
A problem of Ramanujan, Erdõs and Kátai on the iterated divisor function
- Author
- Yvonne Buttkewitz, Christian Elsholtz, Kevin Ford and Jan-Christoph Schlage-Puchta (UGent)
- Organization
- Abstract
- We determine asymptotically the maximal order of log d(d(n)), where d(n) is the number of positive divisors of n. This solves a problem first put forth by Ramanujan in 1915.
- Keywords
- iterated divisor function, arithmetic functions, maximal order, Number of divisors
Downloads
-
(...).pdf
- full text
- |
- UGent only
- |
- |
- 163.50 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-1989726
- Chicago
- Buttkewitz, Yvonne, Christian Elsholtz, Kevin Ford, and Jan-Christoph Schlage-Puchta. 2012. “A Problem of Ramanujan, Erdõs and Kátai on the Iterated Divisor Function.” International Mathematics Research Notices (17): 4051–4061.
- APA
- Buttkewitz, Y., Elsholtz, C., Ford, K., & Schlage-Puchta, J.-C. (2012). A problem of Ramanujan, Erdõs and Kátai on the iterated divisor function. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, (17), 4051–4061.
- Vancouver
- 1.Buttkewitz Y, Elsholtz C, Ford K, Schlage-Puchta J-C. A problem of Ramanujan, Erdõs and Kátai on the iterated divisor function. INTERNATIONAL MATHEMATICS RESEARCH NOTICES. 2012;(17):4051–61.
- MLA
- Buttkewitz, Yvonne et al. “A Problem of Ramanujan, Erdõs and Kátai on the Iterated Divisor Function.” INTERNATIONAL MATHEMATICS RESEARCH NOTICES 17 (2012): 4051–4061. Print.
@article{1989726, abstract = {We determine asymptotically the maximal order of log d(d(n)), where d(n) is the number of positive divisors of n. This solves a problem first put forth by Ramanujan in 1915.}, author = {Buttkewitz, Yvonne and Elsholtz, Christian and Ford, Kevin and Schlage-Puchta, Jan-Christoph}, issn = {1073-7928}, journal = {INTERNATIONAL MATHEMATICS RESEARCH NOTICES}, language = {eng}, number = {17}, pages = {4051--4061}, title = {A problem of Ramanujan, Erd{\~o}s and K{\'a}tai on the iterated divisor function}, url = {http://dx.doi.org/10.1093/imrn/rnr175}, year = {2012}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: