Advanced search

Meromorphic continuation of the Goldbach generating function

Author
Organization
Abstract
We consider the Dirichlet series associated to the number of representations of an integer as a sum of primes. Assuming certain reasonable hypotheses on the distribution of the zeros of the Riemann zeta function we obtain the domain of meromorphic continuation of this series.
Keywords
Goldbach problem, meromorphic continuation, Dirichlet series

Citation

Please use this url to cite or link to this publication:

Chicago
Bhowmik, Gautami, and Jan-Christoph Schlage-Puchta. 2012. “Meromorphic Continuation of the Goldbach Generating Function.” Functiones Et Approximatio Commentarii Mathematici.
APA
Bhowmik, G., & Schlage-Puchta, J.-C. (2012). Meromorphic continuation of the Goldbach generating function. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI.
Vancouver
1.
Bhowmik G, Schlage-Puchta J-C. Meromorphic continuation of the Goldbach generating function. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI. 2012;
MLA
Bhowmik, Gautami, and Jan-Christoph Schlage-Puchta. “Meromorphic Continuation of the Goldbach Generating Function.” FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI (2012): n. pag. Print.
@article{1989486,
  abstract     = {We consider the Dirichlet series associated to the number of representations of an integer as a sum of primes. Assuming certain reasonable hypotheses on the distribution of the zeros of the Riemann zeta function we obtain the domain of meromorphic continuation of this series.},
  author       = {Bhowmik, Gautami and Schlage-Puchta, Jan-Christoph},
  issn         = {0208-6573},
  journal      = {FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI},
  keyword      = {Goldbach problem,meromorphic continuation,Dirichlet series},
  language     = {eng},
  title        = {Meromorphic continuation of the Goldbach generating function},
  year         = {2012},
}