Ghent University Academic Bibliography

Advanced

The hyperplanes of finite symplectic dual polar spaces which arise from projective embeddings

Bart De Bruyn UGent (2011) EUROPEAN JOURNAL OF COMBINATORICS. 32(8). p.1384-1393
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
keyword
GEOMETRIES, OVOIDS, DW(5
journal title
EUROPEAN JOURNAL OF COMBINATORICS
Eur. J. Comb.
volume
32
issue
8
pages
1384 - 1393
Web of Science type
Article
Web of Science id
000295436000020
JCR category
MATHEMATICS
JCR impact factor
0.677 (2011)
JCR rank
105/288 (2011)
JCR quartile
2 (2011)
ISSN
0195-6698
DOI
10.1016/j.ejc.2011.07.001
language
English
UGent publication?
yes
classification
A1
copyright statement
I have transferred the copyright for this publication to the publisher
id
2027060
handle
http://hdl.handle.net/1854/LU-2027060
date created
2012-02-10 13:56:18
date last changed
2012-05-02 10:30:07
@article{2027060,
  author       = {De Bruyn, Bart},
  issn         = {0195-6698},
  journal      = {EUROPEAN JOURNAL OF COMBINATORICS},
  keyword      = {GEOMETRIES,OVOIDS,DW(5},
  language     = {eng},
  number       = {8},
  pages        = {1384--1393},
  title        = {The hyperplanes of finite symplectic dual polar spaces which arise from projective embeddings},
  url          = {http://dx.doi.org/10.1016/j.ejc.2011.07.001},
  volume       = {32},
  year         = {2011},
}

Chicago
De Bruyn, Bart. 2011. “The Hyperplanes of Finite Symplectic Dual Polar Spaces Which Arise from Projective Embeddings.” European Journal of Combinatorics 32 (8): 1384–1393.
APA
De Bruyn, B. (2011). The hyperplanes of finite symplectic dual polar spaces which arise from projective embeddings. EUROPEAN JOURNAL OF COMBINATORICS, 32(8), 1384–1393.
Vancouver
1.
De Bruyn B. The hyperplanes of finite symplectic dual polar spaces which arise from projective embeddings. EUROPEAN JOURNAL OF COMBINATORICS. 2011;32(8):1384–93.
MLA
De Bruyn, Bart. “The Hyperplanes of Finite Symplectic Dual Polar Spaces Which Arise from Projective Embeddings.” EUROPEAN JOURNAL OF COMBINATORICS 32.8 (2011): 1384–1393. Print.