SIMULTANEOUS EXTENSIONS OF TURKEVICH'S INEQUALITY AND THE WEIGHTED AM-GM INEQUALITY

GÉZA KÓS, HOJOO LEE, AND PETER VANDENDRIESSCHE
(Communicated by Walter Van Assche)

Abstract

We establish a sharp homogeneous inequality which extends both the classical weighted AM-GM inequality and the Turkevich inequality.

1. Introduction and main results

Turkevich [1] discovered a neat 4 -variable symmetric inequality of degree 4 :

$$
a^{4}+b^{4}+c^{4}+d^{4}+2 a b c d \geq a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}
$$

or

$$
\left(a^{2}-b^{2}\right)^{2}+\left(c^{2}-d^{2}\right)^{2} \geq\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-(a b+c d)^{2}
$$

for all non-negative real numbers a, b, c, d. Equality occurs if and only if either $a=b=c=d$ or if three of a, b, c, d are equal and the remaining one is zero.

Several generalizations of Turkevich's inequality are known; for example, Shleifer's inequality [1] says that, for $a_{1}, \ldots, a_{n} \geq 0$,

$$
(n-1) \sum_{i=1}^{n} a_{i}^{4}+n\left(a_{1} \cdots a_{n}\right)^{\frac{4}{n}} \geq\left(\sum_{i=1}^{n} a_{n}^{2}\right)^{2}
$$

The main aim of this paper is to present a sharp weighted generalization of the AM-GM inequality, which also generalizes Turkevich's inequality.

In the following, let n be a positive integer with $n \geq 2$ and let $\omega_{1}, \ldots, \omega_{n}$ be positive real numbers with $\omega_{1}+\cdots+\omega_{n}=1$. Define $\omega=\min \left\{\omega_{1}, \ldots, \omega_{n}\right\}>0$ and denote $\lambda=(1-\omega)^{-\frac{1-\omega}{\omega}}>1$.

We now present our two main theorems, which will turn out to be equivalent.

[^0]Theorem 1. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be non-negative real numbers $(n \geq 2)$ and let $\omega_{1}, \ldots, \omega_{n}$ be positive weights with $\omega_{1}+\cdots+\omega_{n}=1$. We have

$$
\begin{equation*}
\lambda \sum_{k=1}^{n} \omega_{k}\left(a_{k}^{2}-b_{k}^{2}\right)^{2}+\left(2 \sum_{k=1}^{n} \omega_{k} a_{k} b_{k}\right)^{2} \geq\left(a_{1}^{2}+b_{1}^{2}\right)^{2 \omega_{1}} \cdots\left(a_{n}^{2}+b_{n}^{2}\right)^{2 \omega_{n}} \tag{1.1}
\end{equation*}
$$

Equality in (1.1) occurs if and only if we have either $a_{1}=\cdots=a_{n}=b_{1}=\cdots=$ b_{n}, or if we have

$$
\left|a_{k}^{2}-b_{k}^{2}\right|=\left\{\begin{array}{cc}
a & \text { if } k=i_{0} \\
0 & \text { if } k \neq i_{0}
\end{array} \text { and } 2 a_{k} b_{k}= \begin{cases}0 & \text { if } k=i_{0} \\
b & \text { if } k \neq i_{0}\end{cases}\right.
$$

for some integer $i_{0} \in\{1, \ldots, n\}$ with $\omega_{i_{0}}=\omega$ and for some $a, b \geq 0$ for which $\lambda a^{2}=b^{2}(1-\omega)$.

The existence of the equality condition guarantees the minimality of the optimal coefficient λ in inequality (1.1). Theorem 1 is an n-variable generalization of Turkevich's inequality [1] the original inequality of Turkevich can be obtained by letting $n=2$ and $\omega_{1}=\omega_{2}=\frac{1}{2}$, in which case $\lambda=2$.

To establish Theorem 1, we will use the following theorem, which is a nonsymmetric equivalent to Theorem 1

Theorem 2. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be non-negative real numbers $(n \geq 2)$ and let $\omega_{1}, \ldots, \omega_{n}$ be positive weights with $\omega_{1}+\cdots+\omega_{n}=1$. Then we have

$$
\begin{equation*}
\lambda \sum_{k=1}^{n} \omega_{k} a_{k}^{2}+\left(\sum_{k=1}^{n} \omega_{k} b_{k}\right)^{2} \geq\left(a_{1}^{2}+b_{1}^{2}\right)^{\omega_{1}} \cdots\left(a_{n}^{2}+b_{n}^{2}\right)^{\omega_{n}} . \tag{1.2}
\end{equation*}
$$

Equality in (1.2) occurs if and only if we either have $a_{1}=\cdots=a_{n}=0$ and $b_{1}=\cdots=b_{n}$ or we have

$$
a_{k}=\left\{\begin{array}{ll}
a & \text { if } k=i_{0} \\
0 & \text { if } k \neq i_{0}
\end{array} \text { and } b_{k}= \begin{cases}0 & \text { if } k=i_{0} \\
b & \text { if } k \neq i_{0}\end{cases}\right.
$$

for some integer $i_{0} \in\{1, \ldots, n\}$ with $\omega_{i_{0}}=\omega$ and for some $a, b \geq 0$ for which $\lambda a^{2}=b^{2}(1-\omega)$.

Inequality (1.2) is clearly a generalization of the weighted AM-GM inequality, as can be seen by substituting $a_{1}=\ldots=a_{n}=0$. That it is a strict generalization, can be seen from the additional equality conditions, where $a_{1}=\ldots=a_{n}=0$ does not necessarily hold.

Several specific estimations on the optimal coefficient λ in Theorems 1 and 2 can be made. First, as the following proposition shows, both inequalities (1.1) and (1.2) still hold when replacing λ with Euler's constant e.

Proposition 3. Let $n \geq 2$. We have $e>\lambda$ for any positive weights $\omega_{1}, \ldots, \omega_{n}$ with $\omega_{1}+\cdots+\omega_{n}=1$.

Second, the following proposition indicates that the resulting inequalities are still sharp, in the sense that e cannot be replaced by a smaller constant.

Proposition 4. Let $n \geq 2$. Suppose that \mathcal{C} is a positive real constant for which

$$
\begin{equation*}
\mathcal{C} \sum_{k=1}^{n} \omega_{k} a_{k}^{2}+\left(\sum_{k=1}^{n} \omega_{k} b_{k}\right)^{2} \geq\left(a_{1}^{2}+b_{1}^{2}\right)^{\omega_{1}} \cdots\left(a_{n}^{2}+b_{n}^{2}\right)^{\omega_{n}} \tag{1.3}
\end{equation*}
$$

holds for all positive weights $\omega_{1}, \ldots, \omega_{n}$ with $\omega_{1}+\cdots+\omega_{n}=1$ and for all nonnegative real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$. Then $\mathcal{C} \geq e$.

If $\omega_{1}=\ldots=\omega_{n}=\frac{1}{n}$, we have $\lambda=\left(1+\frac{1}{n-1}\right)^{n-1}$. This gives our inequalities simple forms for the uniform weight distribution $\omega_{1}=\ldots=\omega_{n}=\frac{1}{n}$, and it is sharper than replacing $\lambda=\left(1+\frac{1}{n-1}\right)^{n-1}$ by Euler's constant e.

Theorems 1 and 2 are the main theorems of this paper. In Section 2, we present a proof of our main theorems, as well as a proof for the propositions above.

2. Proof of the main theorems and the propositions

In this section we give the proof of our main theorems. First we introduce a useful notation and we present an observation on the minimal optimal coefficient λ. Given a proper subset I of $\{1, \ldots, n\}$, we denote

$$
\lambda_{I}=\left(\sum_{i \notin I} \omega_{i}\right)^{-\frac{\sum_{i \notin I} \omega_{i}}{\sum_{i \in I} \omega_{i}}}=f\left(\sum_{i \in I} \omega_{i}\right)
$$

where we define $f(x)=(1-x)^{-\frac{1-x}{x}}$. We then recall the definitions in Section 1:

$$
\omega=\min \left\{\omega_{1}, \ldots, \omega_{n}\right\}>0 \text { and } \lambda=f(\omega)=(1-\omega)^{-\frac{1-\omega}{\omega}}>1
$$

Since the function f is decreasing on $] 0,1\left[\right.$, we have that $\lambda_{I} \leq \lambda$ for each non-empty proper subset $I \subset\{1, \ldots, n\}$. In particular, because the function f is decreasing,

$$
\lambda=\max \left\{\lambda_{I} \mid I \text { is a non-empty proper subset of }\{1, \ldots, n\}\right\}
$$

and this maximum is attained when $\sum_{i \in I} \omega_{i}$ is minimal, i.e. when $I=\left\{i_{0}\right\}$, where i_{0} is any index for which $\omega_{i_{0}}=\omega$. This maximality of the minimal optimal coefficient $\lambda=f(\omega)$ is crucial to the proof of Theorem 2. We start by proving Theorem 2

Proof of Theorem 2, Let $p_{i}=\sqrt{a_{i}^{2}+b_{i}^{2}}$ for all integers i, with $1 \leq i \leq n$. If there is any integer i, with $1 \leq i \leq n$, for which $p_{i}=0$, then the right hand side equals 0 and the inequality holds trivially. In this case equality occurs if and only if $a_{1}=\ldots=a_{n}=b_{1}=\ldots=b_{n}=0$.

Hence we may assume that $p_{i}>0$ for all integers $i, 1 \leq i \leq n$. We can rewrite the claimed estimation as

$$
\lambda \sum_{k=1}^{n} \omega_{k}\left(p_{k}^{2}-b_{k}^{2}\right)+\left(\sum_{k=1}^{n} \omega_{k} b_{k}\right)^{2} \geq p_{1}^{2 \omega_{1}} \cdots p_{n}^{2 \omega_{n}} .
$$

If we now fix the variables $p_{1}, \ldots, p_{n}, b_{1}, \ldots, b_{i-1}$ and b_{i+1}, \ldots, b_{n}, for some integer i, with $1 \leq i \leq n$, then we find that the right hand side is a constant, while the left hand side is a quadratic function of b_{i} with leading coefficient $\omega_{i}\left(\omega_{i}-\lambda\right)$. Since $\lambda>1>\omega_{i}>0$, this leading coefficient is negative; thus the left hand side is a concave function in the variable b_{i}. Therefore, the smallest value of the left hand side is attained either when $b_{i}=0$ or $b_{i}=p_{i}$. Since this holds for any integer i, with $1 \leq i \leq n$, we may assume that $b_{i} \in\left\{0, p_{i}\right\}$ for each integer i, with $1 \leq i \leq n$.

Let m be the number of integers i, with $1 \leq i \leq n$, for which $b_{i}=0$. We may permute the indices such that $b_{1}=b_{2}=\ldots=b_{m}=0$ and $b_{m+1}=p_{m+1}>$ $0, \ldots, b_{n}=p_{n}>0$; we denote this permutation by σ. With these observations, it is
sufficient to prove the following inequality for arbitrary positive weights $\omega_{1}, \ldots, \omega_{n}$ with $\omega_{1}+\cdots+\omega_{n}=1$ and arbitrary positive reals p_{1}, \ldots, p_{n} :

$$
\begin{equation*}
\lambda \sum_{k=1}^{m} \omega_{k} p_{k}^{2}+\left(\sum_{k=m+1}^{n} \omega_{k} p_{k}\right)^{2} \geq p_{1}^{2 \omega_{1}} \cdots p_{n}^{2 \omega_{n}} \tag{2.1}
\end{equation*}
$$

Now there are three cases: either $m=0, m=n$, or $1 \leq m \leq n-1$. If $m=0$, then (2.1) is simply the AM-GM inequality for p_{1}, \ldots, p_{n}. Equality hence occurs if and only if $p_{1}=\ldots=p_{n}$, which in the original problem can be written as $a_{1}=\ldots=a_{n}=0$ and $b_{1}=\ldots=b_{n}$.

If $m=n$, then

$$
\lambda \sum_{k=1}^{n} \omega_{k} p_{k}^{2}>\sum_{k=1}^{n} \omega_{k} p_{k}^{2} \geq p_{1}^{2 \omega_{1}} \cdots p_{n}^{2 \omega_{n}}
$$

by the AM-GM inequality for $p_{1}^{2}, \ldots, p_{n}^{2}$. Equality cannot be attained in this case.
Hence, we are left with the case $1 \leq m \leq n-1$. Define

$$
\begin{aligned}
& U=\omega_{1}+\cdots+\omega_{m}, \quad V=\omega_{m+1}+\cdots+\omega_{n} \\
& A=\left(p_{1}^{\omega_{1}} \cdots p_{m}^{\omega_{m}}\right)^{1 / U} \text { and } B=\left(p_{m+1}^{\omega_{m+1}} \cdots p_{n}^{\omega_{n}}\right)^{1 / V}
\end{aligned}
$$

Applying the weighted AM-GM inequality twice to the left hand side then yields

$$
\lambda \sum_{k=1}^{m} \omega_{k} p_{k}^{2}+\left(\sum_{k=m+1}^{n} \omega_{k} p_{k}\right)^{2} \geq \lambda \cdot U A^{2}+(V B)^{2}
$$

On the other hand, using the same notation, the right hand side of (2.1) can be written as $p_{1}^{2 \omega_{1}} \cdots p_{n}^{2 \omega_{n}}=A^{2 U} B^{2 V}$, and hence we are left to prove that

$$
\lambda \cdot U A^{2}+(V B)^{2} \geq A^{2 U} B^{2 V}
$$

Now, let $I=\left\{\sigma^{-1}(1), \ldots, \sigma^{-1}(m)\right\}$ in the original definition of λ_{I}. Then at this point in the proof (after rearranging our indices) we have $\sigma(I)=\{1,2, \ldots, m\}$. Hence, $\lambda_{\sigma(I)}=(1-U)^{-\frac{1-U}{U}}=f(U)$. Then, the maximality of $\lambda=f(\omega)$ implies

$$
\lambda \geq \lambda_{\sigma(I)}=(1-U)^{-\frac{1-U}{U}}=\left(\frac{1}{V}\right)^{\frac{V}{U}}
$$

Finally, we can combine this with the weighted AM-GM inequality to deduce

$$
\begin{aligned}
\lambda \cdot U A^{2}+(V B)^{2} & \geq\left(\frac{1}{V}\right)^{V / U} \cdot U A^{2}+(V B)^{2} \\
& =U \cdot\left(\frac{A^{2}}{V^{V / U}}\right)+V \cdot\left(V B^{2}\right) \\
& \geq\left(\frac{A^{2}}{V^{V / U}}\right)^{U} \cdot\left(V B^{2}\right)^{V} \\
& =A^{2 U} B^{2 V}
\end{aligned}
$$

as claimed. This proves inequality (1.2).
Equality in the above occurs only if $\lambda=\lambda_{\sigma(I)}=\left(\frac{1}{V}\right)^{\frac{V}{U}}$ and $\lambda A^{2}=V B^{2}$. Filling in the definitions of U and V, we see that $\lambda=\lambda_{\sigma(I)}$ implies that $\sigma(I)=\left\{i_{0}\right\}$ with $\omega_{i_{0}}=\omega$. Hence, this is exactly the claimed equality condition; this proves the 'only if' part. For the 'if' part, let $I=\left\{i_{0}\right\}$ and let a, b be non-negative real numbers satisfying the given conditions. Denoting $u=\sum_{k \in I} \omega_{k}=\omega$ and $v=1-u=\sum_{k \notin I} \omega_{k}=1-\omega$, we have $\lambda=\lambda_{I}=v^{-v / u}$ and we have to show that
$v^{-v / u} u a^{2}+v^{2} b^{2}=a^{2 u} b^{2 v}$, which is equivalent to $u\left(\frac{a^{2}}{v^{v / u}}\right)+v\left(v b^{2}\right)=a^{2 u} b^{2 v}$. Since we are given that $\lambda_{I} a^{2}=b^{2} \sum_{k \notin I} \omega_{k}$, we know that $\frac{a^{2}}{v^{v / u}}=b^{2} v$, yielding

$$
u\left(\frac{a^{2}}{v^{v / u}}\right)+v\left(v b^{2}\right)=v b^{2}=\left(v b^{2}\right)^{u} \cdot\left(v b^{2}\right)^{v}=\left(\frac{a^{2}}{v^{v / u}}\right)^{u} \cdot\left(v b^{2}\right)^{v}=a^{2 u} b^{2 v}
$$

Hence the statement about the equality condition follows.
We have proven Theorem 2, Theorem 1 is now a straightforward corollary.
Proof of Theorem 1. For each integer i, with $1 \leq i \leq n$, we substitute $\left(a_{i}, b_{i}\right)$ by $\left(\left|a_{i}^{2}-b_{i}^{2}\right|, 2 a_{i} b_{i}\right)$ in inequality (1.2). Then inequality (1.2) in Theorem 2 reduces to inequality (1.1) in Theorem 1 .

Now we prove the propositions from Section 1
Proof of Proposition 3. We use the inequality $e^{t}>1+t$ for $t>0$ to deduce

$$
\lambda=(1-\omega)^{-\frac{1-\omega}{\omega}}=\left(\frac{1}{1-\omega}\right)^{\frac{1-\omega}{\omega}}=\left(1+\frac{\omega}{1-\omega}\right)^{\frac{1-\omega}{\omega}}<\left(e^{\left.\frac{\omega}{1-\omega}\right)^{\frac{1-\omega}{\omega}}=e, ~, ~ . ~}\right.
$$

as claimed.
Proof of Proposition 4. Substituting $\omega_{1}=\ldots=\omega_{n}=\frac{1}{n}, b_{1}=a_{2}=\ldots=a_{n}=0$, $a_{1}=\left(1-\frac{1}{n}\right)^{\frac{n}{2}}$ and $b_{2}=\ldots=b_{n}=1$ in inequality (1.3) yields

$$
\mathcal{C}\left(1-\frac{1}{n}\right)^{n}+\left(\frac{n-1}{n}\right)^{2} \geq 1-\frac{1}{n}
$$

or equivalently,

$$
\mathcal{C} \geq\left(1+\frac{1}{n-1}\right)^{n-1}
$$

Taking the limit for $n \rightarrow+\infty$, we meet the desired estimation $\mathcal{C} \geq e$.

Acknowledgments

We would like to thank Andrei Frimu for providing a translation of the article [1], Sungyoon Kim for detailed comments on an early draft of the paper, and the anonymous referee for several useful comments and suggestions.

References

[1] V. Senderov and E. Turkevich, Problem M506, Kvant, 10(3) (1979), 35.
Department of Analysis, Loránd Eötvös University, Budapest, Hungary - and - Computer and Automation Research Institute (SZTAKI), Budapest, Hungary

E-mail address: kosgeza@sztaki.hu
Department of Mathematical Sciences, Seoul National University, Seoul, Republic of Korea

E-mail address: ultrametric@gmail.com
Department of Mathematics, Ghent University, B 9000 Gent, Belgium
E-mail address: Peter.Vandendriessche@UGent.be

[^0]: Received by the editors September 26, 2010 and, in revised form, November 17, 2010 and December 18, 2010.

 2010 Mathematics Subject Classification. Primary 26D15; Secondary 41A44.
 Key words and phrases. Turkevich's inequality, Euler's constant, weighted means.
 The second author is supported in part by NRF 2010-0014315.
 The third author is supported by a PhD fellowship of the Research Foundation - Flanders (FWO).

