Real-time Epileptic Seizure Detection using Reservoir Computing

Pieter Buteneers, Benjamin Schrauwen, David Verstraeten and Dirk Stroobandt
Ghent University, ELIS-PARIS, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

Pieter.Buteneers@UGent.be

Reservoir Computing (RC)

Description:
• Training method for Recurrent Neural Networks (RNN’s)
• Random RNN – “reservoir”
• Random input connections
• Only single layer of linear output nodes is trained

Advantages:
• Recurrent network: random processing abilities
• Fast training: one linear neuron per output channel
• No convergence issues
• Works with practically any kind of neurons (analog, spiking, ...)

EEG Data

Intracranial data from Rats:
• GAERS
 • Genetic Altered Rats from Strasbourg
 • Absence seizures
 • 1.5 seizures/min
 • Last 8 to 50 s
 • In total: 15 hours 17 minutes
 • 10% for training

• Kindling Model
 • Brain stimulation to develop epilepsy
 • Tonic-clonic seizures
 • 2 seizures/h
 • 40s to 4 minutes
 • In total: 4 hours 23 minutes
 • 20 % for training

Seizure Detection Setup

EEG Features Selection Reservoir (200 Neurons) Output

Results

ROC-curves:
• Receiver Operator Characteristics
• Sensitivity versus Specificity
• Area Under Curve (AUC)

GAERS:
• AUC:
 • RC = 0.99
 • 2nd best, Faselow and Osorio-Frei = 0.96
• Detection delay:
 • RC = 0.3s
 • Osorio-Frei = 0.9s
 • Fanselow and others > 3s

Kindling:
• AUC:
 • RC = 0.99
 • 2nd best, White = 0.82
 • Osorio-Frei = 0.78
• Detection delay:
 • RC = 1.5s
 • Osorio-Frei = 1.8s
 • White and others > 2.5s

Detection delay:
• Delay before seizure is detected
• For threshold of sensitivity = specificity

Further Work

More rat data
• Results are on a small dataset
• Currently extending results

Human (scalp) EEG
• Human data has different patterns
• Scalp EEG contains artefacts and noise
• Preliminary results promising

More features
• Currently small set of features
• Adapt features from literature

Accelerometry, ECG and others
• Use features from different sources

Conclusion

• Epileptic seizure detection is possible with Reservoir Computing
• It renders good results on intracranial rat data
• It results in a small detection delay