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SIMULTANEOUS EXTENSIONS

OF TURKEVICH’S INEQUALITY

AND THE WEIGHTED AM-GM INEQUALITY

GÉZA KÓS, HOJOO LEE, AND PETER VANDENDRIESSCHE

(Communicated by Walter Van Assche)

Abstract. We establish a sharp homogeneous inequality which extends both
the classical weighted AM-GM inequality and the Turkevich inequality.

1. Introduction and main results

Turkevich [1] discovered a neat 4-variable symmetric inequality of degree 4:

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

or (
a2 − b2

)2
+
(
c2 − d2

)2 ≥
(
a2 + b2

) (
c2 + d2

)
− (ab+ cd)

2

for all non-negative real numbers a, b, c, d. Equality occurs if and only if either
a = b = c = d or if three of a, b, c, d are equal and the remaining one is zero.

Several generalizations of Turkevich’s inequality are known; for example,
Shleifer’s inequality [1] says that, for a1, . . . , an ≥ 0,

(n− 1)

n∑
i=1

a4i + n (a1 · · · an)
4
n ≥

(
n∑

i=1

a2n

)2

.

The main aim of this paper is to present a sharp weighted generalization of the
AM-GM inequality, which also generalizes Turkevich’s inequality.

In the following, let n be a positive integer with n ≥ 2 and let ω1, . . . , ωn be
positive real numbers with ω1 + · · ·+ωn = 1. Define ω = min{ω1, . . . , ωn} > 0 and

denote λ = (1− ω)−
1−ω
ω > 1.

We now present our two main theorems, which will turn out to be equivalent.
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Theorem 1. Let a1, . . . , an, b1, . . . , bn be non-negative real numbers (n ≥ 2) and
let ω1, . . . , ωn be positive weights with ω1 + · · ·+ ωn = 1. We have

(1.1) λ

n∑
k=1

ωk(a
2
k − b2k)

2 +

(
2

n∑
k=1

ωkakbk

)2

≥
(
a21 + b21

)2ω1 · · ·
(
a2n + b2n

)2ωn
.

Equality in (1.1) occurs if and only if we have either a1 = · · · = an = b1 = · · · =
bn, or if we have

|a2k − b2k| =
{
a if k = i0

0 if k �= i0
and 2akbk =

{
0 if k = i0

b if k �= i0

for some integer i0 ∈ {1, . . . , n} with ωi0 = ω and for some a, b ≥ 0 for which
λa2 = b2(1− ω).

The existence of the equality condition guarantees the minimality of the opti-
mal coefficient λ in inequality (1.1). Theorem 1 is an n-variable generalization of
Turkevich’s inequality [1]; the original inequality of Turkevich can be obtained by
letting n = 2 and ω1 = ω2 = 1

2 , in which case λ = 2.
To establish Theorem 1, we will use the following theorem, which is a non-

symmetric equivalent to Theorem 1.

Theorem 2. Let a1, . . . , an, b1, . . . , bn be non-negative real numbers (n ≥ 2) and
let ω1, . . . , ωn be positive weights with ω1 + · · ·+ ωn = 1. Then we have

(1.2) λ
n∑

k=1

ωka
2
k +

(
n∑

k=1

ωkbk

)2

≥
(
a21 + b21

)ω1 · · ·
(
a2n + b2n

)ωn
.

Equality in (1.2) occurs if and only if we either have a1 = · · · = an = 0 and
b1 = · · · = bn or we have

ak =

{
a if k = i0

0 if k �= i0
and bk =

{
0 if k = i0

b if k �= i0

for some integer i0 ∈ {1, . . . , n} with ωi0 = ω and for some a, b ≥ 0 for which
λa2 = b2(1− ω).

Inequality (1.2) is clearly a generalization of the weighted AM-GM inequality,
as can be seen by substituting a1 = . . . = an = 0. That it is a strict generalization,
can be seen from the additional equality conditions, where a1 = . . . = an = 0 does
not necessarily hold.

Several specific estimations on the optimal coefficient λ in Theorems 1 and 2
can be made. First, as the following proposition shows, both inequalities (1.1) and
(1.2) still hold when replacing λ with Euler’s constant e.

Proposition 3. Let n ≥ 2. We have e > λ for any positive weights ω1, . . . , ωn

with ω1 + · · ·+ ωn = 1.

Second, the following proposition indicates that the resulting inequalities are still
sharp, in the sense that e cannot be replaced by a smaller constant.

Proposition 4. Let n ≥ 2. Suppose that C is a positive real constant for which

(1.3) C
n∑

k=1

ωka
2
k +

(
n∑

k=1

ωkbk

)2

≥
(
a21 + b21

)ω1 · · ·
(
a2n + b2n

)ωn
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holds for all positive weights ω1, . . . , ωn with ω1 + · · · + ωn = 1 and for all non-
negative real numbers a1, . . . , an, b1, . . . , bn. Then C ≥ e.

If ω1 = . . . = ωn = 1
n , we have λ =

(
1 + 1

n−1

)n−1

. This gives our inequalities

simple forms for the uniform weight distribution ω1 = . . . = ωn = 1
n , and it is

sharper than replacing λ =
(
1 + 1

n−1

)n−1

by Euler’s constant e.

Theorems 1 and 2 are the main theorems of this paper. In Section 2, we present
a proof of our main theorems, as well as a proof for the propositions above.

2. Proof of the main theorems and the propositions

In this section we give the proof of our main theorems. First we introduce a
useful notation and we present an observation on the minimal optimal coefficient
λ. Given a proper subset I of {1, . . . , n}, we denote

λI =

(∑
i/∈I

ωi

)−
∑

i/∈I ωi∑
i∈I ωi

= f

(∑
i∈I

ωi

)
,

where we define f(x) = (1− x)−
1−x
x . We then recall the definitions in Section 1:

ω = min{ω1, . . . , ωn} > 0 and λ = f(ω) = (1− ω)−
1−ω
ω > 1.

Since the function f is decreasing on ]0, 1[, we have that λI ≤ λ for each non-empty
proper subset I ⊂ {1, . . . , n}. In particular, because the function f is decreasing,

λ = max{λI | I is a non-empty proper subset of {1, . . . , n}}
and this maximum is attained when

∑
i∈I ωi is minimal, i.e. when I = {i0}, where i0

is any index for which ωi0 = ω. This maximality of the minimal optimal coefficient
λ = f(ω) is crucial to the proof of Theorem 2. We start by proving Theorem 2.

Proof of Theorem 2. Let pi =
√
a2i + b2i for all integers i, with 1 ≤ i ≤ n. If

there is any integer i, with 1 ≤ i ≤ n, for which pi = 0, then the right hand side
equals 0 and the inequality holds trivially. In this case equality occurs if and only
if a1 = . . . = an = b1 = . . . = bn = 0.

Hence we may assume that pi > 0 for all integers i, 1 ≤ i ≤ n. We can rewrite
the claimed estimation as

λ
n∑

k=1

ωk(p
2
k − b2k) +

(
n∑

k=1

ωkbk

)2

≥ p2ω1
1 · · · p2ωn

n .

If we now fix the variables p1, . . . , pn, b1, . . . , bi−1 and bi+1, . . . , bn, for some
integer i, with 1 ≤ i ≤ n, then we find that the right hand side is a constant, while
the left hand side is a quadratic function of bi with leading coefficient ωi(ωi − λ).
Since λ > 1 > ωi > 0, this leading coefficient is negative; thus the left hand side is
a concave function in the variable bi. Therefore, the smallest value of the left hand
side is attained either when bi = 0 or bi = pi. Since this holds for any integer i,
with 1 ≤ i ≤ n, we may assume that bi ∈ {0, pi} for each integer i, with 1 ≤ i ≤ n.

Let m be the number of integers i, with 1 ≤ i ≤ n, for which bi = 0. We
may permute the indices such that b1 = b2 = . . . = bm = 0 and bm+1 = pm+1 >
0, . . . , bn = pn > 0; we denote this permutation by σ. With these observations, it is
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sufficient to prove the following inequality for arbitrary positive weights ω1, . . . , ωn

with ω1 + · · ·+ ωn = 1 and arbitrary positive reals p1, . . . , pn:

(2.1) λ
m∑

k=1

ωkp
2
k +

(
n∑

k=m+1

ωkpk

)2

≥ p2ω1
1 · · · p2ωn

n .

Now there are three cases: either m = 0, m = n, or 1 ≤ m ≤ n − 1. If m = 0,
then (2.1) is simply the AM-GM inequality for p1, . . . , pn. Equality hence occurs
if and only if p1 = . . . = pn, which in the original problem can be written as
a1 = . . . = an = 0 and b1 = . . . = bn.

If m = n, then

λ
n∑

k=1

ωkp
2
k >

n∑
k=1

ωkp
2
k ≥ p2ω1

1 · · · p2ωn
n ,

by the AM-GM inequality for p21, . . . , p
2
n. Equality cannot be attained in this case.

Hence, we are left with the case 1 ≤ m ≤ n− 1. Define

U = ω1 + · · ·+ ωm, V = ωm+1 + · · ·+ ωn,

A = (pω1
1 · · · pωm

m )
1/U

and B =
(
p
ωm+1

m+1 · · · pωn

n

)1/V
.

Applying the weighted AM-GM inequality twice to the left hand side then yields

λ

m∑
k=1

ωkp
2
k +

(
n∑

k=m+1

ωkpk

)2

≥ λ · UA2 + (V B)2.

On the other hand, using the same notation, the right hand side of (2.1) can be
written as p2ω1

1 · · · p2ωn
n = A2UB2V , and hence we are left to prove that

λ · UA2 +
(
V B

)2 ≥ A2UB2V .

Now, let I = {σ−1(1), . . . , σ−1(m)} in the original definition of λI . Then at this
point in the proof (after rearranging our indices) we have σ(I) = {1, 2, . . . ,m}.
Hence, λσ(I) = (1− U)−

1−U
U = f(U). Then, the maximality of λ = f(ω) implies

λ ≥ λσ(I) = (1− U)
− 1−U

U =

(
1

V

)V
U

.

Finally, we can combine this with the weighted AM-GM inequality to deduce

λ · UA2 + (V B)2 ≥
(
1
V

)V/U · UA2 + (V B)2

= U ·
(

A2

V V/U

)
+ V · (V B2)

≥
(

A2

V V/U

)U

· (V B2)V

= A2UB2V

as claimed. This proves inequality (1.2).

Equality in the above occurs only if λ = λσ(I) =
(
1
V

)V
U and λA2 = V B2. Filling

in the definitions of U and V , we see that λ = λσ(I) implies that σ(I) = {i0}
with ωi0 = ω. Hence, this is exactly the claimed equality condition; this proves
the ‘only if’ part. For the ‘if’ part, let I = {i0} and let a, b be non-negative
real numbers satisfying the given conditions. Denoting u =

∑
k∈I ωk = ω and

v = 1− u =
∑

k/∈I ωk = 1− ω, we have λ = λI = v−v/u and we have to show that
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v−v/uua2+ v2b2 = a2ub2v, which is equivalent to u
(

a2

vv/u

)
+ v(vb2) = a2ub2v. Since

we are given that λIa
2 = b2

∑
k/∈I ωk, we know that a2

vv/u = b2v, yielding

u

(
a2

vv/u

)
+ v(vb2) = vb2 = (vb2)u · (vb2)v =

(
a2

vv/u

)u

· (vb2)v = a2ub2v.

Hence the statement about the equality condition follows. �
We have proven Theorem 2. Theorem 1 is now a straightforward corollary.

Proof of Theorem 1. For each integer i, with 1 ≤ i ≤ n, we substitute (ai, bi) by
(|a2i − b2i |, 2aibi) in inequality (1.2). Then inequality (1.2) in Theorem 2 reduces to
inequality (1.1) in Theorem 1. �

Now we prove the propositions from Section 1.

Proof of Proposition 3. We use the inequality et > 1 + t for t > 0 to deduce

λ = (1− ω)−
1−ω
ω =

(
1

1− ω

) 1−ω
ω

=

(
1 +

ω

1− ω

) 1−ω
ω

<
(
e

ω
1−ω

) 1−ω
ω = e,

as claimed. �
Proof of Proposition 4. Substituting ω1 = . . . = ωn = 1

n , b1 = a2 = . . . = an = 0,

a1 =
(
1− 1

n

)n
2 and b2 = . . . = bn = 1 in inequality (1.3) yields

C
(
1− 1

n

)n

+

(
n− 1

n

)2

≥ 1− 1

n
,

or equivalently,

C ≥
(
1 +

1

n− 1

)n−1

.

Taking the limit for n → +∞, we meet the desired estimation C ≥ e. �

Acknowledgments

We would like to thank Andrei Frimu for providing a translation of the article
[1], Sungyoon Kim for detailed comments on an early draft of the paper, and the
anonymous referee for several useful comments and suggestions.

References

[1] V. Senderov and E. Turkevich, Problem M506, Kvant, 10(3) (1979), 35.
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