Advanced search
1 file | 2.53 MB

Analogy between conventional grid control and Islanded microgrid control based on a global dc-link voltage droop

Tine Vandoorn (UGent) , Bart Meersman (UGent) , Jeroen De Kooning (UGent) and Lieven Vandevelde (UGent)
Author
Organization
Abstract
For islanded microgrids, droop-based control methods are often used to achieve a reliable energy supply. However, in case of resistive microgrids, these control strategies can be rather different to what conventional grid control is accustomed to. Therefore, in this paper, the theoretical analogy between conventional grid control by means of synchronous generators (SGs) and the control of converter-interfaced distributed generation (CIDG) units in microgrids is studied. The conventional grid control is based on the frequency as a global parameter showing differences between mechanical power and ac power. The SGs act on changes of frequency through their P/f droop controller, without interunit communication. For CIDG units, a difference between dc-side power and ac-side power is visible in the dc-link voltage of each unit. Opposed to grid frequency, this is not a global parameter. Thus, in order to make a theoretical analogy, a global measure of the dc-link voltages is required. A control strategy based on this global voltage is presented and the analogy with the conventional grid control is studied, with the emphasis on the need for interunit communication to achieve this analogy. A known control strategy in resistive microgrids, called the voltage-based droop control for CIDG units, approximates this analogy closely, but avoids interunit communication. Therefore, this control strategy is straightforward for implementation since it is close to what control engineers are used to. Also, it has some specific advantages for the integration of renewables in the network.
Keywords
PARALLEL INVERTERS, SUPPLY-SYSTEMS, LOAD-SHARING CONTROL, DISTRIBUTED-GENERATION INVERTERS, POWER-SYSTEMS, IMPEDANCE, OPERATION, MANAGEMENT, DESIGN, Conventional grid control, distributed generation, droop control, microgrid, voltage-source inverter

Downloads

  • AnalogiePC.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.53 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Vandoorn, Tine, Bart Meersman, Jeroen De Kooning, and Lieven Vandevelde. 2012. “Analogy Between Conventional Grid Control and Islanded Microgrid Control Based on a Global Dc-link Voltage Droop.” Ieee Transactions on Power Delivery 27 (3): 1405–1414.
APA
Vandoorn, T., Meersman, B., De Kooning, J., & Vandevelde, L. (2012). Analogy between conventional grid control and Islanded microgrid control based on a global dc-link voltage droop. IEEE TRANSACTIONS ON POWER DELIVERY, 27(3), 1405–1414.
Vancouver
1.
Vandoorn T, Meersman B, De Kooning J, Vandevelde L. Analogy between conventional grid control and Islanded microgrid control based on a global dc-link voltage droop. IEEE TRANSACTIONS ON POWER DELIVERY. 2012;27(3):1405–14.
MLA
Vandoorn, Tine, Bart Meersman, Jeroen De Kooning, et al. “Analogy Between Conventional Grid Control and Islanded Microgrid Control Based on a Global Dc-link Voltage Droop.” IEEE TRANSACTIONS ON POWER DELIVERY 27.3 (2012): 1405–1414. Print.
@article{2079142,
  abstract     = {For islanded microgrids, droop-based control methods are often used to achieve a reliable energy supply. However, in case of resistive microgrids, these control strategies can be rather different to what conventional grid control is accustomed to. Therefore, in this paper, the theoretical analogy between conventional grid control by means of synchronous generators (SGs) and the control of converter-interfaced distributed generation (CIDG) units in microgrids is studied. The conventional grid control is based on the frequency as a global parameter showing differences between mechanical power and ac power. The SGs act on changes of frequency through their P/f droop controller, without interunit communication. For CIDG units, a difference between dc-side power and ac-side power is visible in the dc-link voltage of each unit. Opposed to grid frequency, this is not a global parameter. Thus, in order to make a theoretical analogy, a global measure of the dc-link voltages is required. A control strategy based on this global voltage is presented and the analogy with the conventional grid control is studied, with the emphasis on the need for interunit communication to achieve this analogy. A known control strategy in resistive microgrids, called the voltage-based droop control for CIDG units, approximates this analogy closely, but avoids interunit communication. Therefore, this control strategy is straightforward for implementation since it is close to what control engineers are used to. Also, it has some specific advantages for the integration of renewables in the network.},
  author       = {Vandoorn, Tine and Meersman, Bart and De Kooning, Jeroen and Vandevelde, Lieven},
  issn         = {0885-8977},
  journal      = {IEEE TRANSACTIONS ON POWER DELIVERY},
  keyword      = {PARALLEL INVERTERS,SUPPLY-SYSTEMS,LOAD-SHARING CONTROL,DISTRIBUTED-GENERATION INVERTERS,POWER-SYSTEMS,IMPEDANCE,OPERATION,MANAGEMENT,DESIGN,Conventional grid control,distributed generation,droop control,microgrid,voltage-source inverter},
  language     = {eng},
  number       = {3},
  pages        = {1405--1414},
  title        = {Analogy between conventional grid control and Islanded microgrid control based on a global dc-link voltage droop},
  url          = {http://dx.doi.org/10.1109/TPWRD.2012.2193904},
  volume       = {27},
  year         = {2012},
}

Altmetric
View in Altmetric
Web of Science
Times cited: