DEPRESSIVE SYMPTOMS AND QUALITY OF LIFE IN PEOPLE WITH
AGE-RELATED MACULAR DEGENERATION

Remy Sheena Mathew (BSc), Kim Delbaere (PhD), Stephen R. Lord (PhD),
Paul Beaumont (MBBS), Vaegan (PhD) & Michele C Madigan (PhD).

1 School of Optometry and Vision Science, University of New South Wales, Australia; Neuroscience
Research Australia, University of New South Wales; Australia; 3 Ophthalmologist, Institute of Eye
Research, Sydney, Australia.

Running Head: Quality of Life and AMD

Keywords: Macular degeneration, Depression, Physical activity, Physical functioning, Activities of
daily living, Ageing.

Corresponding Author:
Remy Sheena Mathew
Level 3, RMB North Wing
School of Optometry & Vision Science
University of NSW
Sydney NSW 2052 Australia
Email: fromrems@gmail.com
ABSTRACT

Purpose: To examine quality of life and associated factors in people with Age-Related Macular Degeneration (AMD).

Methods: 145 AMD participants (mean age 78.0 ± 7.7 years) and 104 age- and gender-matched controls (mean age 78.1 ± 5.8 years) comprised the study populations for this case-control study. Depressive symptoms were measured with the Goldberg Anxiety and Depression (GAD) scale; general health and daily functioning was assessed with the Medical Outcomes Study Short Form 36 and questions relating to assistance required for daily living activities.

Results: People with AMD performed more poorly than controls on the GAD depression scale, and physical functioning subscale of SF-36. 44.4% of people with AMD had clinically significant depressive symptoms compared to 17.5% of controls (p<0.001). Multiple regression analysis revealed that AMD was independently associated with depressive symptoms and a path model indicated that AMD led to depressive symptoms both directly and indirectly via reduced general health and social functioning.

Conclusion: Psychological and functional outcome measures are reduced in people with AMD. Earlier recognition and treatment of depressive symptoms in people with AMD may be crucial to maintaining quality of life in this group.
INTRODUCTION

Age Related Macular Degeneration (AMD) is the most common cause of visual loss in the elderly and one of the most daunting conditions for older people. In developed countries, it affects 10% of those in the age group 65-74 years and 30% of those 75 years and above. AMD has been reported as the leading cause of blindness in people aged over 40 years.

Previous studies have examined the quality of life implications of AMD. Some have shown that the presence of AMD is associated with difficulties in performing daily tasks and emotional distress. Depression, in particular, has many adverse consequences if left untreated including decreased functioning and increased rates of institutionalisation and mortality. However, one study suggests that people with AMD report good life satisfaction despite difficulties with mobility and daily living activities as the condition challenged them to find new coping strategies. These conflicting findings indicate that further study is required to determine the extent to which AMD can adversely affect emotional health and quality of life.

In this study we assessed the presence of depressive symptoms and its relationship to comorbidities, physical activity levels, physical and social functioning and requirements for assistance with daily living related activities in large samples of people with AMD and age- and gender-matched controls. This information is important for understanding the full impact of AMD on psychosocial measures with implications for service provision.

METHODS

249 participants were recruited from a retinal clinic, the Macular Degeneration Foundation, Neuroscience Research Australia (previously the Prince of Wales Medical Research Institute) and the School of Optometry and Vision Science Clinic located within Sydney, Australia. The participants were divided into two groups: participants diagnosed with AMD, and participants...
without reported ocular diseases (controls). At the Sydney Retina and Sydney Eye Clinics, staff
provided potential subjects study information sheets with instructions to contact the primary
researcher if they were interested in taking part in the study. Recruitment at the MD Foundation
involved identifying potential subjects from the database and sending them information sheets and
contact details of the researcher by mail. The data for the control subjects were collected by random
selection matching for age and gender from the database for normal subjects of the Falls and Balance
Research Group at Neuroscience Research Australia, which comprised 500 people aged 65 years and
older. Inclusion criteria for the AMD group were people aged over 55 years, and with clinical
evidence of AMD of at least AREDS Category 313 and visual acuity better than or equal to 6/60 and
no ocular co-morbidities. The control group were those without self-reported ocular diseases
(including cataract, macular degeneration, diabetic retinopathy, glaucoma etc) and age- and gender-
matched to the AMD group. This study was conducted with approval from the Human Research
Ethics Committee, University of New South Wales, and followed the tenets of the Declaration of
Helsinki.

The nine Depression items from the Goldberg Anxiety and Depression (GAD) scale were
used to screen for depressive symptoms. One point on this scale is given for every positive response
and a score of 2 or greater indicates clinically significant symptomatology. The GAD has excellent
validity within an aged population with a sensitivity of 86% and overall specificity of 91% in
relation to diagnosed depression. General health was assessed using the Medical Outcomes Study
Short Form 36 (SF-36), The SF-36 represents multiple measures of physical and emotional health.
It comprises eight subscales: physical functioning, role-physical, role-emotional, bodily pain, general
health, social functioning, mental health and vitality. It is scored on a range of 1 to 5 and transformed
in accordance to the guidelines provided by Ware et al to a range of 0-100 where 0 correlates with
worst possible score/function and 100 correlates with best possible score/function. The SF-36 has
excellent validity (internal consistency α ~0.8). As a measure of comorbidity, the presence of each
medical condition was given 1 point from a list of nine system-related conditions (cardiovascular, respiratory, musculoskeletal, endocrine, urogenital, cancer, neurological, mental health, and eye diseases). Physical activity was measured using the Incidental and Planned Exercise Questionnaire (IPEQ) that was designed for use with older people. IPEQ measures the number of self-reported hours of exercise including both planned and incidental activities and has good psychometric properties (test-retest reliability 0.77, and internal consistency 0.6). Total time spent is summed across all components and expressed as hours per week. Assistance required for everyday tasks was assessed with questions relating to dependence on others (relatives, friends and community services) for basic tasks involved in daily living activities such as cooking, cleaning, and shopping. It was scored in a binary fashion with any assistance for any task being given a score of 1.

Statistical analyses were performed using SPSS (Version 16.0). Several variables were transformed due to non-normal distributions based on a method suggested by Tabachnik and Fidell. A square root transformation was used for general health, physical functioning, mental health and IPAQ; a logarithmic transformation was used for Role-physical, Role-emotional and social functioning subscales of the SF-36; FES-I; and an inverse transformation was used for the depression subscale of the GAD scale. Differences between people with AMD and controls were evaluated using independent t-tests. Associations among the quality of life measures were assessed with Pearson correlations, and a linear regression analysis was used to elucidate the impact of AMD (entered separately as the first block) and physical, health and lifestyle factors (entered together in the second block) on depressive symptoms, excluding all the subscales associated with psychological domains. Path analysis was performed using SPSS in conjunction with Analysis of Moment Structures (AMOS 18.0) Graphics. AMOS was used to examine whether the impact of AMD on depressive symptoms was direct or indirect over associated poor general health. Goodness-of-fit of the model was investigated by chi-square, Goodness-of-Fit Index (GFI) and Comparative Fit Index (CFI). Chi-square (χ^2) is a statistical test of lack of fit resulting from over-identifying restrictions.
placed on a model, and should not be significant. GFI should be high (>0.90) as it assesses the extent
to which the model provides a better fit compared with no model at all [35]. CFI represents relative
reduction in lack of fit as estimated by comparing the existing model with a null model that assumes
latent variables in the model to be uncorrelated; high values (CFI>0.90) reflect a good model fit.
Finally, standardized regression coefficients (rc), which are analogous to correlation coefficients, and
explained variances were calculated.

RESULTS

The mean ages of the AMD and control groups were comparable: 78.0 ± 7.7 years and 78.1 ±
5.8 years respectively (t1,247=0.68, p=0.95). Both groups comprised similar proportions of men with
53 (36.6%) in the AMD group and 30 (29.1%) in the controls (χ2= 1.49, df=1, p=0.22). Of a possible
nine common medical conditions, the AMD group had a mean of 1.7 ± 1.0 and the control group 1.7
± 0.9 (t1, 247=0.54, p=0.59). In the AMD group, 62 people (43.1%) lived alone compared with 54
(52.4%) of the controls (χ2= 2.11, df=1, p=0.15) (Table 1).

Table 2 shows the GAD depressive symptoms, SF36 and IPEQ scale scores for the AMD and
control groups. People with AMD performed significantly worse than the controls for the GAD
depression scale and the SF-36 general health, physical functioning, social functioning and mental
health subscales. For those with AMD, 63 (44.4 %) met the criteria for a clinically significant
symptomatology compared with 18 (17.5%) of the controls (χ2= 19.5, df=1, p<0.001). Depressive
symptoms were rare in the control population (3.3%) unless individuals had significant
comorbidities. In the presence of a comorbidity score of >1, a control patient had a 30% chance of
having depressive symptoms; a patient with AMD but no comorbidity, had a 36% chance of having
depressive symptoms, and a patient with AMD and a comorbidity score >1 had a 62% chance of
having depressive symptoms. The AMD group had higher physical activity levels but required more
assistance with activities of daily living. 56 (38.6%) of those with AMD required assistance with one or more activities of daily living compared with 5 (4.9%) of the controls ($\chi^2= 37.0$, df=1, p<0.001).

Table 3 shows the bivariate correlations among the depressive symptoms, physical activity and quality of life scales for the AMD group. Depressive symptoms were significantly associated with the mental health, physical functioning, social functioning, and vitality subscales of the SF-36. Linear regression analysis revealed that AMD could explain 7.2% of the variance in depressive symptoms when entered alone at an initial step. Three health and activity measures: poorer general health, higher levels of bodily pain, lower levels of social functioning and number of comorbidities, met the inclusion criteria at second step. Combined, these variables plus AMD explained 31% of the variance in AMD. The standardised beta weights were -0.27 for AMD, -0.17 for general health, -0.21 for social functioning, -0.17 for bodily pain and 0.13 for comorbidity. The path analysis further examined the relationship between AMD and depressive symptoms (Figure 1). The results showed that 27% of the variance in the depressive symptoms was explained by the variables in this model, and that AMD led to depressive symptoms both directly and indirectly by reduced general health and social functioning. Goodness-of-fit indicators revealed that the model had a good fit ($\chi^2(6)=22.45$, p=0.001, GFI=0.97, CFI=0.93).

DISCUSSION

The current study confirms the high prevalence of depressive symptoms in older people with AMD, with nearly half of the AMD group having clinically significant depressive symptoms. Brody et al\(^8\), using previous studies of community samples, suggested that AMD was responsible for doubling the prevalence of depressive symptoms. Our study however indicates a much greater effect, where the presence of AMD may increase the risk of depressive symptoms in a person without comorbidity by 10 fold.
The study findings also indicate that people with AMD differ from their age-matched peers in measures of general health, physical and social functioning and requirements for assistance to undertake daily living activities - measures that are all associated with diminished quality of life. It has been previously reported that people with AMD have a reduced quality of life as assessed with the SF-12. The current study builds on this by more extensively assessing aspects of mood and quality of life. We found that people with AMD had significantly reduced physical and social functioning subscale scores even though they reported that their physical and emotional health did not interfere with their functioning (Role - Physical and Social). The AMD group also reported reduced mental health and general health scores even though there were no significant differences in reported comorbidities between the AMD and control groups.

The linear regression analysis revealed that AMD was independently associated with depressive symptoms and that with the addition of three health and activity measures: poorer general health, higher levels of bodily pain, lower levels of social functioning and number of comorbidities, these measure could account for 31% of the variance in depressive symptoms. The path analysis provided a complementary analysis of “causal” pathways underlying depressive symptoms and showed that AMD led to depressive symptoms both directly and indirectly via reduced general health and social functioning.

We acknowledge that the study has certain limitations. Firstly, data on the occurrence of recent major life events were not recorded. Therefore assumptions about the impact of this factor on depressive symptoms cannot be inferred from this study. Secondly, people with severe AMD were excluded, however we assume that people with more severe AMD would present with further reduced function and increased emotional distress. Thirdly, since all the patients were from semi-urban and urban areas, the findings may not be generalizable to rural areas, where interactions between the level of social support and access to the health services may be different. Finally, we acknowledge that as we did not collect visual acuity data we are unable to determine whether AMD
directly causes depressive symptoms or causes depressive symptoms by reducing visual acuity.

None-the-less we feel that the strong association found between AMD and depressive symptoms is clinically important and requires further research to elucidate underlying mechanisms and intervention possibilities.

Consistent with previous studies23-26 our findings suggest that people with AMD have more depressive symptoms and a reduced quality of life. The current study adds to this work by delineating possible health and lifestyle mechanisms by which AMD may lead to these psychological and health conditions. Screening people with AMD with respect to depressive symptoms and their ability to perform everyday tasks, with subsequent referral for further evaluation and support services, could assist in maintaining the quality of life in this group27.

\textbf{ACKNOWLEDGEMENTS}

Dr Peter Herse provided input during the initial phase of the study. A PhD Completion Scholarship was provided by University of New South Wales.

Table 1: Demographics of the study sample: AMD and control

<table>
<thead>
<tr>
<th></th>
<th>AMD (n=145)</th>
<th>Controls (n=104)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Age</td>
<td>78.01 (7.73)</td>
<td>78.07 (5.8)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>53</td>
<td>31</td>
</tr>
<tr>
<td>Female</td>
<td>92</td>
<td>73</td>
</tr>
<tr>
<td>Comorbidity</td>
<td>1.53 (1.21)</td>
<td>1.54 (1.07)</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above average</td>
<td>111*</td>
<td>102*</td>
</tr>
<tr>
<td>Below Average</td>
<td>29*</td>
<td>1*</td>
</tr>
<tr>
<td>Living arrangements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alone</td>
<td>62</td>
<td>54</td>
</tr>
<tr>
<td>With Spouse</td>
<td>54</td>
<td>31</td>
</tr>
<tr>
<td>Spouse and children</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Children</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Relatives</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Chi-square test was performed for Gender, socioeconomic status and living arrangements and ANOVA was done for age difference between the two groups; *p<0.01, statistically significant.
Table 2: Depression, SF-36 and IPAQ scale scores: AMD and control comparisons

<table>
<thead>
<tr>
<th>Scale</th>
<th>AMD (n=145)</th>
<th>Controls (n=104)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Depression</td>
<td>2.8 (2.1)*</td>
<td>1.7 (1.4)</td>
</tr>
<tr>
<td>General health</td>
<td>59.42 (20.6)</td>
<td>63.42 (21.5)</td>
</tr>
<tr>
<td>Physical functioning</td>
<td>52.27 (29.94)*</td>
<td>63.19 (24.42)</td>
</tr>
<tr>
<td>Role- Physical</td>
<td>53.68 (40.82)</td>
<td>56.79 (40.32)</td>
</tr>
<tr>
<td>Role – Emotional</td>
<td>71.27 (37.7)</td>
<td>74.66 (32.68)</td>
</tr>
<tr>
<td>Vitality</td>
<td>52.84 (19.99)</td>
<td>55.27 (23.10)</td>
</tr>
<tr>
<td>Bodily pain</td>
<td>60.76 (25.34)</td>
<td>62.37 (24.49)</td>
</tr>
<tr>
<td>Mental health</td>
<td>73.87 (17.73)</td>
<td>79.80 (18.0)</td>
</tr>
<tr>
<td>Social functioning</td>
<td>74.75 (25.66)</td>
<td>70.61 (21.72)</td>
</tr>
<tr>
<td>IPAQ†</td>
<td>29.87 (13.19)*</td>
<td>22.23 (10.54)</td>
</tr>
</tbody>
</table>

†Total hours of planned and incidental physical activity/week

* p<0.01; ANOVA.
Table 3: AMD Group: Pearson’s correlation co-efficients (R) for GAD depression, SF 36 and IPAQ scales

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.20*</td>
<td>0.28**</td>
<td>-0.29**</td>
<td>-0.21*</td>
<td>-0.41**</td>
<td>-0.25**</td>
<td>-0.09</td>
<td>-0.32</td>
<td>-0.20</td>
<td>0.41</td>
<td>-0.35**</td>
<td>-0.33**</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>0.65**</td>
<td>-0.53**</td>
<td>-0.65**</td>
<td>-0.27**</td>
<td>-0.42**</td>
<td>-0.19**</td>
<td>-0.49**</td>
<td>-0.32**</td>
<td>0.37**</td>
<td>-0.35**</td>
<td>0.59**</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-0.53**</td>
<td>-0.54**</td>
<td>-0.43**</td>
<td>-0.53**</td>
<td>-0.29**</td>
<td>-0.61**</td>
<td>-0.33**</td>
<td>0.38**</td>
<td>-0.38**</td>
<td>-0.55**</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.55**</td>
<td>-0.38**</td>
<td>0.45**</td>
<td>0.18*</td>
<td>0.55**</td>
<td>0.31**</td>
<td>-0.39**</td>
<td>0.48**</td>
<td>-0.51**</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.19*</td>
<td>0.35**</td>
<td>0.82</td>
<td>0.56**</td>
<td>0.24**</td>
<td>-0.24**</td>
<td>0.31**</td>
<td>0.50**</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.43**</td>
<td>0.35**</td>
<td>0.46**</td>
<td>0.35**</td>
<td>-0.48**</td>
<td>0.41**</td>
<td>0.24**</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.25**</td>
<td>0.57**</td>
<td>0.44**</td>
<td>-0.28**</td>
<td>0.41**</td>
<td>0.32**</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.31**</td>
<td>0.22**</td>
<td>-0.26**</td>
<td>0.18**</td>
<td>0.19**</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.42**</td>
<td>-0.33**</td>
<td>0.47**</td>
<td>0.50**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.16*</td>
<td>0.38**</td>
<td>0.24**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.25**</td>
<td>-0.26**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.56**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Output of the path analysis. Values shown are standardized regression coefficients. Direct effects are provided next to each arrow and explained variances are provided in bold above each variable.