Medium-chain fatty acids and plant-derived antimicrobials to prevent *Campylobacter* colonization in broiler chickens

D. Hermans, F. Haesebrouck, K. Van Deun, A. Martel, M. Verlinden, A. Garmyn, M. Heyndrickx, F. Pasmans

1Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Belgium
2Institute for Agricultural and Fisheries Research (ILVO), Unit Technology and Food Sciences, Belgium

Aims

Campylobacter jejuni is the most common cause of bacterial-mediated diarrheal disease worldwide. Because poultry products are a major source of *C. jejuni* infections in humans, efforts should be taken to develop strategies to decrease *Campylobacter* colonization of poultry during primary production. Medium-chain fatty acids (MCFA) and plant-derived antimicrobial compounds possess marked bactericidal activity toward *C. jejuni in vitro* and might therefore have potential as feed or drinking water additives to control *C. jejuni* colonization in broiler chickens. For this purpose, the *in vitro* and *in vivo* anti-*Campylobacter* properties of a selection of compounds were analyzed.

Experimental design and results

1. **MCFA and trans-cinnamaldehyde show marked anti-*C. jejuni* activity *in vitro***

Mueller-Hinton broth was supplemented with the test compounds. Solutions were adjusted to pH 6 and inoculated with *C. jejuni*. Determination of minimal inhibitory concentrations (MIC, Table 1) and bacterial counts over a 24-h period (Fig. 1) revealed marked anti-*C. jejuni* activity especially for trans-cinnamaldehyde and capric acid.

2. **MCFA and trans-cinnamaldehyde reduce neither *C. jejuni* transmission nor cecal *C. jejuni* colonization in broiler chicks**

To examine the effect of MCFA and trans-cinnamaldehyde on *C. jejuni* transmission the compounds were added to the feed or drinking water from day-of-hatch. At two weeks of age, 3 out of 10 birds per group were orally inoculated with *C. jejuni*. Five days after inoculation, cecal *C. jejuni* numbers were determined. Neither MCFA, nor trans-cinnamaldehyde (Fig. 2A) significantly (*P > 0.05*) reduced bacterial counts.

3. **MCFA and trans-cinnamaldehyde fail to target *C. jejuni* in the broiler chicken cecum**

A cecal loop model (Fig. 3A) allows direct comparison of *C. jejuni* numbers in both ceca of the same animal. In this study, MCFA and trans-cinnamaldehyde (Fig. 3B) reduced bacterial counts compared to the control ceca.

4. **MCFA supplementation increases *C. jejuni* colonization treshold of broiler chicks**

Day-old broiler chicks (*n = 60*) were randomly assigned to 6 groups and housed individually. Birds received control or MCFA-supplemented drinking water. After two weeks, chicks were orally inoculated with *C. jejuni* strain KC 40. After 24 h all birds were euthanized and their cecal colonization status was determined (Table 2).

To analyze the therapeutic effect of MCFA, all animals were orally inoculated with *C. jejuni* at two weeks of age. After inoculation, the feed compounds were added to the feed or drinking water for the last 25 h of the trial and cecal *C. jejuni* numbers were determined. Both MCFA-treated drinking water and in-feed (Fig. 2B) MCFA failed to significantly (**P > 0.05**) reduce cecal *C. jejuni* counts.

Conclusion

Despite the marked bactericidal effect of medium-chain fatty acids and trans-cinnamaldehyde in vitro, supplementing these compounds to the feed or drinking water did not prevent *C. jejuni* transmission nor reduce cecal *C. jejuni* colonization in broilers. These compounds are not capable to target *C. jejuni* in its cecal niche, probably by the protective effect of intestinal mucus. In contrast, preventive MCFA supplementation reduced the colonization treshold of broiler chicks, probably by exerting a bactericidal effect in the crop. Therefore, MCFA supplementation might be a valuable tool to prevent *Campylobacter* colonization of broiler chicken flocks.

References

Acknowledgements: This study was sponsored by grant 1509/F/08 CAMPOOS of the Belgian Federal Public Service for Health, Food Chain Safety and Environment. The author’s laboratory was further sponsored by bank A.I. International NV (Poperinge, Belgium).

E-mail: david.hermans@ugent.be