Ghent University Academic Bibliography

Advanced

Uptake of ingested uranium after low 'acute intake'

Z Karpas, A Lorber, E Elish, R Kol, Y Roiz, R Marko, E Katorza, L Halicz, Jörgen Riondato and Frank Vanhaecke UGent, et al. (1998) HEALTH PHYSICS. 74(3). p.337-345
abstract
The uptake of uranium, ingested as a soluble compound, was studied by monitoring the uranium level in urine by inductively coupled plasma mass spectrometry and through measurement of an isotopic tracer. The high sensitivity of this method allows measurement of uranium levels in urine samples from each voiding, therefore more detailed biokinetic studies are possible. To simulate low ((acute intake," five volunteers with "normal" levels (5-15 ng L-1) of uranium in urine ingested a grapefruit drink spiked with 100 mu g of uranium (U-235/U-238 = 0.245%) as uranyl nitrate, and the level of uranium in their urine after ingestion was monitored. Two techniques were applied to estimate the extent of exposure: a) uranium levels above the normal level for each volunteer; and b) the deviation from natural isotopic ratio. Results were normalized relative to the creatinine concentration, which served as an indicator of urine dilution, to reduce effects due to diurnal changes. The results clearly indicate that currently accepted bio-kinetic models overestimate the time between ingestion of dissolved uranium and its excretion in urine, the maximum of which was found to be around 6-10 h. The uptake fraction was in agreement with recent studies, i.e., 0.1-0.5% of the ingested uranium for four of the subjects but above 1.5% for the fifth, and well below the 5% reported in International Commission on Radiation Protection Publication 54. Finally, partial results from the isotope dilution study indicate that uranium absorbed through the intestine interchanges with uranium retained in body organs. The time scale of this process is quite short, and the acute exposure led to a minimum in the isotopic ratio within hours, while recovery back to natural abundance due to low chronic exposure takes several days.
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
keyword
ingestion, uranium, excretion, urinary, biokinetics, PLASMA-MASS SPECTROMETRY, GASTROINTESTINAL ABSORPTION, RESOLUTION, URINE, EXCRETION, HUMANS, WATER
journal title
HEALTH PHYSICS
Health Phys.
volume
74
issue
3
pages
337 - 345
Web of Science type
Article
Web of Science id
000072053700007
ISSN
0017-9078
DOI
10.1097/00004032-199803000-00006
language
English
UGent publication?
yes
classification
A1
id
176695
handle
http://hdl.handle.net/1854/LU-176695
date created
2004-01-14 13:40:00
date last changed
2012-11-21 10:44:41
@article{176695,
  abstract     = {The uptake of uranium, ingested as a soluble compound, was studied by monitoring the uranium level in urine by inductively coupled plasma mass spectrometry and through measurement of an isotopic tracer. The high sensitivity of this method allows measurement of uranium levels in urine samples from each voiding, therefore more detailed biokinetic studies are possible. To simulate low ((acute intake,{\textacutedbl} five volunteers with {\textacutedbl}normal{\textacutedbl} levels (5-15 ng L-1) of uranium in urine ingested a grapefruit drink spiked with 100 mu g of uranium (U-235/U-238 = 0.245\%) as uranyl nitrate, and the level of uranium in their urine after ingestion was monitored. Two techniques were applied to estimate the extent of exposure: a) uranium levels above the normal level for each volunteer; and b) the deviation from natural isotopic ratio. Results were normalized relative to the creatinine concentration, which served as an indicator of urine dilution, to reduce effects due to diurnal changes. The results clearly indicate that currently accepted bio-kinetic models overestimate the time between ingestion of dissolved uranium and its excretion in urine, the maximum of which was found to be around 6-10 h. The uptake fraction was in agreement with recent studies, i.e., 0.1-0.5\% of the ingested uranium for four of the subjects but above 1.5\% for the fifth, and well below the 5\% reported in International Commission on Radiation Protection Publication 54. Finally, partial results from the isotope dilution study indicate that uranium absorbed through the intestine interchanges with uranium retained in body organs. The time scale of this process is quite short, and the acute exposure led to a minimum in the isotopic ratio within hours, while recovery back to natural abundance due to low chronic exposure takes several days.},
  author       = {Karpas, Z and Lorber, A and Elish, E and Kol, R and Roiz, Y and Marko, R and Katorza, E and Halicz, L and Riondato, J{\"o}rgen and Vanhaecke, Frank and Moens, Luc},
  issn         = {0017-9078},
  journal      = {HEALTH PHYSICS},
  keyword      = {ingestion,uranium,excretion,urinary,biokinetics,PLASMA-MASS SPECTROMETRY,GASTROINTESTINAL ABSORPTION,RESOLUTION,URINE,EXCRETION,HUMANS,WATER},
  language     = {eng},
  number       = {3},
  pages        = {337--345},
  title        = {Uptake of ingested uranium after low 'acute intake'},
  url          = {http://dx.doi.org/10.1097/00004032-199803000-00006},
  volume       = {74},
  year         = {1998},
}

Chicago
Karpas, Z, A Lorber, E Elish, R Kol, Y Roiz, R Marko, E Katorza, et al. 1998. “Uptake of Ingested Uranium After Low ‘Acute Intake’.” Health Physics 74 (3): 337–345.
APA
Karpas, Z., Lorber, A., Elish, E., Kol, R., Roiz, Y., Marko, R., Katorza, E., et al. (1998). Uptake of ingested uranium after low “acute intake.” HEALTH PHYSICS, 74(3), 337–345.
Vancouver
1.
Karpas Z, Lorber A, Elish E, Kol R, Roiz Y, Marko R, et al. Uptake of ingested uranium after low “acute intake.”HEALTH PHYSICS. 1998;74(3):337–45.
MLA
Karpas, Z, A Lorber, E Elish, et al. “Uptake of Ingested Uranium After Low ‘Acute Intake’.” HEALTH PHYSICS 74.3 (1998): 337–345. Print.