Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at $\sqrt{s} = 7$ TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 pb^{-1}. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of $\Lambda = 5.6$ TeV is obtained at the 95% confidence level.

Submitted to Physical Review Letters

*See Appendix A for the list of collaboration members
In the standard model, point like parton-parton scatterings in high energy proton-proton collisions can give rise to final states with energetic jets. At large momentum transfers, events with at least two energetic jets (dijets) may be used to confront the predictions of perturbative Quantum Chromodynamics (pQCD) and to search for signatures of new physics. In parton-parton scattering, the angular distribution of the outgoing partons, \(d\sigma / d\cos \theta^* \), is directly sensitive to the spin of the exchanged particle, where \(\hat{\sigma} \) is the parton-level cross section and \(\theta^* \) is the polar scattering angle in the parton-parton center-of-mass (CM) frame. While QCD predicts a noticeable deviation of the dijet angular distribution from Rutherford scattering, at small CM scattering angles the angular distribution is proportional to the Rutherford cross section, \(d\sigma / d\cos \theta^* \sim 1 / (1 - \cos \theta^*)^2 \), characteristic of spin-1 particle exchange. The dijet angular distributions do not strongly depend on the details of the parton distribution functions (PDFs), since the angular distributions for the underlying processes, \(qg \to qg, qg' \to qg' \), and \(gg \to gg \), are similar.

For the scattering of massless partons, which are assumed to be collinear with the beam protons, the longitudinal boost of the parton-parton CM frame with respect to the proton-proton CM frame, \(y_{\text{boost}} \), and \(\theta^* \) are obtained from the rapidities \(y_1 \) and \(y_2 \) of the jets from the two scattered partons by \(y_{\text{boost}} = \frac{1}{2}(y_1 + y_2) \) and \(|\cos \theta^*| = \tanh y^* \), where \(y^* = \frac{1}{2}|y_1 - y_2| \) and where \(\pm y^* \) are the rapidities of the two jets in the parton-parton CM frame. The rapidity is related to the jet energy \(E \) and the projection of the jet momentum on the beam axis \(p_z \) by \(y = \frac{1}{2} \ln [(E + p_z) / (E - p_z)] \). The variable \(\chi_{\text{dijet}} = \exp(2y^*) \) is used to measure the dijet angular distribution, which for collinear massless-parton scattering takes the form \(\chi_{\text{dijet}} = (1 + |\cos \theta^*|) / (1 - |\cos \theta^*|) \). This choice of \(\chi_{\text{dijet}} \), rather than \(\theta^* \), is motivated by the fact that \(d\sigma_{\text{dijet}} / d\chi_{\text{dijet}} \) is flat for Rutherford scattering. It also allows signatures of new physics that might have a more isotropic angular distribution than QCD (e.g. quark compositeness) to be more easily examined as they would produce an excess at low values of \(\chi_{\text{dijet}} \).

The quantity studied in this analysis is \((\sigma_{\text{dijet}} / \sigma_{\text{dijet}})(d\sigma_{\text{dijet}} / d\chi_{\text{dijet}}) \), for several ranges of the dijet invariant mass \(M_{jj} \). Previous searches for quark compositeness using the dijet angular distribution or related observables in pp and p\(\bar{p} \) collisions have been reported at the SppS by the UA1 [1] collaboration, at the Tevatron by the D0 [2, 3] and CDF [4] collaborations, and at the Large Hadron Collider (LHC) by the ATLAS [5] collaboration. The CMS collaboration has also published a search on quark compositeness with a smaller data sample using the dijet centrality ratio [6]. In this Letter, we present the first measurement of dijet angular distributions from CMS in pp collisions at \(\sqrt{s} = 7 \) TeV.

The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing an axial field of 3.8 T. Within the field volume are the silicon pixel and silicon strip tracker, the electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL). The ECAL is made up of lead-tungstate crystals, while the HCAL is made of layers of plates of brass and plastic scintillator. These calorimeters provide coverage in pseudorapidity up to \(\eta \leq 3 \), where \(\eta = -\ln \tan(\theta/2) \) and \(\theta \) is the polar angle relative to the counterclockwise proton beam direction. An iron/quartz-fiber Čerenkov hadron calorimeter (HF) covers pseudorapidities \(3 < |\eta| < 5 \). In addition, a preshower detector made of silicon sensor planes and lead absorbers is located in front of the ECAL at \(1.653 < |\eta| < 2.6 \). The calorimeter cells are grouped in projective towers of granularity in pseudorapidity and azimuthal angle of \(0.087 \times 0.087 \) at central pseudorapidities, with coarser granularity at forward pseudorapidities. Muons are measured in gas-ionization detectors embedded in the steel magnetic field return yoke. A detailed description of the CMS detector can be found elsewhere [7].

Events were collected online with a two-tiered trigger system: Level-1 (L1) and the High Level Trigger (HLT). For this study, events were selected with five inclusive single-jet triggers, with
the following jet transverse momentum p_T thresholds at L1 (HLT): 20 GeV (30 GeV), 30 GeV (50 GeV), 40 GeV (70 GeV), 60 GeV (100 GeV), and 60 GeV (140 GeV). The jets at L1 and HLT were reconstructed using energies measured by the ECAL, HCAL, and HF, and were not corrected for the jet energy response of the calorimeters. All except the highest-threshold jet trigger were prescaled as the LHC instantaneous luminosity increased during the course of data taking. In each case, the trigger efficiency was measured as a function of dijet invariant mass M_{jj} using events selected by a lower-threshold trigger. For the analysis, M_{jj}- and χ_{dijet}-regions were chosen such that the trigger efficiencies exceeded 99%.

Jets were reconstructed offline from energies measured in the calorimeter towers using the anti-k_T clustering-algorithm [8] with a distance parameter $R = 0.5$. Spurious jets from noise and non-collision backgrounds were eliminated by loose quality criteria on the jet properties [9]. The jet four-momenta were corrected for the non-linear response of the calorimeters [10]. The performance of the CMS detector with respect to jet reconstruction is described in detail elsewhere [11].

Events were required to have a primary vertex reconstructed within 24 cm of the detector center along the beam line [12]. Events having at least two jets were selected and the two highest-p_T jets were used to measure the dijet angular distributions for different ranges in M_{jj}. We required $\chi_{dijet} < 16$ and $|y_{\text{boost}}| < 1.11$, thus restricting the rapidities y_1 and y_2 of the two highest-p_T jets to be less than 2.5. Nine analysis ranges were defined with the boundaries $0.25 < M_{jj} < 0.35$ TeV, $0.35 < M_{jj} < 0.5$ TeV, $0.5 < M_{jj} < 0.65$ TeV, $0.65 < M_{jj} < 0.85$ TeV, $0.85 < M_{jj} < 1.1$ TeV, $1.1 < M_{jj} < 1.4$ TeV, $1.4 < M_{jj} < 1.8$ TeV, $1.8 < M_{jj} < 2.2$ TeV, and $M_{jj} > 2.2$ TeV. The data correspond to integrated luminosities of 0.4, 3.5, 9.2, and 19.8 pb$^{-1}$ for the lowest four M_{jj} ranges and 36 pb$^{-1}$ for the remaining ones. The uncertainty on the integrated luminosity has been estimated to be 11% [13].

The dijet angular distributions are corrected for migration effects in χ_{dijet} and M_{jj} due to the finite jet energy and position resolutions of the detector. The correction factors were determined using two independent Monte Carlo (MC) samples: PYTHIA 6.422 [14] with tune D6T [15] and HERWIG++ 2.4.2 [16]. The four-momentum, rapidity, and azimuthal angle of each generated jet were smeared to reproduce the measured resolutions. The ratio of the two dijet angular distributions (the generated distribution and the smeared one) determined the unfolding correction factors for a given MC sample and for each M_{jj} range. The average of the correction factors for each M_{jj} range from the two MC samples formed the final unfolding correction applied to the data. The correction factors change the normalized dijet angular distributions for all M_{jj} ranges by less than 3%. For each M_{jj} range, the systematic uncertainty associated with each correction factor was conservatively set at 50% of its value. This approach covers the variations of the unfolding correction factors determined from HERWIG++ and different PYTHIA tunes (D6T and Z2 [17]) that vary on their modelling of the jet kinematic distributions. The use of a parameterized model to simulate the finite jet p_T and position resolutions of the detector, to determine the unfolding correction factors, resulted in a systematic uncertainty. This was estimated to be less than 1% for all M_{jj} ranges and was added in quadrature to the unfolding uncertainties.

The normalized dijet angular distributions are relatively insensitive to many systematic effects, in particular they show little dependence on the overall jet energy scale. However, since χ_{dijet} depends on y^*, they are sensitive to the rapidity dependence of the jet energy calibration. Typical values for the jet energy scale uncertainties for the considered phase space in the variables of jet p_T and y covered in this analysis are between 3% and 4% [10]. The uncertainty on the χ_{dijet} distributions due to the jet energy calibration uncertainties was found to be less than 2.5%. The uncertainty on the dijet angular distributions from the jet p_T resolution uncertainty, estimated
to be 10% [11], was found to be less than 1%. The total systematic uncertainty on the χ_{dijet} distributions, calculated as the quadratic sum of the contributions due to the uncertainties in the jet energy calibration, the jet p_T resolution, and the unfolding correction, is less than 3% for all M_{jj} ranges.

The corrected differential dijet angular distributions for different M_{jj} ranges, normalized to their respective integrals, are shown in Fig. 1. The data are compared to pQCD predictions at next-to-leading order (NLO) calculated with NLOJET++ [18] in the FASTNLO [19] framework. The calculations were performed with the CTEQ6.6 PDFs [20]. The factorization (μ_f) and renormalization (μ_r) scales were set to $\langle p_T \rangle$, the average dijet p_T. Non-perturbative corrections due to hadronization and multiple parton interactions, determined using the average correction from PYTHIA (D6T tune) and HERWIG++, were applied to the prediction. The uncertainties on the pQCD predictions, indicated by the shaded band in Fig. 1, are less than 6% (9%) at low (high) M_{jj}. These uncertainties include contributions due to scale variations and PDF uncertainties, as well as the uncertainties from the non-perturbative corrections. The uncertainty due to the choice of μ_f and μ_r scales was evaluated by varying the default choice of scales in the following six combinations: $\mu_f, \mu_r = (\langle p_T \rangle / 2, \langle p_T \rangle / 2), (\langle p_T \rangle / 2, \langle p_T \rangle), (\langle p_T \rangle, \langle p_T \rangle / 2), (\langle p_T \rangle, 2\langle p_T \rangle), (2\langle p_T \rangle, \langle p_T \rangle), (2\langle p_T \rangle, 2\langle p_T \rangle)$. These scale variations modify the predictions of the normalized χ_{dijet} distributions by less than 5% (9%) at low (high) M_{jj}. The uncertainty due to the choice of PDFs was determined from the 22 CTEQ6.6 uncertainty eigenvectors using the procedure described in Ref. [20], and was found to be less than 0.5% for all M_{jj} ranges. Half the difference between the non-perturbative corrections from PYTHIA and HERWIG++ was taken as the systematic uncertainty, and was found to be less than 4% (0.1%) at low (high) M_{jj}. Overall there is good agreement between the measured dijet angular distributions and the theoretical predictions for all M_{jj} ranges.

The measured dijet angular distributions can be used to set limits on quark compositeness represented by a four-fermion contact interaction term in addition to the QCD Lagrangian. The value of the mass scale Λ characterizes the strengths of the quark substructure binding interactions and the physical size of the composite states. A contact interaction (CI) of left-handed quarks with destructive interference between the QCD and the new physics terms gives rise to an effective Lagrangian term: $L_{\phi\phi} = \frac{e^2}{4\Lambda^2} (\bar{q}_L \gamma^\mu q_L) (\bar{q}_L \gamma^\mu q_L)$ [21]. We investigate a model in which all quarks are considered composite as implemented in the PYTHIA event generator.

The contributions of the CI term in PYTHIA are calculated to leading order (LO), whereas the QCD predictions for the dijet angular distributions are known up to NLO. In order to account for this difference in the QCD plus CI prediction, the cross-section difference $\sigma_{\text{NLO}} - \sigma_{\text{LO}}$ was added to the LO QCD+CI prediction in each M_{jj} and χ_{dijet} bin. With this procedure, we obtain a QCD+CI prediction where the QCD terms are corrected to NLO while the CI terms are calculated at LO. Non-perturbative corrections due to hadronization and multiple parton interactions were also applied to the prediction. The prediction for QCD+CI at the scale of $\Lambda = 5$ TeV is shown in Fig. 1, for the four highest M_{jj} ranges.

We perform a statistical test discriminating between the QCD-only hypothesis and the QCD+CI hypothesis as a function of the scale Λ based on the log-likelihood-ratio $Q = -2 \ln \left(\frac{\mathcal{L}_{\text{QCD+CI}}}{\mathcal{L}_{\text{QCD}}} \right)$. The likelihood functions $L_{\text{QCD+CI}}$ and L_{QCD} are modelled as a product of Poisson likelihood functions for each bin in χ_{dijet} and M_{jj} in the four highest M_{jj} ranges. The prediction for each M_{jj} range is normalized to the number of data events in that range. The p-values, $P_{\text{QCD+CI}}(Q \geq Q_{\text{obs}})$ and $P_{\text{QCD}}(Q \leq Q_{\text{obs}})$, are obtained from ensembles of pseudo-experiments. A modified frequentist approach [22–24] based on the quantity
\[\text{CL}_{s} = \frac{P_{\text{QCD+CI}}(Q \geq Q_{\text{obs}})}{1 - P_{\text{QCD}}(Q \leq Q_{\text{obs}})} \]

is used to set limits on \(\Lambda \). This approach is more conservative than a pure frequentist approach (Neyman construction) and prevents an exclusion claim when the data may have little sensitivity to new physics [25]. Systematic uncertainties were introduced via Bayesian integration [26] by varying them as nuisance parameters in the ensembles of pseudo-experiments according to a Gaussian distribution convoluted with the shape variation induced to the \(\chi_{\text{dijet}}^{2} \) distributions. We consider the QCD+CI model to be excluded at the 95% confidence level if \(\text{CL}_{s} < 0.05 \). Figure 2 shows the observed and expected \(\text{CL}_{s} \) as a function of the CI scale \(\Lambda \). From this we determine the lower limit on \(\Lambda \) to be 5.5 TeV. The observed limit agrees within 1.4 standard deviations with the expected limit of 5.0 TeV, which was evaluated at the median of the test statistics distribution of the QCD model. The observed limit is slightly higher than the expected one because, for the range \(M_{jj} > 2.2 \) TeV, the measured dijet angular distribution at low \(\chi_{\text{dijet}}^{2} \) is lower than, although statistically compatible with, the QCD prediction. The limit for the CI scale was also extracted using an alternate procedure in which the data were not corrected for detector effects and instead the MC predictions were resolution-smearred. The limit obtained was found to agree with the quoted one within 0.4%.

 Shortly before the completion of this Letter, an exact NLO calculation of QCD effects to quark compositeness became available [27]. This calculation indicates that the limit on \(\Lambda \) obtained in the present analysis, which only takes into account the LO prediction for the contribution of the contact interaction, might be overestimated by up to 10% compared to the value obtained if the NLO calculation were used.

In summary, CMS has measured the dijet angular distributions over a wide range of dijet invariant masses. The \(\chi_{\text{dijet}}^{2} \) distributions are found to be in good agreement with NLO pQCD predictions, and are used to exclude a range of a contact interaction scale \(\Lambda \) for a left-handed quark compositeness model. With a modified frequentist approach, a lower limit on the contact interaction scale of \(\Lambda = 5.6 \) TeV at the 95% confidence level is obtained, which may be compared with a limit of 5.0 TeV, expected for the number of events recorded. This is the most stringent limit on the contact interaction scale of left-handed quarks to date.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CIPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[17] The PYTHIA6 Z2 tune is identical to the Z1 tune described in [15] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.

Figure 1: Normalized dijet angular distributions in several M_{jj} ranges, shifted vertically by the additive amounts given in parentheses in the figure for clarity. The data points include statistical and systematic uncertainties. The results are compared with the predictions of pQCD at NLO (solid histogram) and with the predictions including a contact interaction term of compositeness scale $\Lambda = 5$ TeV (dashed histogram). The shaded band shows the effect on the NLO pQCD predictions due to μ_r and μ_f scale variations and PDF uncertainties, as well as the uncertainties from the non-perturbative corrections added in quadrature.
Figure 2: Observed CL$_s$ (solid line) and expected CL$_s$ (dashed line) with one (two) standard deviation indicated by the dark (light) band as a function of the contact interaction scale Λ. The 95% confidence level limits on Λ are extracted from the intersections of the observed and expected CL$_s$ lines with the horizontal line at CL$_s$=0.05.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium
V. Adler, S. Costantini, M. Grunewald, B. Klein, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov1, L. Dimitrov, V. Genchev1, P. Iaydjiev1, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov
University of Sofia, Sofia, Bulgaria
M. Dyulendarova, R. Hadjiiska, V. Kozhuharov, L. Litov, E. Marinova, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, K. Lelas, R. Plestina³, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, S. Morovic

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran⁴, M.A. Mahmoud⁵

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, K. Kannike, M. Müntel, M. Raidal, L. Rebane

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad, A. Mohammad, M. Mohammad Najafabadi, S. Paktinat Mehdiaabadi, B. Safarzadeh, M. Zeinali
University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
N. Bondar, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Épshteyn, V. Gavrilov, V. Kaftanov, M. Kossov, A. Krokhkin, N. Lychkovskaya, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
A The CMS Collaboration

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
E. Aegli, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek

National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, D. Demir34, E. Gulmez, A. Halu, B. Isildak, M. Kaya35, O. Kaya35, S. Ozkorucuklu36, N. Sonmez37

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu

Baylor University, Waco, USA
K. Hatakeyama

Boston University, Boston, USA

Brown University, Providence, USA
University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
C. Ceron, V. Gaultney, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
P. Jindal, N. Parashar
Rice University, Houston, USA

University of Rochester, Rochester, USA

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian, M. Yan

Rutgers, the State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Jeong, K. Kovitanggoon, S.W. Lee, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, M. Buehler, S. Conetti, B. Cox, B. Francis, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
4: Also at Suez Canal University, Suez, Egypt
5: Also at Fayoum University, El-Fayoum, Egypt
6: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
7: Also at Massachusetts Institute of Technology, Cambridge, USA
8: Also at Université de Haute-Alsace, Mulhouse, France
9: Also at Brandenburg University of Technology, Cottbus, Germany
10: Also at Moscow State University, Moscow, Russia
11: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
12: Also at Eötvös Loránd University, Budapest, Hungary
13: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
14: Also at University of Visva-Bharati, Santiniketan, India
15: Also at Facoltà Ingegneria Università di Roma “La Sapienza”, Roma, Italy
16: Also at Università della Basilicata, Potenza, Italy
17: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
18: Also at Università degli studi di Siena, Siena, Italy
19: Also at California Institute of Technology, Pasadena, USA
20: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
21: Also at University of California, Los Angeles, Los Angeles, USA
22: Also at University of Florida, Gainesville, USA
23: Also at Université de Genève, Geneva, Switzerland
24: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
25: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
26: Also at University of Athens, Athens, Greece
27: Also at The University of Kansas, Lawrence, USA
28: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
29: Also at Paul Scherrer Institut, Villigen, Switzerland
30: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
31: Also at Gaziosmanpasa University, Tokat, Turkey
32: Also at Adiyaman University, Adiyaman, Turkey
33: Also at Mersin University, Mersin, Turkey
34: Also at Izmir Institute of Technology, Izmir, Turkey
35: Also at Kafkas University, Kars, Turkey
36: Also at Suleyman Demirel University, Isparta, Turkey
37: Also at Ege University, Izmir, Turkey
38: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
39: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
40: Also at Institute for Nuclear Research, Moscow, Russia
41: Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
42: Also at Istanbul Technical University, Istanbul, Turkey