The Faddeev Random Phase Approximation (FRPA) [1,2] is a Green’s function method which couples collective degrees of freedom to the single particle motion by resumming an infinite number of Feynman diagrams. The Faddeev technique is applied to describe the two-particle-one-hole (2p1h) and two-hole-one-particle (2h1p) states in terms of Random Phase Approximation (RPA) phonons. This results in an equal treatment of the intermediary particle-particle (pp) and particle-hole (ph) channels. The poster will present the application of this method to molecules [3] and investigate the effects of adding fragmentation to the single particle propagator on the RPA instability arising in the dissociation limit.