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Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time
dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical
system coupled to a single input layer and a single output layer. Within these constraints many
implementations are possible. Here we report an optoelectronic implementation of reservoir computing
based on a recently proposed architecture consisting of a single non linear node and a delay line. Our
implementation is sufficiently fast for real time information processing. We illustrate its performance on
tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain
results comparable to state of the art digital implementations.

T
he remarkable speed and multiplexing capability of optics makes it very attractive for information proces-
sing. These features have enabled the telecommunications revolution of the past decades. However, so far
they have not been exploited insomuch as computation is concerned. The reason is that optical nonlinea-

rities are very difficult to harness: it remains challenging to just demonstrate optical logic gates, let alone compete
with digital electronics1. This suggests that a much more flexible approach is called for, which would exploit as
much as possible the strengths of optics without trying to mimic digital electronics. Reservoir computing2–10, a
recently introduced, bio-inspired approach to artificial intelligence, may provide such an opportunity.

Here we report the first experimental reservoir computer based on an opto-electronic architecture. As non-
linear element we exploit the sine nonlinearity of an integrated Mach-Zehnder intensity modulator (a well
known, off-the-shelf component in the telecommunications industry), and to store the internal states of the
reservoir computer we use a fiber optics spool. We report results comparable to state of the art digital imple-
mentations for two tasks of practical importance: nonlinear channel equalization and speech recognition.

Reservoir computing, which is at the heart of the present work, is a highly successful method for processing
time dependent information. It provides state of the art performance for tasks such as time series prediction4 (and
notably won a financial time series prediction competition11), nonlinear channel equalization4, or speech recog-
nition12–14. For some of these tasks reservoir computing is in fact the most powerful approach known at present.

The central part of a reservoir computer is a nonlinear recurrent dynamical system that is driven by one or
multiple input signals. The key insight behind reservoir computing is that the reservoir’s response to the input
signal, i.e., the way the internal variables depend on present and past inputs, is a form of computation. Experience
shows that in many cases the computation carried out by reservoirs, even randomly chosen ones, can be extremely
powerful. The reservoir should have a large number of internal (state) variables. The exact structure of the
reservoir is not essential: for instance, in some works the reservoir closely mimics the interconnections and
dynamics of biological neurons in a brain6, but many other architectures are possible.

To achieve useful computation on time dependent input signals, a good reservoir should be able to compute a
large number of different functions of its inputs. That is, the reservoir should be sufficiently high-dimensional,
and its responses should not only depend on present inputs but also on inputs up to some finite time in the past.
To achieve this, the reservoir should have some degree of nonlinearity in its dynamics, and a ‘‘fading memory’’,
meaning that it will gradually forget previous inputs as new inputs come in.

Reservoir computing is a versatile and flexible concept. This follows from two key points: 1) many of the details
of the nonlinear reservoir itself are unimportant except for the dynamic regime which can be tuned by some global
parameters; and 2) the only part of the system that is trained is a linear output layer. Because of this flexibility,
reservoir computing is amenable to a large number of experimental implementations. Thus proof of principle
demonstrations have been realized in a bucket of water15 and using an analog VLSI chip16, and arrays of
semiconductor amplifiers have been considered in simulation17. However, it is only very recently that an analog
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implementation with performance comparable to digital implemen-
tations has been reported: namely, the electronic implementation
presented in18.

Our experiment is based on a similar architecture as that of18,
namely a single non linear node and a delay line. The main differ-
ences are the type of non linearity and the desynchronisation of the
input with respect to the period of the delay line. These differences
highlight the flexibility of the concept. The performance of our
experiment on two benchmark tasks, isolated digit recognition and
non linear channel equalization, is comparable to state of the art
digital implementations of reservoir computing. Compared to18,
our experiment is almost 6 orders of magnitude faster, and a further
2–3 orders of magnitude speed increase should be possible with only
small changes to the system.

The flexibility of reservoir computing and its success on hard
classification tasks makes it a promising route for realizing computa-
tion in physical systems other than digital electronics. In particular it
may provide innovative solutions for ultra fast or ultra low power
computation. In the Supplementary Material we describe reservoir
computing in more detail and provide a road map for building high
performance analog reservoir computers.

Results
A. Principles of Reservoir Computing. Before introducing our im-
plementation, we recall a few key features of reservoir computing; for
a more detailed treatment of the underlying theory, we refer the
reader to Supplementary Material.

As is traditional in the literature, we will consider tasks that are
defined in discrete time, e.g., using sampled signals. We denote by
u(n) the input signal, where n[Z is the discretized time; by �x nð Þ
the internal states of the system used as reservoir; and by ŷ nð Þ
the output of the reservoir. A typical evolution law for �x nð Þ is
�x nz1ð Þ~f A�x nð Þz�mu nð Þð Þ, where f is a nonlinear function, A is
the time independent connection matrix and �m is the time inde-
pendent input mask. Note that in our work we will use a slightly
different form for the evolution law, as explained below.

In order to perform the computation one needs a readout mech-
anism. To this end we define a subset xi(n), 0 # i # N 2 1 (also in
discrete time) of the internal states of the reservoir. It is these states
which are observed and used to build the output. The time dependent
output is obtained in an output layer by taking a linear combination
of the internal states of the reservoir ŷ nð Þ~

PN{1
i~0 Wixi nð Þ. The

readout weights Wi are chosen to minimize the Mean Square Error
(MSE) between the estimator ŷ nð Þ and a target function y(n):

MSE~
1
L

XL

n~1

y nð Þ{ŷ nð Þð Þ2 ð1Þ

over a set of examples (the training set). Because the MSE is a quad-
ratic function of the Wi the optimal weights can be easily computed
from the knowledge of xi(n) and y(n). In a typical run, the quality of
the reservoir is then evaluated on a second set of examples (the test
set). After training, the Wi are kept fixed.

B. Principles of our implementation. In the present work we use an
architecture related to that used in18 and to the minimum complexity
networks studied in19. As in18, the reservoir is based on a non-linear
system with delayed feedback (a class of systems widely studied in the
nonlinear dynamics community, see e.g.20) and consists of a single
nonlinear node and a delay loop. The information about the previous
internal state of the reservoir up to some time T in the past is stored in
the delay loop. After a period T of the loop, the entire internal state
has been updated (processed) by the nonlinear node. In contrast to
the work described in18, the nonlinear node in our implementation is
essentially instantaneous. Hence, in the absence of input, the
dynamics of our system can be approximated by the simple recursion

x tð Þ~ sin a:x t{Tð ÞzQð Þ ð2Þ

where a (the feedback gain) and Q (the bias) are adjustable
parameters and we have explicitly written the sine nonlinearity
used in our implementation.

We will use this system to perform useful computation on input
signals u(n) evolving in discrete time n[Z. As the system itself oper-
ates in continuous time, we need to define ways to convert input
signal(s) to continuous time and to convert the system’s state back to
discrete time. The first is achieved by using a sample and hold pro-
cedure. We obtain a piecewise constant function u(t) of the continu-
ous variable t : u(t) 5 u(n), nT9 # t , (n 1 1)T9. The time T9 # T is
taken to be less than or equal to the period T of the delay loop; when
T9 ? T we are in the unsynchronised regime (see below). To dis-
cretize the system’s state, we note that the delay line acts as a memory,
storing the delayed states of the nonlinearity. From this large-dimen-
sional state space, we take N samples by dividing the input period T9

into N segments, each of duration h and sampling the state of the
delay line at a single point with periodicity h. This provides us with N
snapshots of the nonlinearity’s response to each input sample u(n).
From these snapshots, we construct N discrete-time sequences xi(n)
5 x(nT9 1 (i 1 1/2)h) (i 5 0, 1, …N 2 1) to be used as reservoir
states from which the required (discrete-time) output is to be con-
structed.

Without further measures, all such recorded reservoir states would
be identical, so for computational purposes our system is one-dimen-
sional. In order to use this system as a reservoir computer, we need to
drive it in such a way that the xi(n) represent a rich variety of func-
tions of the input history. It is often helpful9,19 to use an ‘‘input mask’’
that breaks the symmetry of the system. In18 good performance was
improved by using a nonlinear node with an intrinsic time scale
longer than the time scale of the input mask. In the present work
we also use the ‘‘input mask’’, but as our nonlinearity is instant-
aneous, we cannot exploit its intrinsic time scale. We instead chose
to desynchronize the input and the reservoir, that is, we hold the
input for a time T9 which differs slightly from the period T of the
delay loop. This allows us to use each reservoir state at time n for the
generation of a new different state at time n 1 1 (unlike the solution
used in18 where the intrinsic time scale of the nonlinear node makes
the successive states highly correlated). We now explain these
important notions in more detail.

The input mask m(t) 5 m(t 1 T9) is a periodic function of period
T9. It is piecewise constant over intervals of length h, i.e., m(t) 5 mj

when nT9 1 jh # t , nT9 1 (j 1 1)h, for j 5 0, 1, …, N 2 1. The
values mj of the mask are randomly chosen from some probability
distribution. The reservoir is driven by the product v(t) 5 bm(t)u(t)
of the input and the mask, with b an adjustable parameter (the input
gain). The dynamics of the driven system can thus be approximated
by

x tð Þ~ sin ax t{Tð Þzbm tð Þu tð ÞzQð Þ ð3Þ

It follows that the reservoir states can be approximated by

xi nð Þ~sin axi n{1ð Þzbmiu nð ÞzQð Þ ð4Þ

when T9 5 T (the synchronized regime); or more generally as

xi nð Þ~
sin axi{k n{1ð Þzbmiu nð ÞzQð Þ kƒivN

sin axNzi{k n{2ð Þzbmiu nð ÞzQð Þ 0ƒivk

�
ð5Þ

when T ’~ N
Nzk T , (k g {1, …, N 2 1}) (the unsynchronized regime).

In the synchronized regime, the reservoir states correspond to the
responses of N uncoupled discrete-time dynamical systems which
are similar, but slightly different through the randomly chosen mj. In
the unsynchronized regime, with a desynchronization T 2 T9 5 kh,
the state equations become coupled, yielding a much richer
dynamics. With an instantaneous nonlinearity, desynchronisation
is necessary to obtain a set of state transformations that is useful
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for reservoir computing. We believe that it will also be useful when
the non linearity has an intrinsic time scale, as it provides a very
simple way to enrich the dynamics.

In summary, by using an input mask, combined with desynchro-
nization of the input and the feedback delay, we have turned a system
with a one-dimensional information representation into an N-
dimensional system.

C. Hardware setup. The above architecture is implemented in the
experiment depicted in Fig. 1. The sine nonlinearity is implemented
by a voltage driven intensity modulator (Lithium Niobate Mach
Zehnder interferometer), placed at the output of a continuous light
source, and the delay loop is a fiber spool. A photodiode converts the
light intensity I(t) at the output of the fiber spool into a voltage; this is
mixed with an input voltage generated by a function generator and
proportional to m(t)u(t), amplified, and then used to drive the
intensity modulator. The feedback gain a is set by adjusting the
average intensity I0 of the light inside the fiber loop with an optical
attenuator. By changing a we can bring the system to the dynamical
regime required. The nonlinear dynamics of this system have already
been extensively studied, see21–23. The dynamical variable x(t) is
obtained by rescaling the light intensity to lie in the interval [21,
11] through x(t) 5 2I(t)/I0 2 1. Then, neglecting the effect of the
bandpass filter induced by the electronic amplifiers, the dynamics of
the system is given by eq. (3) where a is proportional to I0. Equation
(3), as well as the discretized versions thereof, eqs. (4) and (5), are
derived in the supplementary material; the various stages of
processing of the reservoir nodes and inputs are shown in Fig. 2.

In our experiment the round trip time is T 5 8.504 ms and we
typically use N 5 50 internal nodes. The parameters a and b in eq. (3)
are adjusted for optimal performance (their optimal value may
depend on the task, see methods and supplementary material for
details), while Q is set to 0, which seems to be the optimal value in

all our experiments. The intensity I(t) is recorded by a digitizer, and
the estimator ŷ nð Þ is reconstructed offline on a computer.

We illustrate the operations of our reservoir computer in Fig. 3
where we consider a very simple signal recognition task. Here, the
input to the system is taken to be a random concatenation of sine and
square waves; the target function y(n) is 0 for a sine wave and 1 for a
square wave. The top panel of Fig. 3 shows the input to the reservoir:
the blue line is the representation of the input in continuous time
u(t). In the bottom panel, the output of the network after training is
shown with red crosses, against the desired output represented by a
blue line. The performance on this task is essentially perfect: the
Normalized Mean Square Error NMSE~1

L

PL
n~1 y nð Þ{ŷ nð Þð Þ2�

var yð Þ reaches NMSE^1:5:10{3, which is significantly better than
the results reported using simulations in17. (Note that, although
reservoirs are usually trained using linear regression, i.e., min-
imizing the MSE, they are often evaluated using other error met-
rics. In order to be able to compare with previously reported
results, we have adopted the most commonly used error metric
for each task).

D. Experimental results. We have checked the performance of this
system extensively in simulations. First of all, if we neglect the effects
of the bandpass filters, and neglect all noise introduced in our
experiment, we obtain a discretized system described by eq. (5)
which is similar to (but nevertheless distinct from) the minimum
complexity reservoirs introduced in19. We have checked that this
discretized version of our system has performance similar to usual
reservoirs on several tasks. This shows that the chosen architecture is
capable of state of the art reservoir computing, and sets for our
experimental system a performance goal. Secondly we have also
developed a simulation code that takes into account all the noises
of the experimental components, as well as the effects of the bandpass
filters. These simulations are in very good agreement with the
experimentally measured dynamics of the system. They allow us to
efficiently explore the experimental parameter space, and to validate
the experimental results. Further details on these two simulation
models are given in the supplementary information.

Figure 1 | Schematic of the experimental set-up. The red and green parts

represent respectively the optical and electronic components. The optical

part of the setup is fiber based, and operates around 1550 nm (standard

telecommunication wavelength). ‘‘M-Z’’: Lithium Niobate Mach-Zehnder

modulator. ‘‘Q’’: DC voltage determining the operating point of the M-Z

modulator. ‘‘Combiner’’ : electronic coupler adding the feedback and

input signals. ‘‘AWG’’: arbitrary waveform generator. A computer

generates the input signal for a task and feeds it into the system using the

arbitrary waveform generator. The response of the system is recorded by a

digitiser and retrieved by the computer which optimizes the read-out

function in a post processing stage. The feedback gain a is adjusted by

changing the average intensity inside the loop with the optical attenuator.

The input gain b is adjusted by changing the output voltage of the function

generator by a multiplicative factor. The bias Q is adjusted by using a DC

voltage to change the operating point of the M-Z modulator. The

operation of the system is fully automated and controlled by a computer

using MATLAB scripts.

Figure 2 | Schematic diagram of the information flow in the experiment
depicted in Fig. 1. On the plot we have represented four reservoir nodes at

different stages of processing, labeled according to equation 5 with k 5 1.

Starting from the bottom, and going clockwise, a input value u(n) gets

multiplied by an input gain b and a mask value mi, then mixed with the

previous node state axi2k(n 2 1). The result goes through the sine function

to give the new state of the reservoir xi(n), which then gets amplified by a

factor a and, after the delay, will get mixed with a new input u(n 1 1). All

the network states xi(n) are also collected by the readout unit, multiplied by

their respective weights Wi and added together to give the desired output

ŷ(n).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 287 | DOI: 10.1038/srep00287 3



We apply our optoelectronic reservoir to three tasks. These tasks
are benchmarks which have been widely used in the reservoir com-
puting community to evaluate the performance of reservoirs. They
therefore allow comparison between our experiment and state of the
art digital implementations of reservoir computing.

For the first task, we train our reservoir computer to behave like a
Nonlinear Auto Regressive Moving Average equation of order 10,
driven by white noise (NARMA10). More precisely, given the white
noise u(n), the reservoir should produce an output ŷ nð Þwhich should
be as close as possible to the response y(n) of the NARMA10 model to
the same white noise. The task is described in detail in the methods
section. The performance is measured by the Normalized Mean
Square Error (NMSE) between output ŷ nð Þ and target y(n). For a
network of 50 nodes, both in simulations and experiment, we obtain
a NMSE 5 0.168 6 0.015. This is similar to the value obtained using
digital reservoirs of the same size. For instance a NMSE value of 0.15
6 0.01 is reported in24 also for a reservoir of size 50.

For our second task we consider a problem of practical relevance:
the equalization of a nonlinear channel. We consider a model of a
wireless communication channel in which the input signal d(n) tra-
vels through multiple paths to a nonlinear and noisy receiver. The
task is to reconstruct the input d(n) from the output u(n) of the
receiver. The model we use was introduced in25 and studied in the
context of reservoir computing in4. Our results, given in Fig. 4, are
one order of magnitude better than those obtained in25 with a non-
linear adaptive filter, and comparable to those obtained in4 with a
digital reservoir. At 28 dB of signal to noise ratio, for example, we
obtain an error rate of 1.3 ? 1024, while the best error rate obtained
in25 is 4 ? 1023 and in4 error rates between 1024 and 1025 are reported.

Finally we apply our reservoir to isolated spoken digits recognition
using a benchmark task introduced in the reservoir computing com-
munity in26. The performance on this task is measured using the
Word Error Rate (WER) which gives the percentage of words that
are wrongly classified. Performances reported in the literature are a

WER of 0.55% using a hidden Markov model27; WERs of 4.3%26, of
0.2%12, of 1.3%19 for reservoir computers of different sizes and with
different post processing of the output. The experimental reservoir
presented in18 reported a WER of 0.2%. Our experiment yields a
WER of 0.4%, using a reservoir of 200 nodes.

Further details on these tasks are given in the methods section and
in the Supplementary Material.

Discussion
We have reported the first demonstration of an opto-electronic res-
ervoir computer. Our experiment has performance comparable to
state of the art digital implementations on benchmark tasks of prac-
tical relevance such as speech recognition and channel equalization.
Our work demonstrates the flexibility of reservoir computers that
can be readily reprogrammed for different tasks. Indeed by re-
optimizing the output layer (that is, choosing new readout weights
Wk), and by readjusting the operating point of the reservoir (chan-
ging the feedback gain a, the input gain b, and possibly the bias Q) one
can use the same reservoir for many different tasks. Using this pro-
cedure, our experimental reservoir computer has been used succes-
sively for tasks such as signal classification, modeling a dynamical
system (NARMA10 task), speech recognition, and nonlinear channel
equalization.

We have introduced a new feature in the architecture, as compared
to the related experiment reported in18. Namely by desynchronizing
the input with respect to the period of the reservoir we conserve the
necessary coupling between the internal states, but make a more
efficient use of the internal states as the correlations introduced by
the low pass filter in18 are not necessary.

Our experiment is also the first implementation of reservoir com-
puting fast enough for real time information processing. (We should
point out that, after the submission of this manuscript, related results
where reported in28). It can be converted into a high speed reservoir
computer simply by increasing the bandwidth of all the components

Figure 3 | Signal classification task. The aim is to differentiate between square and sine waves. The top panel shows the input u(t), a stepwise constant

function resulting from the discretization of successive step and sine functions. The bottom panel shows in red crosses the output of the reservoir ŷ (n).

The target function (dashed line in the lower panel) is equal to 1 when the input signal is a step function and to 0 when the input signal is a sine function.

The Normalized Mean Square Error, evaluated over 1000 inputs, is NMSE^1:5 10{3.
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(an increase of at least 2 orders of magnitude is possible with off-the-
shelf optoelectronic components). We note that in future realizations
it will be necessary to have an analog implementation of the pre-
processing of the input (digitisation and multiplication by the input
mask) and of the post-processing of the output (multiplication by
output weights), rather than the digital pre- and post-processing
used in the present work.

From the point of view of applications, the present work thus
constitutes an important step towards building ultra high speed
optical reservoir computers. To help achieve this goal, in the supple-
mentary material we present guidelines for building experimental
reservoir computers. Whether optical implementations can even-
tually compete with electronic implementations is an open question.
From the fundamental point of view, the present work helps under-
standing what are the minimal requirements for high level analog
information processing.

Methods
Operating points. The optimal operating point of the experimental reservoir
computer is task dependent. Specifically, if the threshold of instability (see Figure 1 in
the supplementary material) is taken to correspond to 0 dB attenuation, then at the
optimal operating point the attenuation varies between 20.5 and 24.2 dB. For the
input gain, we set to 1 the minimum value of b that makes Mach-Zehnder transmit
the maximum light intensity when driven with an input equal to 11. Note that a small
b value corresponds to a very linear regime, whereas a large b corresponds to a very
non linear regime. At the optimal operating point, the multiplicative factor b for
different tasks ranges from b 5 0.55 to b 5 10.5. For all tasks except the signal
classification task the bias phase Q was set to zero. We did not try to optimize the bias
phase Q. Details of the optimal operating points for each task are given in the
supplementary material.

NARMA10 task. Auto Regressive models and Moving Average models, and their
generalization Nonlinear Auto Regressive Moving Average Models (NARMA), are
widely used to simulate time series. The NARMA10 model is given by the recurrence

y nz1ð Þ~0:3y nð Þz0:05y nð Þ
X9

i~0

y n{ið Þ
 !

z1:5u n{9ð Þu nð Þz0:1 ð6Þ

where u(n) is a sequence of random inputs drawn from an uniform distribution over
the interval [0, 0.5]. The aim is to predict the y(n) knowing the u(n). This task was

introduced in29. It has been widely used as a benchmark in the reservoir computing
community, see for instance19,24,30

Nonlinear channel equalization. This task was introduced in25, and used in the
reservoir computing community in4 and24. The input to the channel is an i.i.d.
random sequence d(n) with values from {23, 21, 11, 13}. The signal first goes
through a linear channel, yielding

q nð Þ~0:08d nz2ð Þ{0:12d nz1ð Þzd nð Þz0:18d n{1ð Þ

{0:1d n{2ð Þz0:091d n{3ð Þ{0:05d n{4ð Þ

z0:04d n{5ð Þz0:03d n{6ð Þz0:01d n{7ð Þ

ð7Þ

It then goes through a noisy nonlinear channel, yielding

u nð Þ~q nð Þz0:036q nð Þ2{0:011q nð Þ3zn nð Þ ð8Þ

where n(n) is an i.i.d. Gaussian noise with zero mean adjusted in power to yield signal-
to-noise ratios ranging from 12 to 32 db. The task is, given the output u(n) of the
channel, to reconstruct the input d(n). The performance on this task is measured
using the Symbol Error Rate, that is the fraction of inputs d(n) that are misclassified
(Ref.24 used another error metric on this task).

Isolated spoken digit recognition. The data for this task is taken from the NIST TI-
46 corpus31. It consists of ten spoken digits (0…9), each one recorded ten times by five
different female speakers. These 500 spoken words are sampled at 12.5 kHz. This
spoken digit recording is preprocessed using the Lyon cochlear ear model32. The input
to the reservoir uj(n) consists of an 86-dimensional state vector (j 5 1,…, 86) with up
to 130 time steps. The number of variables is taken to be N 5 200. The input mask is
taken to be a N 3 86 dimensional matrix bij with elements taken from the the set
{20.1, 10.1} with equal probabilities. The product Sjbijuj(n) of the mask with the
input is used to drive the reservoir. Ten linear classifiers ŷk(n) (k 5 0,…, 9) are trained,
each one associated to one digit. The target function for yk(n) is 11 if the spoken digit
is k, and -1 otherwise. The classifiers are averaged in time, and a winner-takes-all
approach is applied to select the actual digit.

Using a standard cross-validation procedure, the 500 spoken words are divided in
five subsets. We trained the reservoir on four of the subsets, and then tested it on the
fifth one. This is repeated five times, each time using a different subset as test, and the
average performance is computed. The performance is given in terms of the Word
Error Rate, that is the fraction of digits that are misclassified. We obtain a WER of
0.4% (which correspond to 2 errors in 500 recognized digits).
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discrete simulations based on eq. (5) (blue rhomboids), and the continuous simulations that take into account noise and bandpass filters in the
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