A GEOMETRIC PROOF OF THE UPPER BOUND ON THE SIZE OF PARTIAL SPREADS IN $H(4n + 1, q^2)$

Frédéric Vanhove
Department of Mathematics, Ghent University
Krijgslaan 281, S22
B-9000 Ghent, Belgium

(Communicated by Ivan Landjev)

Abstract. We give a geometric proof of the upper bound of $q^{2n+1} + 1$ on the size of partial spreads in the polar space $H(4n + 1, q^2)$. This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in $H(4n + 1, q^2)$.

1. Introduction

A classical finite polar space is an incidence structure, consisting of the totally isotropic subspaces of a projective space with respect to a non-degenerate sesquilinear form or a non-degenerate quadratic form. All dimensions will be assumed to be projective from now on, and we will also refer to m-dimensional subspaces as simply m-spaces. In particular, the 0- and 1-dimensional subspaces of such a polar space are known as its points and lines, respectively. The generators are its subspaces of maximal dimension. A partial spread of a classical finite polar space is a set of generators with no two incident with a common point. If a partial spread actually partitions the point set of the polar space, it is said to be a spread.

The Hermitian variety $H(n, q^2)$ is a particular type of classical finite polar space, consisting of the subspaces in $\mathrm{PG}(n, q^2)$, the points of which all have homogeneous coordinates (x_0, \ldots, x_n) satisfying the equation $x_0^{q+1} + \ldots + x_n^{q+1} = 0$. In this polar space, the generators are $(n-1)/2$-dimensional, if n is odd, or $(n-2)/2$-dimensional, if n is even, and the number of points is given by $|H(n, q^2)| = (q^{n+1} + (-1)^n)(q^n - (-1)^n)/(q^2 - 1)$. We refer to [4] for proofs and much more information on Hermitian varieties and polar spaces in general.

Thas [6] proved that in $H(2n + 1, q^2)$ spreads, or thus partial spreads of size $q^{2n+1} + 1$, cannot exist, which has made the question on the size of a partial spread in such a polar space, an intriguing question. Improved upper bounds on the size of partial spreads in $H(2n + 1, q^2)$ were proved in [2].

On the other hand, partial spreads of size $q^{n+1} + 1$ in $H(2n + 1, q^2)$ were constructed for all $n \geq 1$ in [1], by use of a symplectic polarity of the projective space $\mathrm{PG}(2n + 1, q^2)$, commuting with the associated Hermitian polarity. In the Baer subgeometry of points on which these two polarities coincide, a (regular) spread of the induced symplectic polar space $W(2n + 1, q)$ can always be found, and these

2000 Mathematics Subject Classification: 05B25, 51E23.

Key words and phrases: Hermitian varieties, partial spreads.

This research is supported by the Research Foundation Flanders-Belgium (FWO-Vlaanderen).
q^{n+1} + 1 generators extend to pairwise disjoint generators of \(H(2n + 1, q^2) \). Maximality of partial spreads of \(H(2n + 1, q^2) \) constructed in this way was also shown for \(n = 1, 2 \) in [1] and for all even \(n \) in [5].

In [3], De Beule and Metsch proved that the maximum size of a partial spread in \(H(5, q^2) \) is \(q^3 + 1 \), and they also obtained additional information on partial spreads meeting that tight bound. In particular, they found that every generator of \(H(5, q^2) \), not meeting any element of such a partial spread \(S \) in a line or more, meets exactly \(q^2 - q + 1 \) elements of \(S \) in a point.

Using techniques from algebraic graph theory, we recently proved in [7] that the size of a partial spread in \(H(4n + 1, q^2) \) is at most \(q^{2n+1} + 1 \), and this bound is thus tight as well. It turns out that a geometric property of partial spreads of maximum size in \(H(5, q^2) \) can be generalized, and in fact paves the way for a new, completely geometric proof of the upper bound in \(H(4n + 1, q^2) \).

2. Tools

We first state a lemma by Thas [6].

Lemma 2.1. Let \(\pi_1, \pi_2 \) and \(\pi \) be three mutually disjoint generators in \(H(2n+1, q^2) \). The set of points on \(\pi_1 \), that are on a (necessarily unique) line of \(H(2n + 1, q^2) \) meeting both \(\pi \) and \(\pi_2 \), form a non-singular Hermitian variety in \(\pi_1 \).

Corollary 2.2. Let \(\pi_1, \pi_2 \) and \(\pi \) be three mutually disjoint generators in \(H(2n + 1, q^2) \). The number of generators meeting \(\pi \) in an \((n-1)\)-space, and meeting both \(\pi_1 \) and \(\pi_2 \) in a point is \(|H(n, q^2)| = \frac{(q^{n+1} + (-1)^n)(q^n - (-1)^n)}{q^2 - 1} \).

Proof. We let \(\perp \) denote the Hermitian polarity of PG\((2n + 1, q^2)\), associated with the polar space. It is obvious that every generator meeting \(\pi \) in an \((n-1)\)-space, can meet \(\pi_1 \) and \(\pi_2 \) in at most one point. On the other hand, through any point \(p_1 \in \pi_1 \), there is a unique generator \(\langle p_1, p_1^\perp \cap \pi \rangle \) meeting \(\pi \) in an \((n-1)\)-space. Hence we have to determine the number of points \(p_1 \in \pi_1 \) such that the generator \(\langle p_1, p_1^\perp \cap \pi \rangle \) also meets \(\pi_2 \) in a point.

First suppose that a point \(p_1 \in \pi_1 \) is such that the generator \(\langle p_1, p_1^\perp \cap \pi \rangle \) meets \(\pi_2 \) in a point \(p_2 \). In that case, the line \(p_1p_2 \) is a line of \(H(2n + 1, q^2) \), meeting \(\pi \) as well, as \(p_1^\perp \cap \pi \) is a hyperplane of \(\langle p_1, p_1^\perp \cap \pi \rangle \). Conversely, suppose a point \(p_1 \in \pi_1 \) is on a line of \(H(2n + 1, q^2) \), meeting \(\pi \) in \(p \) and \(\pi_2 \) in \(p_2 \). In that case, both \(p_1 \) and \(p \) are in the generator \(\langle p_1, p_1^\perp \cap \pi \rangle \), and hence so is the entire line \(p_1p \), including the point \(p_2 \). The desired result thus follows from Lemma 2.1. \(\square \)

3. The proof

Theorem 3.1. The size of a partial spread \(S \) in \(H(4n + 1, q^2) \), \(n \geq 1 \), is at most \(q^{2n+1} + 1 \). If \(|S| > 1 \) and \(\pi \in S \), then every generator meeting \(\pi \) in a \((2n-1)\)-space, will meet the same number of other elements of \(S \) in just a point, if and only if \(|S| = q^{2n+1} + 1 \). In that case, that number must be \(q^{2n} \).

Proof. Let \(S \) be a partial spread of size at least 2 in \(H(4n + 1, q^2) \). Consider a fixed element \(\pi \in S \). Let \(\{N_i | i \in I\} \) be the set of generators meeting \(\pi \) in a \((2n-1)\)-space. As the number of \((2n-1)\)-spaces in a generator equals \((q^{4n+2} - 1)/(q^2 - 1) \), and the number of generators through any \((2n-1)\)-space in \(H(4n + 1, q^2) \) is given by \(q + 1 \), the cardinality of \(I \) is \(\frac{q^{4n+2} - 1}{q^2 - 1} - q \).
Note that any generator N_i and any generator in $S \backslash \{ \pi \}$, are either disjoint or meet in a point. For every $N_i, i \in I$, let t_i denote the number of generators in $S \backslash \{ \pi \}$, meeting N_i in a point. We now count the number of pairs (N_i, π'), with π' an element of $S \backslash \{ \pi \}$ meeting N_i in a point, in two ways. As through every point p' on an element π' of $S \backslash \{ \pi \}$, there is a unique generator meeting π in a point, we obtain:

\[(1) \quad \sum_{i \in I} t_i = (|S| - 1) \frac{q^{2n+2} - 1}{q^2 - 1}.\]

Now we count the number of ordered triples (N_i, π_1, π_2), with π_1 and π_2 two distinct elements of $S \backslash \{ \pi \}$, both meeting N_i in a point. We know from Corollary 2.2 that for every two distinct elements of $S \backslash \{ \pi \}$, there will be exactly $|H(2n, q^2)|$ generators N_i, meeting both of them in a point. Hence we obtain:

\[(2) \quad \sum_{i \in I} t_i (t_i - 1) = (|S| - 1)(|S| - 2) \frac{(q^{2n+1} + 1)(q^{2n} - 1)}{q^2 - 1}.\]

Combining (1) and (2), we find:

\[(3) \quad \sum_{i \in I} t_i^2 = (|S| - 1) \frac{q^{2n+1} + 1}{q^2 - 1} \left((q^{2n+1} - 1) + (|S| - 2)(q^{2n} - 1) \right).\]

As $(\sum_{i \in I} t_i)^2 \leq (\sum_{i \in I} t_i^2)|I|$, with equality if and only if all t_i are equal, this implies:

\[(|S| - 1)^2 \left(\frac{q^{4n+2} - 1}{q^2 - 1} \right)^2 \leq (|S| - 1) \frac{q^{2n+1} + 1}{q^2 - 1} \left((q^{2n+1} - 1) + (|S| - 2)(q^{2n} - 1) \right) \frac{q^{4n+2} - 1}{q^2 - 1},\]

with equality if and only if all t_i are equal. Since we assumed that $|S| > 1$, we can cancel factors on both sides to obtain:

\[(|S| - 1)q^{2n+1} - 1) \leq \left((q^{2n+1} - 1) + (|S| - 2)(q^{2n} - 1) \right) q,\]

implying that $|S| \leq q^{2n+1} + 1$, with equality if and only if all t_i are equal. In that case, their constant value must equal $(\sum_{i \in I} t_i)/|I| = q^{2n}$. \hfill \Box

4. Remark

This technique fails when applied to partial spreads in $H(4n + 3, q^2)$, where it yields a negative lower bound on the size instead.

Acknowledgements

The author is grateful to Jan De Beule for his helpful suggestions while preparing this manuscript.

References

Received March 2010; revised August 2010.

E-mail address: fvanhove@cage.ugent.be