Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation

Winnie Dejonghe a, Johan Goris b, Ann Dierickx a, Veerle De Dobbeleer a, Katrien Crul a, Paul De Vos b, Willy Verstraete a, Eva M. Top a,*

a Laboratory of Microbial Ecology and Technology (LabMet), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
b Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium

Received 28 January 2002; received in revised form 1 April 2002; accepted 9 April 2002

Abstract

Attempts were made to isolate 3-chloroaniline (3-CA) and 3,4-dichloroaniline (3,4-DCA) degrading bacteria from the A- and B-horizon of three different soils. A variety of 3-CA degrading bacteria was obtained from all soils, whereas 3,4-DCA degrading strains were only isolated from one soil. Amongst the 3-CA and 3,4-DCA degraders, two belong to the \(\gamma \)-Proteobacteria and seven to the \(\beta \)-Proteobacteria. Of the latter group, five are members of the family of the Comamonadaceae. Interestingly, all isolates contained an IncP-1 plasmid. These plasmids could be divided into four major groups based on restriction digest patterns. While all plasmids that were detected in the isolates, except one, encode total degradation of 3-CA, no indigenous plasmid that codes for total degradation of 3,4-DCA was found. This is the first study that reports the presence of diverse transferable plasmids that encode mineralisation of 3-CA in different 3-CA degrading species.

© 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Keywords: Chloroaniline; Degradation; Plasmid; Soil enrichment culture; Xenobiotic

1. Introduction

Aniline and its derivatives have been used for a long time in the production of paints, pesticides, plastics, pharmaceuticals and other materials [1] and they mainly accumulate in the environment as a result of the microbial transformation of herbicides such as derivatives of phenylurea, acylanilides, and phenylcarbamates [2]. Since they are known to be toxic and carcinogenic to living organisms [3], many researchers have paid attention to their fate in the environment. Anilines and chloroanilines tend to adsorb to soil particles [4], undergo various spontaneous chemical transformations [5] and turn into non-extractable hemic acid-like compounds [6] or persistent xenobiotics such as azobenzenes and triazenes [7]. In spite of these physical and chemical processes, which render (chloro)anilines unavailable for microbial degradation, microorganisms have been shown to metabolise these molecules under monoxenic culture conditions (e.g. [8–14]). Resistance to biodegradation and the extent of the toxicity of the (chloro)anilines for microorganisms are largely dependent on the number and position of the chlorine atoms on the aromatic ring. This becomes evident upon examination of studies of microorganisms that can utilise anilines. There are many more reports of bacteria that can degrade aniline (e.g. [8,14–20]) than studies describing chloroaniline (2-CA, 3-CA, 4-CA, 3,4-DCA) metabolising strains. For one of the most stable and toxic chloroanilines, i.e. 3,4-dichloroaniline [12], only four bacteria have been isolated that can use this compound as the sole source of nitrogen and carbon [12–14]. In contrast to the situation...
for the aniline degradation pathway [20], no specific genes for the transformation of chloroanilines have been described. The presence of plasmids in chloroaniline degrading bacteria has only been investigated in five different strains belonging to the family Comamonadaceae in the recent study of Boon et al. [8]. Although all strains contained a plasmid, only one plasmid encoded the oxidative deamination of both aniline and 3-CA, but none of the plasmids conferred total degradation of 3-CA.

Results in the current study indicate that 3-CA and 3,4-DCA, spiked to the A- (0–30 cm depth) and B-horizon (30–60 cm depth) of various soils, rapidly became undetectable after methanol extraction followed by high performance liquid chromatography (HPLC) analysis. Although this may in part be due to the physical and chemical processes mentioned above, microbial degradation could also be one of the causes. To test this hypothesis we tried to isolate 3-CA or 3,4-DCA degrading bacterial strains from these contaminated soils. Since little is known so far about the phylogenetic and metabolic diversity of chloroaniline degrading bacteria, their catabolic genes, and the potential role of mobile genetic elements (MGEs) in the horizontal exchange of these genes, comparison of the isolates obtained in this study with those previously described will extend our knowledge in this area. In parallel, we also examined if in situ transfer of known and previously described 3-CA and 3,4-DCA degradative plasmids from an introduced Ralstonia eutropha donor strain to the indigenous soil bacteria could be used to extend the catabolic potential of these soils.

2. Materials and methods

2.1. Chemicals

3,4-Dichloroaniline (3,4-DCA) (Sigma-Aldrich Chemie, Steinheim, Germany) was used as brown crystals in agar medium while it was added as a 25 g l⁻¹ stock solution in methanol to liquid media and soils. 3-Chloroaniline (3-CA; Fluka AG Chemische Fabrik, Buchs, Switzerland) was always added as a viscous colourless fluid.

2.2. Media

The mineral medium MMN (mineral medium without any source of nitrogen and carbon) [21,22] contained 1419.6 mg Na₂HPO₄, 1360.9 mg KH₂PO₄, 98.5 mg MgSO₄, 5.88 mg CaCl₂·2H₂O, 1.16 mg H₂BO₄, 2.78 mg FeSO₄·7H₂O, 1.15 mg ZnSO₄·7H₂O, 1.69 mg MnSO₄·H₂O, 0.38 mg CuSO₄·5H₂O, 0.24 mg CoCl₂·6H₂O, 0.10 mg MoO₃, and 3.2 mg EDTA in 1 l of distilled water. Luria Bertani (LB) medium [23] containing 10 g of Bacto Peptone (Difco, Detroit, MI, USA), 5 g of Bacto yeast extract (Difco), and 5 g of NaCl in 1 l demineralized water was used as a rich medium. For 1/10 LB medium all concentrations of the LB medium were divided by 10, except the concentration of NaCl was maintained at 5 g l⁻¹. These media were solidified with 15 g l⁻¹ of high purity agar (Agar-Agar hochrein, Merck, Germany) for plate growth.

2.3. Bacterial strains

Bacterial strains and their relevant characteristics are presented in Table 1. All strains were cultivated at 28°C on LB agar, except the R. eutropha strains JMP228 containing the 3-CA degradative plasmid pC1-3 or the 3,4-DCA degradative plasmid pWDL7, which were maintained on MMN mineral medium with 200 mg l⁻¹ 3-CA or 50 mg l⁻¹ 3,4-DCA, and 2 g l⁻¹ sodium pyruvate. The plasmid pC1-3 encodes partial degradation of 3-CA and was transferred in plate matings from Delftia acidovorans CA28 to R. eutropha JMP228gfp [8]. Plasmid pWDL7 encodes total degradation of 3-CA and 3,4-DCA and was transferred from Comamonas testosteroni WDL7 to R. eutropha JMP228n (W. Dejonghe, W. Verstraete and E.M. Top, unpublished results). When appropriate (see Table 1), antibiotics were added to the media in the following concentrations: 100 mg l⁻¹ nalidixic acid, 100 mg l⁻¹ rifampicin, and 50 mg l⁻¹ kanamycin.

2.4. Soils

Soil samples were collected from three Belgian sites,

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristic(s)*</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. eutropha JMP228n</td>
<td>Nfr, Rif</td>
<td>[32]</td>
</tr>
<tr>
<td>R. eutropha JMP228n(pWDL7)</td>
<td>Nfr, Rif, 3,4-DCA NC, 3-CA NC</td>
<td>W. Dejonghe, W. Verstraete, and E.M. Top, unpublished results</td>
</tr>
<tr>
<td>R. eutropha JMP228gfp</td>
<td>Rif, Km, GFP</td>
<td>[22]</td>
</tr>
<tr>
<td>R. eutropha JMP228gfp (pC1-3)</td>
<td>Rif', Km', GFP, 3-CA N</td>
<td>[8]</td>
</tr>
<tr>
<td>E. coli CM404</td>
<td>Km', pRK2013</td>
<td>[46]</td>
</tr>
<tr>
<td>pWDL7</td>
<td>3,4-DCA NC, 3-CA NC</td>
<td>W. Dejonghe, W. Verstraete, and E.M. Top, unpublished results</td>
</tr>
<tr>
<td>pC1-3</td>
<td>3-CA N</td>
<td>[8]</td>
</tr>
</tbody>
</table>

*Rifr, Nfr, and Km', resistance to rifampicin, nalidixic acid, and kanamycin, respectively; GFP, green fluorescent protein; 3-CA, 3,4-DCA, 3-chloroaniline and 3,4-dichloroaniline, respectively. ^Use of the compound as sole carbon source. NUse of the compound as sole nitrogen source in the presence of the C source pyruvate.
Ternat, Pittem, and Melle and used immediately in the experiments without storage. All three soils originate from agricultural plots that had never been treated with 3-CA or 3,4-DCA, nor with any pesticide that was transformed into these compounds during degradation. Experiments were performed with soils sampled from both the A- (0–30 cm depth) and B-horizon (30–60 cm depth). The characteristics of the soils are presented in Table 2.

One hundred grams of fresh or sterile soil (sterilised by autoclaving twice for 20 min at 120°C and 1 bar, with a 1 day interval between treatments) was put into 500 ml glass microcosms. The soil was spiked with 50 mg kg

\[\text{soil} \] 3-CA or 3,4-DCA and inoculated with either 1 ml of one of the \(R. \text{eutropha} \) JMP228 inoculants (Table 1) suspended in MMN medium, or with 1 ml MMN medium. Bacterial inocula were grown overnight in 100 ml LB broth with or without 100 mg l

\[\text{l} \] 3-CA, and the appropriate antibiotics. After washing, cells were resuspended in MMN medium and inoculated at a concentration of ca. 10^6 CFU g

\[\text{soil} \] soil, as determined by plate counts of the liquid cultures on LB agar. After all amendments, the soil was mixed and the moisture content adjusted to 75% of the water holding capacity. Soil microcosms were placed at room temperature in the dark. All soil treatments were performed in duplicate and a summary of the different treatments is presented in Table 3.

2.5. Enrichment cultures and isolation of 3-CA and 3,4-DCA degrading strains

Soils that had been spiked with 3-CA were enriched for 3-CA degrading microorganisms, while 3,4-DCA treated soils were enriched for 3,4-DCA degraders. One enrichment culture was set up for each treated soil and consisted of 100 ml MMN medium to which 100 mg l

\[\text{l} \] 3-CA or 25 mg l

\[\text{l} \] 3,4-DCA together with 5 g of soil was added. The 250 ml glass Erlenmeyer flasks were shaken at 140 rpm and 28°C. When the substrates were no longer detected by HPLC analysis, an equal amount of product was added again to the enrichment flasks. As soon as this second dosage of chloroanilines was removed, a 1% inoculum was transferred to 100 ml fresh MMN medium that contained 200 mg l

\[\text{l} \] 3-CA or 50 mg l

\[\text{l} \] 3,4-DCA. After five consecutive 1% transfers to fresh medium, the final enrich-

Table 2

<table>
<thead>
<tr>
<th>Origin</th>
<th>Soil type</th>
<th>Organic matter (%)</th>
<th>Water holding capacity (%)</th>
<th>pH (KCl)</th>
<th>Heterotrophic plate countsa (CFU (g fresh soil)^{−1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ternat A-horizon heavy sand loam (22.8% sand, 65.1% loam, 12.1% clay)</td>
<td>3.3</td>
<td>24</td>
<td>6.6</td>
<td>1.7(\times)10^3</td>
<td></td>
</tr>
<tr>
<td>Ternat B-horizon heavy sand loam (34.3% sand, 53.8% loam, 11.9% clay)</td>
<td>3.3</td>
<td>24</td>
<td>6.3</td>
<td>5.0(\times)10^2</td>
<td></td>
</tr>
<tr>
<td>Pittem A-horizon sandy loam (75.9% sand, 16.8% loam, 7.3% clay)</td>
<td>1.4</td>
<td>16</td>
<td>5.6</td>
<td>3.3(\times)10^5</td>
<td></td>
</tr>
<tr>
<td>Pittem B-horizon sandy loam (83.2% sand, 9.2% loam, 7.6% clay)</td>
<td>0.4</td>
<td>12</td>
<td>5.3</td>
<td>2.0(\times)10^7</td>
<td></td>
</tr>
<tr>
<td>Melle A-horizon sandy loam (40.7% sand, 47.6% loam, 11.7% clay)</td>
<td>1.8</td>
<td>22</td>
<td>6.4</td>
<td>3.2(\times)10^7</td>
<td></td>
</tr>
<tr>
<td>Melle B-horizon sandy (84.8% sand, 10.3% loam, 4.9% clay)</td>
<td>0.6</td>
<td>20</td>
<td>6.0</td>
<td>2.0(\times)10^6</td>
<td></td>
</tr>
</tbody>
</table>

*Heterotrophic plate counts were determined on R2A agar plates (Difco, Detroit, MI, USA).

Table 3

<table>
<thead>
<tr>
<th>Soil</th>
<th>Treatmenta</th>
<th>Abbreviation</th>
<th>Total isolatesb</th>
<th>Total degradersb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ternat A-horizon</td>
<td>3-CA</td>
<td>Ternat-A-3CA</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Ternat A-horizon</td>
<td>3-CA+R. eutropha JMP228gfp</td>
<td>Ternat-A-3CA-JMP</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Ternat A-horizon</td>
<td>3-CA+R. eutropha JMP228gfp (pC1-3)</td>
<td>Ternat-A-3CA-JMP(pC1-3)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ternat B-horizon</td>
<td>3CA</td>
<td>Ternat-B-3CA</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Ternat B-horizon</td>
<td>3-CA+R. eutropha JMP228gfp</td>
<td>Ternat-B-3CA-JMP</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Ternat B-horizon</td>
<td>3-CA+R. eutropha JMP228gfp (pCI-3)</td>
<td>Ternat-B-3CA-JMP(pCI-3)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ternat A-horizon</td>
<td>3,4-DCA</td>
<td>Ternat-A-34DCA</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Ternat A-horizon</td>
<td>3,4-DCA+R. eutropha JMP228n</td>
<td>Ternat-A-34DCA-JMP</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Ternat A-horizon</td>
<td>3,4-DCA+R. eutropha JMP228n(pWDL7)</td>
<td>Ternat-A-34DCA-JMP(pWDL7)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ternat B-horizon</td>
<td>3,4-DCA</td>
<td>Ternat-B-34DCA</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Ternat B-horizon</td>
<td>3,4-DCA+R. eutropha JMP228n</td>
<td>Ternat-B-34DCA-JMP</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ternat B-horizon</td>
<td>3,4-DCA+R. eutropha JMP228n(pWDL7)</td>
<td>Ternat-B-34DCA-JMP(pWDL7)</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Melle A-horizon</td>
<td>3-CA</td>
<td>Melle-A-3CA</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Melle B-horizon</td>
<td>3-CA</td>
<td>Melle-B-3CA</td>
<td>no enrichment culture</td>
<td>0</td>
</tr>
<tr>
<td>Pittem A-horizon</td>
<td>3-CA</td>
<td>Pittem-A-3CA</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Pittem B-horizon</td>
<td>3-CA</td>
<td>Pittem-B-3CA</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

*Abbreviations for carbon sources given in Table 1, all carbon sources added at 50 mg kg

\[\text{kg} \] ^{−1}.

*Numbers of isolates or degraders obtained.

FEMSEC 1410 5-11-02
ment cultures were plated on MMN agar with 300 mg l⁻¹ 3-CA (3-CA enriched cultures) or on MMN agar with 50 mg l⁻¹ 3,4-DCA (3,4-DCA enriched cultures). All plates contained 200 mg l⁻¹ cycloheximide to inhibit fungal growth and were incubated for 14 days at 28°C. For each treatment, colonies with different morphologies were picked from the plates and streaked on the same medium as well as on to LB agar. The latter was used to confirm the purity of the strains and to better distinguish between different colony morphologies. Finally, pure colonies from the MMN plates were inoculated in 5 ml 1/10 LB broth with 100 mg l⁻¹ 3-CA or 25 mg l⁻¹ 3,4-DCA. After over-night growth, bacterial cultures were frozen at −80°C in a 20% (v/v) glycerol solution and in parallel 50 µl of these cultures were transferred to 5 ml MMN medium with 50 mg l⁻¹ 3-CA or 25 mg l⁻¹ 3,4-DCA. Next to these two media, the bacteria obtained from the Ternat soil were also transferred to MMN medium with 50 mg l⁻¹ 3-CA and 1 g l⁻¹ sodium pyruvate to select for bacteria that utilise 3-CA as a sole source of nitrogen. After shaking for 1 week at 140 rpm and 28°C, the remaining amount of 3-CA or 3,4-DCA was determined by HPLC analysis and 50 µl culture of the actively degrading cultures was again transferred to fresh MMN medium with 3-CA or 3,4-DCA. Bacterial isolates were scored positive for the degrada-tion of 3-CA and 3,4-DCA when after 5 days growth was visually observed by an increase in the turbidity of the medium. 3-CA, 3,4-DCA or other ring intermediates were no longer detected by HPLC analysis and stoichiometric amounts of chloride were released.

2.6. Identification of isolates

The isolates were characterised by repetitive extragenic palindromic polymerase chain reaction (REP-PCR) as described by Rademaker and de Bruijn [24] and representatives were identified by partial (± 460 bp) sequencing of the 16S rRNA genes, using the primer 16S/519 (=PD) as described previously [25]. The FASTA programme [26] was applied to find the closest related sequences from the EMBL database.

2.7. Denaturing gradient gel electrophoresis

DNA templates were prepared from the sixth and final enrichment culture used to inoculate the agar plates, from colonies scraped from the agar medium after plating this final enrichment culture, and from purified isolates. Cells in 100 ml of the sixth and final enrichment culture were concentrated by centrifugation and the DNA was subsequently obtained through a previously described DNA extraction protocol [22]. To harvest the mixture of colonies from the MMN agar plates, the plates were scraped with a loop, washed with 2 ml of sterile water, and the bacterial suspension obtained was boiled for 10 min to release the DNA. The isolates were grown overnight in 5 ml 1/10 LB with 100 mg l⁻¹ 3-CA. To prepare a DNA template of these strains, 200 µl of culture was boiled for 10 min. In all cases 1 µl of the template was used for PCR with the bacteria-specific 16S rRNA forward primer P63f and the reverse primer P518r, based on a universally con-served region, as previously described [27–29]. The PCR product contains a GC-clamp of 40 bases, added to the forward primer and has a total length of 531 bp (based on the reference Escherichia coli K12). PCR products were subjected to denaturing gradient gel electrophoresis (DGGE), based on the protocol described by Muyzer et al. [30] and El Fantroussi et al. [27]. In brief, PCR samples were run for 16 h at 45 V on a 6% (wt/vol) polyacrylamide gel with a denaturing gradient ranging from 45 to 60% (where 100% denaturant contains 7 M urea and 40% form-amide). After electrophoresis the gels were stained with SYBR GreenI nucleic acid gel stain (1:10000 dilution; FMC BioProducts, Rockland, ME, USA) and photographed.

2.8. Plasmid characterisation

A modified Kado and Liu plasmid extraction [8,31,32] was performed on pellets obtained after overnight growth of bacteria in 5 ml 1/10 LB with 100 mg l⁻¹ 3-CA. EcoRI–PstI, HindIII– BamHI, and EcoRV–BglII restriction endonuclease digestions of plasmid DNA were performed according to the instructions of the enzyme supplier (Hoffmann-La Roche, Basel, Switzerland). Extracted and restricted plasmids were run on a 1% agarose gel, blotted onto Hybond-N nylon membranes (Amersham International, Little Chalfont, Buckinghamshire, UK) and used in Southern hybridisation performed at high stringency as described by Top et al. [32].

The incompatibility group of the plasmids was deter-mined by PCR with the IncP primers trfA1 (specific for IncP-1α plasmids) and trfA2 (amplifies IncP-1α and IncP-1β plasmids) as described by Götz et al. [33] and as a template 1 µl of a 10 min boiled bacterial culture grown in 1/10 LB with 100 mg l⁻¹ 3-CA. After verifying the length of the PCR product on a 1% agarose gel, PCR products were sequenced by IIT Biotech (Bielefeld, Germany). Sequences with a length between 180 and 215 bp were aligned to the National Centre for Biotechnology information database by using the BLAST, version 2.0, search programme [34]. The trfA2 sequences have been deposited in the GenBank database under accession num-bers AF467929–AF467940. The trfA2 probe for the IncP-1β group was prepared by using the PCR digoxigenin (DIG) labelling mix (Hoffmann-La Roche) according to the instructions of the supplier and using the IncP-1β plasmid R751 [35] as template and the trfA2 primers mentioned above.

Conjugation between 3-CA or 3,4-DCA degrading strains (donor), R. eutropha JMP228gp (recipient) and E. coli CM404 (helper) was performed on 1/10 LB agar
<table>
<thead>
<tr>
<th>Isolate</th>
<th>Origina</th>
<th>Acc. nob</th>
<th>% Similarity of 16S rRNA gene fragments with nearest type strain (acc. no.)c</th>
<th>Degradation potential straind</th>
<th>Plasmid encoded degradation of substratesd</th>
<th>Plasmid name</th>
<th>Plasmid groupe</th>
<th>% Sequence similarity of trfA2 with AF073901</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas sp. TA12</td>
<td>Ternat-A-3DC-JMP</td>
<td>AF461044</td>
<td>99.5 (AB021381)</td>
<td>3-CA^NC</td>
<td>–</td>
<td>pTA12</td>
<td>I</td>
<td>91</td>
</tr>
<tr>
<td>Pseudomonas sp. TA8</td>
<td>Ternat-A-3DC-JMP</td>
<td>AF457652</td>
<td>99.8 (AF064461)</td>
<td>3-CA^NC</td>
<td>3-CA^NC</td>
<td>pTA8</td>
<td>IV</td>
<td>100</td>
</tr>
<tr>
<td>Acidovorax sp. TA2f</td>
<td>Ternat-A-3CA</td>
<td>AF457651</td>
<td>96.3 (Y18616)</td>
<td>3-CA^NC, 3,4-DCA^NC</td>
<td>3-CA^NC</td>
<td>pTA2</td>
<td>III</td>
<td>100</td>
</tr>
<tr>
<td>Acidovorax sp. TA35f</td>
<td>Ternat-A-3CA</td>
<td>AF457653</td>
<td>96.3 (Y18616)</td>
<td>3-CA^NC, 3,4-DCA^NC</td>
<td>3-CA^NC</td>
<td>pTA35</td>
<td>III</td>
<td>100</td>
</tr>
<tr>
<td>C. testosteroni TB1f</td>
<td>Ternat-B-3DC-JMP(pWDL7)</td>
<td>AF457654</td>
<td>99.7 (M11224)</td>
<td>3-CA^NC, 3,4-DCA^NC</td>
<td>3-CA^NC, 3,4-DCA^NC</td>
<td>pTB1</td>
<td>II</td>
<td>100</td>
</tr>
<tr>
<td>C. testosteroni TB18#</td>
<td>Ternat-B-3DC-JMP(pWDL7)</td>
<td>ND</td>
<td>ND</td>
<td>3-CA^NC, 3,4-DCA^NC</td>
<td>3-CA^NC, 3,4-DCA^NC</td>
<td>pTB18</td>
<td>II</td>
<td>100</td>
</tr>
<tr>
<td>C. testosteroni TB30</td>
<td>Ternat-B-3CA</td>
<td>AF457655</td>
<td>99.7 (M11224)</td>
<td>3-CA^NC, 3,4-DCA^NC</td>
<td>3-CA^NC</td>
<td>pTB30</td>
<td>III</td>
<td>99</td>
</tr>
<tr>
<td>Delftia sp. MA22</td>
<td>Melle-A-3CA</td>
<td>AF457648</td>
<td>97.4 (AF078774)</td>
<td>3-CA^NC</td>
<td>3-CA^NC</td>
<td>pMA22</td>
<td>IV</td>
<td>99</td>
</tr>
<tr>
<td>Delftia sp. MA34b</td>
<td>Melle-A-3CA</td>
<td>AF457649</td>
<td>97.3 (AF078774)</td>
<td>3-CA^NC</td>
<td>3-CA^NC</td>
<td>pMA34</td>
<td>IV</td>
<td>100</td>
</tr>
<tr>
<td>Delftia sp. MA14b</td>
<td>Melle-A-3CA</td>
<td>AF457647</td>
<td>97.3 (AF078774)</td>
<td>3-CA^NC</td>
<td>3-CA^NC</td>
<td>pMA14</td>
<td>IV</td>
<td>99</td>
</tr>
<tr>
<td>Achromobacter sp. PA4f</td>
<td>Pittem-A-3CA</td>
<td>ND</td>
<td>ND</td>
<td>3-CA^NC</td>
<td>3-CA^NC</td>
<td>pPA4</td>
<td>IV</td>
<td>100</td>
</tr>
<tr>
<td>Achromobacter sp. PB31</td>
<td>Pittem-B-3CA</td>
<td>AF457650</td>
<td>97.7 (M22509)</td>
<td>3-CA^NC</td>
<td>3-CA^NC</td>
<td>pPB31</td>
<td>IV</td>
<td>100</td>
</tr>
</tbody>
</table>

aA and B, respectively A- and B-horizon; JMP, *R. eutropha* JMP228n; JMP(pWDL7), *R. eutropha* JMP228n(pWDL7).
bAccession number in the EMBL data library of the partial sequence of the 16S rRNA gene.
cThe sequence similarity and the accession number of the closest matching type strain in the EMBL database was given. ND, no partial 16S rDNA sequence analysis was performed for these strains.
d3-CA, 3-chloroaniline; 3,4-DCA, 3,4-dichloroaniline. NC, Use of the compound as sole nitrogen source and sole carbon source, respectively.
ePlasmid groups were determined based on EcoRI-PstI, HincIII-BamHI, and EcoRV-BglII restriction digest patterns.
f,g,h,iIsolates with the same character are presumed to be identical based on very similar REP-PCR and plasmid patterns, 16S rRNA sequences, and plasmid encoded phenotypes.
3. Results and discussion

3.1. Removal of 3-CA and 3,4-DCA from soils originating from different sites in Belgium

Within less than 2 weeks after the A- and B-horizon soils from three different sites (Ternat, Melle, Pittem, Table 3) had been spiked with 50 mg kg$^{-1}$ 3-CA or 3,4-DCA, these compounds became undetectable by the HPLC method used (data not shown). One exception was the B-horizon from Pittem soil, where 3-CA was still detected at 5 mg kg$^{-1}$ after 13 days, but had dropped below the detection limit by day 19. Additional microcosms with Ternat soils that were co-inoculated with *R. eutropha* JMP228 strains that contained either a 3-CA or a 3,4-DCA degradative plasmid (Tables 1 and 3), demonstrated that this inoculation did not accelerate the removal of these two compounds (data not shown). Other authors [7,38,39] have also observed this fast disappearance of chloroanilines from soil. Three possible reasons have been proposed: physical sorption (comprising surface adsorption, absorption, and migration in micro- and nanopores), chemical binding of the compounds to the soil [7,40], and degradation by indigenous soil bacteria [41].

To distinguish the contribution of biotic and abiotic processes to the disappearance of 3,4-DCA, parallel experiments with sterilised Ternat soil were performed. The concentrations of 3,4-DCA stabilised respectively in the A- and B-horizon at 15 and 31 mg kg$^{-1}$ by day 13. This suggests that in 13 days ca. 70 and 40% of 3,4-DCA had either been transformed or become unavailable for extraction by abiotic factors in the A- and B-horizon, respectively. Since this same compound was however completely undetectable in the same non-autoclaved soil after that same incubation period, microbial processes such as bio-degradation must have been in part responsible for the fast decline in detectable chloroaniline concentrations in the non-sterilised soils. These soils may thus contain single bacterial strains or microbial consortia that are able to degrade 3-CA and 3,4-DCA.

3.2. Isolation of 3-CA and 3,4-DCA degrading strains from the different soils

Enrichment cultures were set up for all 16 differently treated soils (Table 3) once the chloroanilines were no longer detected (day 14 for Ternat and Melle soil, and day 19 for Pittem soil). From all soils, except for the B-horizon of Melle, 3-CA enrichment cultures were obtained. 3,4-DCA degrading enrichment cultures were only set up for the Ternat soils – the only ones exposed to 3,4-DCA – and resulted in 3,4-DCA degradation. After plating the sixth and final 3-CA and 3,4-DCA enrichment cultures on MMN agar with the respective chloroaniline substrates as sole carbon (C) and nitrogen (N) source, all colonies with unique morphologies were tested for the
ability to degrade 3-CA and 3,4-DCA, present as the sole source of C and N in liquid MMN medium. Out of a total of 90 isolates, only 12 could use 3-CA as sole source of energy, C and N, and were obtained from all soils except the Melle B-horizon. Five of these 12 isolates could also degrade 3,4-DCA, and were all isolated from the Ternat soils (for a detailed distribution of isolates over the different treated soils, see Tables 3 and 4). The growth of the strains in liquid mineral medium with the chloroanilines as sole C and N source (as monitored by visual observation of the turbidity of the medium), the absence of accumulated ring intermediates during degradation as determined by HPLC analysis, and the release of stoichiometric amounts of chloride ions (data not shown) strongly suggest that the isolated strains are able to mineralise the molecules.

To verify whether the most dominant bacteria in the liquid enrichment cultures and on the MMN plates on which they were plated, had been isolated after purification of individual colonies, DGGE of 16S rRNA genes was applied on those different cultures. Most of the bacteria present in the enrichment cultures were found to be growing on the agar plates, and most of these were later isolated as single colonies (Fig. 1, data not shown). Since only a small fraction of the members of the enrichment cultures were found to be able to effectively degrade 3-CA and/or 3,4-DCA (only those represented in lanes 7 and 8 in Fig. 1), several cells were apparently able to grow on the MMN plates despite their inability to use the only added C and N source, i.e. 3-CA or 3,4-DCA. This can be explained by growth of these bacteria on impurities present in the agar plates, or by co-metabolism of the two chloroanilines, using impurities as carbon source. Degradation tests with isolates from the differently treated A- and B-horizon soils from the Ternat site (Table 3) indeed demonstrated that certain isolates (15 out of 62) could only degrade 3-CA in MMN medium when another C source, i.e. sodium pyruvate, was present, and thus 3-CA was only used as sole N source, probably by deamination of the aniline ring. Since we were particularly interested in isolates that can use 3-CA and 3,4-DCA as the sole C and N source, these 3-CA deaminating strains were not further examined.

Although some chloroaniline degrading strains were obtained from B-horizon soils (four isolates), most were found in the A-horizon (eight isolates). Most of the chloroaniline degrading strains that have been reported previously, have also been isolated from the top soil (A-horizon), except for one aniline degrading Pseudomonas strain that was isolated from a subsurface sediment (24 m below the surface) [18]. The higher organic matter content in an A-horizon, possibly including minor concentrations of natural chlorinated organic compounds [42], and higher probability of contact with anthropogenic chlorinated compounds may explain these findings. In a previous study, we also observed that the herbicide 2,4-dichlorophenoxyacetic acid was not at all degraded in B-horizon soil over a period of 3 weeks, while it disappeared within 2 weeks in the A-horizon of that same soil [43].

Five of our 12 isolates were able to degrade 3,4-DCA, while all of them degraded 3-CA. Until now, only four 3,4-DCA degrading bacteria have been described in literature [12–14]. The difficulty of growing bacteria on 3,4-DCA seems to be due to its toxicity [12]. Therefore, lower concentrations of 3,4-DCA compared to the other chlorinated anilines have to be used in enrichment cultures and degradation tests. Most bacteria can only degrade concentrations of 3,4-DCA up to 50 mg l\(^{-1}\), although Paracoccus denitrificans 3CA can degrade concentrations of 3,4-DCA up to 150 mg l\(^{-1}\). In comparison, the same strain can degrade concentrations of 3- and 4-CA up to 700 mg l\(^{-1}\) [12].

3.3. Identification of 3-CA and 3,4-DCA degrading strains

All strains that scored positive for the degradation of 3-CA or 3,4-DCA were identified via REP-PCR fingerprinting and partial 16S rDNA sequence analysis. A list of the 12 chloroaniline degrading bacteria with their origin of isolation and 3-CA and 3,4-DCA degradation potential...
Fig. 2 clearly shows that two isolates from Melle A-horizon (MA34 and MA14, lanes 3 and 4, respectively), yield an identical REP-PCR pattern, while the third isolate (MA22, lane 2) was clearly different. Nevertheless, all three isolates from Melle A-horizon showed nearly identical partial 16S rDNA sequences and were identified as *Delftia* sp., as the sequence similarity to the type species was >97%. The REP-PCR results also showed that the three isolates from Ternat B-horizon soil (TB18, TB1 and TB30, corresponding to lanes 7–9, respectively) were genotypically very similar. The latter three isolates were identified as *C. testosteroni* as they displayed >99% 16S rDNA sequence similarity to the type strain. Furthermore, the two isolates from Ternat A-horizon soil amended with 3-CA (TA35 and TA2, corresponding to lanes 10 and 11, respectively) yielded very similar REP-PCR patterns and were identified as *Acidovorax* sp. In addition, two *Achromobacter* species with similar REP-PCR patterns were enriched from Pittem A- and B-horizon soil (PA4 and PB31, in lanes 12 and 13, respectively). Finally, some REP profiles were completely different from all other profiles (lanes 5 and 6). The corresponding strains (TA8 and TA12) were both identified as *Pseudomonas* sp., but with a relatively low internal sequence similarity (93.6%). In conclusion, the 12 chloroaniline degrading isolates seem to represent at least seven different strains, based on their REP-PCR patterns.

Although the collection of degraders was limited, identifications pointed out that the isolates could be grouped into five genera. Most isolates belong to the β subclass of the *Proteobacteria* and more particular to the family of the *Comamonadaceae*. Apparently isolates from soils collected at different locations belong to different genera while from the A- and the B-horizon of one particular soil strains were isolated that are either genotypically similar (e.g. Pittem) or completely different (e.g. Ternat). The diversity of chloroaniline degrading isolates was higher for the A-horizon (six different strains belonging to four genera;
Pseudomonas, Acidovorax, Delftia and Achromobacter) than for the B-horizon (two different strains belonging to only two genera; Comamonas and Achromobacter). Isolates from previous studies also mostly belonged to the β or γ subclass of the Proteobacteria. A lot of these chloroaniline degrading strains were identified as Delftia, Comamonas or Pseudomonas species [8,10,13].

3.4. Isolation and conjugative transfer of plasmids from the 3-CA and 3,4-DCA degrading strains

Since the degradation of chlorinated aromatic compounds is often plasmid encoded [44], the presence of such mobile genetic elements in the 3-CA and 3,4-DCA degrading strains was investigated. All 12 degrading isolates contained one plasmid that migrated to the same position in a 1% agarose gel. Based on EcoRI–PstI, HindIII–BamHI, and EcoRV–BglII restriction endonuclease digestions of plasmid DNA, these plasmids were divided into four clearly separated groups (Table 4 and Fig. 3). Group 1 consisted of plasmid pTA12 from Pseudomonas sp. TA12, which was isolated from Ternat-A-34DCA-JMP. Group 2 contained two plasmids that were obtained from the two identical C. testosteroni isolates TB1 and TB18 (Ternat-B-34DCA-JMP(pWDL7)) and from R. eutropha JMP228n(pWDL7), the strain that was inoculated in the Ternat soil. This suggests that plasmid pWDL7 has been transferred from the inoculated JMP228n(pWDL7) and seems identical to pWDL7, which has been transferred from the inoculated JMP228n donor strain, as mentioned above. Under this assumption, no new 3,4-DCA degradative plasmids have been isolated in this study. The results show that plasmids play an important role in 3-CA degradation, and that transfer of plasmid pWDL7 seems to have occurred in the Ternat B-horizon soil that was inoculated with JMP228n(pWDL7).

This is the first report of plasmids that encode total degradation of 3-CA. Previous studies have shown that the total degradation of aniline [16,17,19,20] but not 3-CA is encoded by plasmids. Boon et al. [8] investigated the involvement of plasmids in aniline and 3-CA degradation in five strains that belong to the genera Comamonas.
and *Delftia*. Although all strains contained a plasmid, only one of these plasmids encoded only partial degradation of 3-CA (use of 3-CA as N source but not as C source, encoded by the plasmid in *D. acidovorans* CA28). This was observed using the same approach as in our study, i.e. by plate matings with *R. eutropha* JMP228gf as recipient strain. None of the transconjugants in their study was able to degrade 200 mg l⁻¹ 3-CA in the absence of pyruvate, as observed by HPLC analysis.

Most catabolic plasmids involved in degradation of chlorinated aromatics belong to the IncP-1 group of broad host range plasmids [44]. For the plasmids isolated in this study, PCR amplification was indeed obtained with the IncP primers *trfA2* (amplifying IncP-1α and IncP-1β plasmids), but not with the IncP primers *trfA1* (specific for IncP-1α plasmids). Sequencing of PCR fragments obtained with the *trfA2* primers revealed that the *trfA2* gene of most of the plasmids isolated in the present study had a similarity of 99–100% to the *trfA2* gene of plasmid pPS12-1 of the 1,2,4,5-tetrachlorobenzene degrading strain *Burkholderia* *sp.* PS12 [45] (Table 4). One exception was however the *trfA2* gene of *Pseudomonas* *sp.* TA12. This gene was also most similar to the *trfA2* gene of pPS12-1, but the percentage sequence similarity was only 93%. For all plasmids the *trfA2* sequence was 90% similar to that of the IncP-1β type plasmid R751 [35], except again for pTA12 (86%). In addition, Southern hybridisations of the digested plasmids under high stringency conditions with an IncP-1β-specific *trfA2* probe derived from plasmid pR751 confirmed that all plasmids belong to the IncP-1β family (data not shown).

TrfA is an initiator Rep protein involved in replication of IncP-1 plasmids, and its sequence has been used before to detect and compare IncP-1 plasmids [33]. Plasmid pPS12-1 has been shown to be an IncP-1β plasmid based on partial sequences of three replicon-specific regions, *trfA2*, *korA* and *oriT* [45]. Just like for the plasmids in our study, the *trfA2* gene sequence of plasmid pPS12-1 showed 90–91% sequence identity to that of the IncP-1β plasmid R751. Interestingly, this plasmid pPS12-1 also codes for the degradation of a chlorinated aromatic compound, i.e. 1,2,4,5-tetrachlorobenzene, and was also found in a member of the β subclass of the *Proteobacteria*. The fact that all isolated 3-CA and 3,4-DCA degradative plasmids belong to the IncP-1β family demonstrates again [44] the importance of this group of broad host range plasmids in the degradation of chlorinated aromatic xenobiotics.

In this study several bacteria were isolated that are able to degrade 3-CA and 3,4-DCA in the absence of any other carbon and nitrogen source. Although they belong to different genera (*Comamonas*, *Delftia*, *Acidovorax*, *Achromobacter*, and *Pseudomonas*) most of them belong to the β subclass of the *Proteobacteria*. They all contained an IncP-1β plasmid that all, except one, encode 3-CA degradation, and in total, four different groups of plasmids were identified based on plasmid restriction patterns. This study has demonstrated that diverse bacterial species are able to degrade 3-CA and 3,4-DCA and has shown the importance of IncP-1β plasmids in the degradation of these compounds.

Acknowledgements

This work was supported by a research grant of the Flemish Fund for Scientific Research (FWO-Vlaanderen), the EU-concerted action MECBAD, and by a project G.O.A. (1997–2002) of the ‘Ministerie van de Vlaamse Gemeenschap, Bestuur Wetenschappelijk Onderzoek’. We thank S. De Neve for providing the soils and their characteristics, S. Maertens for excellent technical assistance, and Nico Boon, Win De Windt, Hanne Lievens, Dave Seghers and Sylvie Seurinck for their useful suggestions on the manuscript.

References