Upgrading of fatty acid containing rosin acids in to high value hydrocarbons via catalytic hydrodeoxygenation

Jinto Manjaly Anthonykutty, Kevin M. Van Geem, Steven Pyl, Reetta Kaila, Jari Räsänen, Tapani Penttinen, Antero Laitinen, Outi Krause and, Ali Harlin*

8th European Congress of Chemical Engineering
September 25-29, 2011 Berlin, Germany
Why Biomass??

- Depletion of world wide petroleum resources
- Strong environmental concerns about fossil fuels
- Biomass is renewable and a rich source of carbon
- Easy adaptability with the existing petrorefinery

It is not enough with renewable but it must also be sustainable!!
Forest Biorefinery

- In Finland biorefineries benefit mainly from woody biomass

Valuable raw materials from woody biomass

Upgrading of Kraft pulping process into a multi-product biorefinery concept
Pulp mill biorefinery

Chips

Bark and forest residue

pulp mill

spent liquor

Cellulose → Biomaterials

Pulp

Up to 50% of Finnish consumption of automotive fuels

Biomass and black liquor gasification

Electric power

Liquid biofuels

Higher hydrocarbons

Tall oil, the by-product of paper production meets the criteria of an economically desirable and readily available feedstock
Crude Tall Oil (CTO)

- Resin acids (Rosin)
 - Abietic acid,
 - Dehydroabietic acid etc

- Fatty Acids
 - Linoleic acid, Oleic acid,
 - Palmitic acid etc

- Unsaponifiables
 - Sterols,
 - Hydrocarbons,
 - Higher alcohols
Abietic acid

Dehydroabietic acid

Linoleic acid

Oleic acid
Chemical Approach

Converting Tall oil fractions in to value added chemicals

Step 1: Upgrading process (to reduce the amount of oxygenates)

Step 2: Catalytic cracking (to produce value added chemicals)

Upgrading!!!!

Hydrodeoxygenation
Hydrodeoxygenation (HDO)

- Removing (or) altering of oxygenated compounds in bio-oil by using hydrotreating catalyst in the presence of hydrogen atmosphere
- Generally oxygenated compounds removed in the form of water mostly
- Hydrotreating catalysts used at present
 - Zeolites (HZSM-5, SUZ-4 etc)
 - Nickel-Molybdenum over γ alumina (NiMo/γ alumina)
 - Cobalt-Molybdenum over γ alumina (CoMo/γ alumina)
 - Precious metal catalysts
Practical Approach

- Reactor packing
 - NiMo (commercial)
 - Pressure test (40-50 bar) with N2 or Ar

- Presulphidation
 - 5 hrs @ 400 °C (450 °C)
 - H2S/H2 = 5.5 %

- Experiment conditions
 - H2/ Feed = WHSV= 1, 1.5 and 2
 - T = 325 °C- 450 °C
 - Pressure = 50 bar (H2)
 - t = 6 hrs
Reaction routes

Abietic acid

Dehydroabietic acid

HDO

-\text{H}_2\text{O}

Abietane

Norabietane

Linoleic acid

HDO

Oleic acid

n-Octadecane
Tall Oil Fatty Acid (TOFA) and Distilled Tall Oil composition

TOFA (C\(_{18}H_{32}O_2\)), M = 280.4 g/mol
- C: 76%
- H: 12%
- O: 12%

DTO (C\(_{18}H_{31}O_2\)), M = 279.4 g/mol
- C: 78%
- H: 11%
- O: 11%

Free fatty acids: 96%
Free rosin acids: 1.8%

Free fatty acids: 70%
Free rosin acids: 27%
Mass balance estimation

H2 IN → HDO → H2 OUT
TOFA or DTO IN → HDO → GAS OUT

HC OUT → HDO → HC OUT
Water OUT → HDO → Water OUT

HC analysis: GC-MS and GCXGC
Water analysis: Karl-Fisher titration
Gas analysis: GC and FT-IR
Elemental analysis
HDO of TOFA

HDO product yields: HDO Vs Decarboxylation
Feedstock: TOFA, T = 325-375°C, Pr: 50bars, WHSV: 2h⁻¹

Steady state HDO activity with increase of temperature at longer residence time
HDO of TOFA

Product distribution: Saturated HC Vs Aromatics
Feedstock: TOFA, $T = 325-375^\circ C$, Pr: 50bars, WHSV: 2h^{-1}

Aromatics appear only at higher temperature
More aromatics at longer residence time

Product distribution: Saturated HC Vs Aromatics
Feedstock: TOFA, $T = 325-375^\circ C$, Pr: 50bars, WHSV: 1.5h^{-1}
HDO of TOFA

Gaseous products distribution
Feedstock: TOFA, $T = 325-375^\circ C$, $P_r: 50$ bars, WHSV: $2h^{-1}$

Gaseous products distribution
Feedstock: TOFA, $T = 325-375^\circ C$, $P_r: 50$ bars, WHSV: $1.5h^{-1}$

Reduced decarboxylation rate at longer residence time
HDO of DTO

HDO product yields: HDO Vs Decarboxylation
Feedstock: DTO, T = 325-450°C, Pr: 50bars, WHSV: 2h⁻¹

More steady state HDO activity at longer residence time

HDO product yields: HDO Vs Decarboxylation
Feedstock: DTO, T = 325-450°C, Pr: 50bars, WHSV: 1.5h⁻¹
HDO of DTO

Product distribution: Aromatics Vs Non-aromatics
Feedstock: DTO, T = 325-450°C, Pr: 50 bars, WHSV: 2h⁻¹

Product distribution: Aromatics Vs Non-aromatics
Feedstock: DTO, T = 325-450°C, Pr: 50 bars, WHSV: 1.5h⁻¹

More aromatics at higher temperature especially at longer residence time
HDO of DTO

Gaseous products distribution
Feedstock: DTO, $T = 325-450^\circ C$, Pr: 50bars, WHSV: $2h^{-1}$

Gaseous products distribution
Feedstock: DTO, $T = 325-450^\circ C$, Pr: 50bars, WHSV: $1.5h^{-1}$

Reduced decarboxylation rate at longer residence time
HDO piloting studies with TOFA and DTO

Consumption of H₂: 0.68 mol/h lower with DTO

Formation of H₂O: 0.62 mol/h lower with DTO

With DTO: less C₁₇-C₁₈, more other HC’s, more CO₂

Unidentified "other" compounds might still contain oxygen.
Conclusions

- NiMo catalyst shows more HDO activity to TOFA than DTO

- TOFA shows steady state HDO activity with increase of temperature at longer residence time

- With DTO steady state HDO activity can be obtained at longer residence time with increase of temperature

- Catalyst activity of the NiMo catalyst for the HDO of resin acids should be revised

- Piloting Vs Lab scale studies shows similar trend
Acknowledgements

- VTT Graduate School
- Prof. Ali Harlin
- Prof. Outi Krause
- Prof. Kevin M. Van Geem
- Mr. Steven Pyl
- Dr. Reetta Kaila
- Dr. Antero Laitinen
THANK YOU FOR YOUR ATTENTION!!

Q&A
VTT creates business from technology