and variance of the system contents of class-1 and class-2 cells
is shown as a function of the total arrival rate, when $ = 0:25; 0:5 and 0:75, respectively. We
have also shown the mean value and variance of the system contents for $ = 0:5 when a FIFO
scheduling discipline is applied. These can be easily calculated because—in the special case of
the arrival process characterized by (32)—the joint pgf of the system contents of both classes is
given by UT ($z1 + (1 − $)z2) when a FIFO scheduling discipline is applied. One can easily see the
inNuence of priority scheduling: the mean, as well as the variance of the number of class-1 cells in
the system is severely reduced by the HOL priority scheduling; the opposite holds for class-2 cells.
In addition, it also becomes apparent that increasing the fraction of high-priority cells in the overall
mix increases the amount of high-priority tra=c while decreasing the amount of low-priority tra=c
in the bu:er. Finally, it is also clear that the impact of priority scheduling is more important if the
load is high.
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Fig. 3. Mean value of system contents versus the total arrival rate.
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Fig. 4. Variance of system contents versus the total arrival rate.

In Fig. 5, the correlation coe=cient %u1u2 , which quanti7es the correlation between the number of
class-1 and class-2 cells in the system during a slot, is shown as a function of the total arrival rate
for $=0:25; 0:5 and 0:75. We see that %u1u2 increases when the fraction of class-1 cells increases (for
a given total load). This can easily be understood by the priority scheduling. The inNuence of class-1
cells on class-2 cells will become more important, when the fraction of class-1 cells increases. A
second observation is that %u1u2 is (slightly) negative when the total load is small, but becomes
positive when the total load is large. The reason for this are two counteracting mechanisms. The
7rst one is the switch structure. When more class-1 cells arrive at the switch, there will be less
class-2 cells arriving at the same time (since the amount of inlets is limited), and vice versa. This
negative correlation between cell arrivals of the two priority classes during a slot shows for small
values of �T . For these parameter values, there is virtually no queueing and the bu:er behavior is
mainly determined by the number of arrivals during a single slot. The second inNuence is priority
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Fig. 5. Correlation of system contents versus the total arrival rate.
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Fig. 6. Mean value of cell delays versus the total arrival rate.

scheduling. As �T (and �1) further increases, more and more cells are being queued, and the presence
of high-priority cells starts to seriously hinder the transmission of low-priority cells, thereby leading
to a positive correlation between u1 and u2. Finally, when �T approaches 1, the total system contents
(and the number of class-2 cells) approaches in7nity, due to the system becoming unstable. As a
result %u1u2 approaches 0. We have also shown the correlation coe=cient for $ = 0:5, when a FIFO
scheduling is applied. We see that the correlation coe=cient in this case is always larger than when
a priority scheduling discipline is applied. Since the system contents of both classes becomes in7nite
when �T approaches 1; %u1u2 approaches 1.

Figs. 6 and 7 show the mean value and the variance of the cell delay as a function of the total
load for $ = 0:25; 0:5 and 0:75. In order to compare with FIFO scheduling, we have also shown the
mean value and variance of the cell delay in that case. The cell delay is then of course the same
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Fig. 7. Variance of cell delays versus the total arrival rate.

for class-1 and class-2 cells (independent of $), and can thus be calculated as if there is only one
class arriving according to an arrival process with pgf A(z; z). This has already been analyzed, e.g.,
in [13] for the special case of a multiserver output-queueing switch. We observe that the inNuence
of HOL priority scheduling is quite large. Mean delay and delay jitter of class-1 cells reduces
considerably compared to FIFO scheduling. The price to pay is of course a bigger mean delay and
delay jitter for class-2 cells. If this kind of tra=c is not delay sensitive, this is not too big a problem.
Nevertheless, in a bu:er with limited storage, an appropriate loss-priority scheme will have to be
applied in order to avoid excessive cell loss of class-2 cells. Also note that if follows from these
7gures that increasing the fraction of high-priority cells in the overall tra=c mix, increases the delay
of high- and low-priority cells.

We have shown in Section 7, that the tails of class-2 system contents and cell delay can have
three types of behavior, depending on which singularity of the respective pgf’s is dominant. In case
of the output queueing switch considered in this section, Fig. 8 shows for which combination of
class-1 and class-2 arrival rates the transition type behavior occurs for the system contents and cell
delay, i.e., for which combination of arrival rates the regular pole and the branch point coincide.
Above the curves, the tail behavior is geometric, while below the curves the tail behavior is typically
non-geometric. Note that in the area above the linear line (de7ned by �1 + �2 = 1) in Fig. 8, the
total load is larger than 1, and as a result, the system becomes unstable.

Figs. 9 and 10 show the tail behavior of the system contents and cell delay of class-1 and
class-2 cells if �1 = 0:4 and �2 = 0:1 (non-geometric behavior), approximately 0.21 (transition type
behavior) and 0.4 (geometric behavior), respectively. Tail behavior of system contents and cell delay
of class-1 cells is of course the same for the three cases, since the arrival process of class-1 cells
does not change. We have our approximations also compared with simulation results (marks in the
7gures). The 7gures show that the approximations for the class-1, the geometric and transition type
tail behavior of system contents and delay is very good in these cases. The approximations of the
tails of the non-geometric case are not as good, but still satisfactory. The approximations of the
tails are not good in all cases though, as is shown in Figs. 11 and 12. In these 7gures, the tail
probabilities of the system contents and cell delay of class-2 cells is shown, with the parameters of
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Fig. 9. Tail behavior of the high- and low-priority system contents for some combinations of class-1 and class-2 arrival
rates.

the transition type behavior of the previous examples (�1 = 0:4 and �2 = 0:21). We have shown the
three types of behavior, i.e., the tail behavior just before you have the transition from non-geometrical
to geometrical tail behavior, the transition type tail behavior itself, and the tail behavior just after
the transition. These tail probabilities should be very near to each other, but the 7gures show this
is not the case. The incorrectness of the geometrical and non-geometrical approximations is due to
the single-pole approximations. If both singularities lie near to each other, which is the case near
the transition from non-geometric to geometric behavior, a single-pole approximation is clearly not
good enough. More accurate approximations are necessary in those cases, but this lies outside the
scope of this paper.

To conclude this section, we analyze the following case study. Consider two tra=c classes gen-
erating cells that arrive in a common multiplexer bu:er where they are temporarily stored before
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Fig. 11. Tail behavior of the low-priority system contents near the transition from non-geometrical to geometrical.

transmission. The cell arrival process of both classes is described by a joint pgf given by expression
(32). For both classes, their respective cell delay must satisfy the constraint Prob[dj ¿ Tj ¡ 10−Xj ,
i.e., the fraction of cells of class-j that have a delay larger than the threshold Tj may not exceed
10−Xj , where Tj and Xj depend on the application under consideration. It is assumed that class-1
cells are delay sensitive, implying that they are given priority over class-2 packets (and T1 ¡ T2,
since it makes no sense to have a higher delay threshold for delay-sensitive tra=c). Class-2 tra=c
may be loss sensitive, and the amount of packets that is rejected due to a delay threshold being
exceeded must be su=ciently small. Therefore, in the remainder we will set X2 = 9 and X1 ≡ X
(where the latter may be varied). It is clear that the performance of both tra=c classes, in particular
their delay characteristics, can be studied using the results derived throughout this paper.

The question we wish to answer is the following: what is the maximal load (denoted by %T;max),
as a function of the tra=c mix $, that still ful7lls the two constraints? In Fig. 13, we show the
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Fig. 13. Maximum load versus the fraction of class-1 arrivals for several values of X .

maximal load as a function of $ when T1 = 10; T2 = 100 and X = 1; : : : ; 9. The constraint for the
delay of class-2 cells is the same for all X , i.e., Prob[d2 ¿ 100] ¡ 10−9. For X ¡ 6, we see that
this constraint is the decisive one. We notice that the maximal load suddenly lowers a reasonable
amount when $ reaches approximately 0.7. At this point, the tail behavior changes from geometric to
non-geometric tail behavior. The sudden change near 0:7 is probably due to the lack of accurateness
in the tail behavior of the class-2 delay near the transition (as discussed earlier). Near this value
for $, the maximal load we 7nd is thus not that accurate, but one can see that the incorrectness is
in the order of a few percentages. For higher X , the constraint for the delay of the high-priority
tra=c becomes decisive for high $, i.e., when more class-1 cells arrive. In Fig. 14, we show %T;max

as a function of $ when X = 4; T2 = 100 and T1¿ 3. The constraint for the delay of class-2 cells
is again the same for all T1. For T1 ¿ 7, we see that this constraint is the decisive one. For lower
T1, the constraint for the delay of the high-priority tra=c becomes decisive for high $, i.e., when
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Fig. 15. Maximum load versus the fraction of class-1 arrivals for several values of T2.

more class-1 cells arrive. Finally, in Fig. 15, the maximum load as a function of $ is shown, when
X = 4; T1 = 10 and several values of T2. For low T2, the constraint for the low-priority tra=c is
always the most stringent, while for T2 ¿ 150, the constraint for the high-priority tra=c is decisive
for high $. The behavior depicted in these three 7gures can be explained as follows. For $ = 0,
the tra=c mix consists of low-priority packets only, and %T;max is relatively high, depending on the
value of T2. As $ increases, %T;max gradually decreases (but is still determined by T2) since the
growing fraction of high-priority packets causes the mean low-priority packet delay to rise. Then,
as $ further increases, a transition point is reached, which is de7ned as the value of $ and %T for
which Prob[d1 ¿ T1] = 10−X and Prob[d2 ¿ T2] = 10−9. Beyond this transition point, the bounding
set by T1 becomes predominant, and %T;max further decreases due to the ever increasing presence of
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high-priority packets in the tra=c mix. These 7gures show that the maximum allowable load can
strongly depend on the delay boundaries T1 and T2 set on the high- and low-priority packet delays,
and the tra=c mix $.

9. Conclusions

In this paper, we analyzed a queueing system with an HOL priority scheduling discipline. A
generating functions approach was adopted, which led to close-form expressions of performance
measure, such as mean and variance of the system contents and cell delay, and the correlation
coe=cient of the system contents of both types of cells, that are easy to evaluate. Furthermore, the
tail behavior of system contents and cell delay is studied. We have shown that non-geometric tails
can occur for system contents and cell delay of the low-priority tra=c. The model included possible
correlation between the number of arrivals of the two cell types during a slot. Therefore, the results
could be used to evaluate the performance of a prioritized output-queueing switch with Bernoulli
arrivals.
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Appendix A. calculation of the probability mass function

Given a generating function X (z) ,
∑∞

n=0 x(n)zn, the question is how to 7nd an explicit, practi-
cally usable expression for its corresponding pmf x(n). From the de7nition of X (z) it follows that
x(n) is the coe=cient of zn in the expansion of X (z) about z = 0, or equivalently the coe=cient of
z−1 in the expansion of z−1−nX (z) about z = 0. x(n) is thus by de7nition the residue of the function
z−1−nX (z) in the point z = 0. Since z = 0 is an n-multiple pole of z−1−nX (z), calculating the residue
in z = 0 is nearly impossible for large n (since evaluating the residue in an n-multiple pole requires
n derivations). Using the residue theorem of Cauchy however, it is proven that

x(n) = Resz=0[X (z)z−1−n]

=
1

2"i

∮
C1

X (z)z−1−n dz −
m∑

j=0

Resz=zjX (z)z−1−n

with i =
√−1, C1 a contour with in7nite radius and zj the poles of X (z). The contour integral in

the former expression is normally easy to calculate (in most cases the term equals zero). If we are
only interested in the expression of x(n) for large n, the sum of residues can be approximated by
the residue in the dominant pole of X (z) (the approximation is exact for n → ∞). As a result, an
easy, practically usable formula to calculate approximate tail probabilities is obtained.
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Appendix B. inversion of (1 − z)�

Theorem B.1. Assume that, with the sole exception of the singularity z = 1,

F(z) ,
∞∑
n=1

f(n)zn

is analytic in the domain

( = {z: |z|6 1 + ); |Arg(z − 1)|¿ *}
in which ) is a positive real number and 0 ¡ * ¡ "=2. Assume further that as z tends to 1 in (,

F(z) = K(1 − z)$

with $ �∈ N. Then; as n → ∞,

f(n) =
K

T(−$)
n−$−1:
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