The food contaminant fumonisin B\textsubscript{1} reduces the maturation of porcine CD11R1 intestinal dendritic cells, resulting in a reduced efficiency of oral immunisation and a prolonged intestinal ETEC infection

Devriendt B.1, Gallois M.2, Verdonck F.1, Wache Y.2, Bimczok D.3, Oswald I.P.2, Goddeeris B.M.1,4, Cox E.1

1Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. 2Laboratoire de Pharmacologie-Toxicologie, UR 66, Institut National de la Recherche Agronomique, Toulouse, France. 3Institute of Anatomy, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany. 4Vaccine design, Department of Biosystems, K.U.Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium.

Consumption of food or feed contaminated with fumonisin B\textsubscript{1} (FB\textsubscript{1}), a mycotoxin produced by \textit{Fusarium verticillioides}, leads to disease in humans and animals. This mycotoxin reduces the efficiency of parenteral vaccinations, indicating that ingestion of FB\textsubscript{1}-contaminated food suppresses the systemic immune system. This study was conducted to elucidate the mechanisms by which FB\textsubscript{1} exerts its immunosuppressive effects on the intestinal immune system. Piglets were used as a model species for humans since their gastrointestinal tracts are very similar both on an anatomical and physiological level. The animals were orally exposed to a low dose of FB\textsubscript{1} (1 mg/kg body weight) for 10 days which did not result in any clinical signs. However, when compared to control animals, FB\textsubscript{1}-exposed animals demonstrated a prolonged excretion of the porcine-specific enteropathogen F4+ enterotoxigenic \textit{E. coli} (F4+ ETEC) following infection. Upon oral immunisation with purified F4 fimbriae, FB\textsubscript{1} exposure reduced the intestinal antigen-specific immune response as compared to control animals. Further analyses to elucidate the mechanisms behind these observations revealed a reduced expression of IL-12p40 mRNA by intestinal immune cells. Since this cytokine is mainly secreted by antigen presenting cells, we analysed the effects of FB\textsubscript{1} on small intestinal CD11R1 lamina propria dendritic cells (LPDC). These CD11R1 LPDC matured in response to stimulation with the ETEC-derived virulence factors, F4 fimbriae and flagellin, indicating that this intestinal DC subset is involved in the induction of protective immunity. However, \textit{in vivo} exposure of piglets to FB\textsubscript{1} impaired the functional maturation of F4 fimbriae- and flagellin-stimulated CD11R1 LPDC as evidenced by a decreased upregulation of MHCII and CD80/86 and a reduced T cell stimulatory capacity. These results indicate an FB\textsubscript{1}-mediated reduction of \textit{in vivo} DC maturation and stress the need to reduce exposure of animals and humans to FB\textsubscript{1} in order to enhance the efficacy of vaccination programs.