Pre-Processing

Network Generation

Kinetics & TD Generation

Post-Processing

A Chemical Knowledge Based Approach

Reaction Family Recipe: an Example

The bond scission of two tertiary carbon atoms

RECIPE:

Reactant Pattern:

\[\text{C(C)C(C)(C)} \]

Transformations:

1) **Break_Bond** (Atom1 , Atom 2)
2) **Atom 1:** **Gain_Electron**
3) **Atom 2:** **Gain_Electron**

Constraints:

- Atom count in molecule > 9
- Subatomic pattern identified: sub-molecular pattern
- Reactive centers that undergo transformations

Unit Operations

Atom Connectivity:

- Make_Bond
- Break_Bond

Electronic Configuration:

- Gain_Electron
- Lose_Electron

Bond Order:

- Increase
- Decrease

Molecular:

- # atoms in molecule, total # of unpaired electrons, etc...

Atomic:

- Presence of charge or aromaticity, etc...

Thermodynamic Properties: Benson GA

SENSORS GROUP ADDITIVE VALUE:

- Kin energy corrections and non-nearest neighbor interactions can be represented by SMARTS strings

GROUP ADDITIVITY:

- + Add: 1, 4, 2 (ligands)

From: M.K. Sabbe, Ph.D thesis

Conclusion

CHEM-O-INFORMICS IS A HIGHLY ACTIVE FIELD THAT OFFERS A MULTITUDE OF POWERFUL GRAPH-THEORY BASED ALGORITHMS TO ACCOMPLISH NON-TRIVIAL COMPUTATIONAL TASKS.

THE PRESENT AUTOMATIC REACTION NETWORK GENERATION TECHNOLOGY IS GREATLY BENEFITING FROM THE ADVANCES MADE IN CHEMO-INFORMATICS, AND HAS ADOPTED FEATURES LIKE SMARTS LANGUAGE, INCHI, SUBSTRUCTURE MATCHING, ETC...

Acknowledgements

THIS WORK WAS SUPPORTED BY A DOCTORAL FELLOWSHIP FROM THE FUND FOR SCIENTIFIC RESEARCH FLANDERS (FWO).