Advanced search
1 file | 4.18 MB

On the ERA ranking representability of pairwise bipartite ranking functions

Willem Waegeman (UGent) and Bernard De Baets (UGent)
(2011) ARTIFICIAL INTELLIGENCE. 175(7-8). p.1223-1250
Author
Organization
Keywords
Receiver operating characteristics (ROC) analysis, Graph theory, Cycle transitivity, Reciprocal preference relation, Pairwise bipartite ranking, Multi-class classification, Decision theory, Machine learning, ORDINAL REGRESSION, RANDOM-VARIABLES, ROC CURVE, RECIPROCAL RELATIONS, CYCLE-TRANSITIVITY, CLASSIFICATION, AREA

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 4.18 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Waegeman, Willem, and Bernard De Baets. 2011. “On the ERA Ranking Representability of Pairwise Bipartite Ranking Functions.” Artificial Intelligence 175 (7-8): 1223–1250.
APA
Waegeman, W., & De Baets, B. (2011). On the ERA ranking representability of pairwise bipartite ranking functions. ARTIFICIAL INTELLIGENCE, 175(7-8), 1223–1250.
Vancouver
1.
Waegeman W, De Baets B. On the ERA ranking representability of pairwise bipartite ranking functions. ARTIFICIAL INTELLIGENCE. 2011;175(7-8):1223–50.
MLA
Waegeman, Willem, and Bernard De Baets. “On the ERA Ranking Representability of Pairwise Bipartite Ranking Functions.” ARTIFICIAL INTELLIGENCE 175.7-8 (2011): 1223–1250. Print.
@article{2037228,
  author       = {Waegeman, Willem and De Baets, Bernard},
  issn         = {0004-3702},
  journal      = {ARTIFICIAL INTELLIGENCE},
  keyword      = {Receiver operating characteristics (ROC) analysis,Graph theory,Cycle transitivity,Reciprocal preference relation,Pairwise bipartite ranking,Multi-class classification,Decision theory,Machine learning,ORDINAL REGRESSION,RANDOM-VARIABLES,ROC CURVE,RECIPROCAL RELATIONS,CYCLE-TRANSITIVITY,CLASSIFICATION,AREA},
  language     = {eng},
  number       = {7-8},
  pages        = {1223--1250},
  title        = {On the ERA ranking representability of pairwise bipartite ranking functions},
  url          = {http://dx.doi.org/10.1016/j.artint.2010.11.006},
  volume       = {175},
  year         = {2011},
}

Altmetric
View in Altmetric
Web of Science
Times cited: