Advanced search
2 files | 315.19 KB

The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces

Author
Organization
Keywords
Fischer decomposition, Hodge-de Rham equation, Clifford analysis, ORTHOGONAL BASES, CONSTRUCTION, spherical monogenics, HERMITEAN CLIFFORD ANALYSIS, MONOGENIC POLYNOMIALS

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 137.77 KB
  • 2011 rd rl vs The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 177.42 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Souček, Vladimir, Richard Delanghe, and Roman Lávička. 2012. “The Fischer Decomposition for Hodge-de Rham Systems in Euclidean Spaces.” Mathematical Methods in the Applied Sciences 35 (1): 10–16.
APA
Souček, V., Delanghe, R., & Lávička, R. (2012). The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 35(1), 10–16.
Vancouver
1.
Souček V, Delanghe R, Lávička R. The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces. MATHEMATICAL METHODS IN THE APPLIED SCIENCES. 2012;35(1):10–6.
MLA
Souček, Vladimir, Richard Delanghe, and Roman Lávička. “The Fischer Decomposition for Hodge-de Rham Systems in Euclidean Spaces.” MATHEMATICAL METHODS IN THE APPLIED SCIENCES 35.1 (2012): 10–16. Print.
@article{2038181,
  author       = {Sou\v{c}ek, Vladimir and Delanghe, Richard and L{\'a}vi\v{c}ka, Roman },
  issn         = {0170-4214},
  journal      = {MATHEMATICAL METHODS IN THE APPLIED SCIENCES},
  keyword      = {Fischer decomposition,Hodge-de Rham equation,Clifford analysis,ORTHOGONAL BASES,CONSTRUCTION,spherical monogenics,HERMITEAN CLIFFORD ANALYSIS,MONOGENIC POLYNOMIALS},
  language     = {eng},
  number       = {1},
  pages        = {10--16},
  title        = {The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces},
  url          = {http://dx.doi.org/10.1002/mma.1527},
  volume       = {35},
  year         = {2012},
}

Altmetric
View in Altmetric
Web of Science
Times cited: