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Abstract

Discrete Cli�ord analysis is a higher dimensional discrete function theory based on skew Weyl

relations. It is centered around the study of Cli�ord algebra valued null solutions, called dis-

crete monogenic functions, of a discrete Dirac operator, i.e. a �rst order, Cli�ord vector valued

di�erence operator. In this paper, we establish a Cauchy-Kovalevskaya extension theorem for

discrete monogenic functions de�ned on the standard Zm grid. Based on this extension princi-

ple, discrete Fueter polynomials, forming a basis of the space of discrete spherical monogenics,

i.e. homogeneous discrete monogenic polynomials, are introduced. As an illustrative exam-

ple we moreover explicitly construct the Cauchy-Kovalevskaya extension of the discrete delta

function. These results are then generalized for a grid with variable mesh width h.
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1 Introduction

The Cauchy-Kovalevskaya theorem (see e.g. [5, 12]) has a long history; for a detailed account we
refer to [6]. In the traditional case of continuous variables the theorem, in its most simple setting,
reads as follows.

Theorem 1.1 If the functions F, f0, . . . , fk−1 are analytic in a neighbourhood of the origin, then
the initial value problem

∂kt h(x, t) = F (x, t, ∂it∂
α
xh)

∂jt h(x, 0) = fj(x), j = 0, . . . , k − 1

has a unique solution which is analytic in a neighbourhood of the origin, provided that |α|+ i ≤ k.

In the case where the di�erential operator involved is the Cauchy�Riemann operator, i.e. where the
di�erential equation reduces to ∂th = −i∂xh (with k = 1, |α| = 1, i = 0), the theorem states that
a holomorphic function in an appropriate region of the complex plane is completely determined
by its restriction to the real axis. In the case of a harmonic function, where now ∂2t h = −∂2xh
(with k = 2, |α| = 2, i = 0), additionally the values of its normal derivative on the real axis
should be given in order to determine it uniquely. In fact, the necessity of these restrictions as
initial values becomes clear in the following construction formula for the holomorphic and harmonic
Cauchy-Kovalevskaya (short: CK) extensions.
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Proposition 1.1 If the function f0(x) is real-analytic in |x| < a, then

F (z) = exp (iy
d

dx
) [f0(x)] =

∞∑
k=0

1

k!
ikykf

(k)
0 (x)

is holomorphic in |z| < a and F (z)|R = f0(x). If moreover f1(x) is real-analytic in |x| < a, then

G(z) =

∞∑
j=0

(−1)j

(2j)!
y2j
(
d

dx

)2j

[f0(x)] +

∞∑
j=0

(−1)j

(2j + 1)!
y2j+1

(
d

dx

)2j

[f1(x)]

is harmonic in |z| < a and G(z)|R = f0(x), while ∂
∂yG(z)|R = f1(x).

A higher dimensional generalization of the theory of holomorphic functions in the complex plane,
providing at the same time a re�nement of harmonic analysis, is obtained in Cli�ord analysis, see
e.g. [1, 4, 10, 11]. Cli�ord analysis focusses on the study of monogenic functions, i.e. Cli�ord
algebra valued null solutions of the Dirac operator ∂x =

∑m
α=1 eα ∂xα , where (e1, . . . , em) is an

orthonormal basis of Rm underlying the construction of the real Cli�ord algebra R0,m. We refer
to this setting as the Euclidean case, since the fundamental group leaving the Dirac operator ∂x
invariant is the orthogonal group O(m;R), which is doubly covered by the Pin(m) group of the
Cli�ord algebra. The CK extension theorem in Euclidean Cli�ord analysis is a direct generalization
to higher dimension of the complex plane case; it reads as follows.

Theorem 1.2 If f(x2, x3, . . . , xm) is real-analytic in an open set Ω′ of Rm−1 identi�ed with {x ∈
Rm : x1 = 0}, then there exists an open neighbourhood Ω of Ω′ in Rm and a unique monogenic
function F in Ω such that its restriction to Ω′ precisely is f . If moreover Ω′ contains the origin,
then in an open neigbourhood of the origin this CK-extension F is given by

F (x1, x2, . . . , xm) = exp
(
x1e1∂x

′)[f ] =

∞∑
k=0

1

k!
xk1(e1∂x

′)k[f ]

where ∂x
′ stands for the restriction of ∂x to Rm−1.

Recently, in [2, 3, 9], a framework for a discrete counterpart of Euclidean Cli�ord analysis was set
up, and it was further developed based on the introduction of skew Weyl relations in [7]. De�nitions
were given for a discrete Dirac operator D, discrete monogenic functions and discrete spherical
monogenics, i.e. homogeneous discrete monogenic polynomials, de�ned as the eigenfunctions of a
discrete Euler operator. Moreover, some basic results of discrete function theory, such as a Cauchy
representation formula for discrete monogenic functions, were obtained. The main aim of this
paper is to establish a CK extension theorem for discrete monogenic functions and, in particular,
to apply it for the construction of bases for the spaces of discrete spherical monogenics. To make
the paper self-contained an introductory section on discrete Cli�ord analysis is included.

2 Preliminaries of discrete Cli�ord analysis

In the discrete Cli�ord setting we consider the natural graph corresponding to the equidistant grid
Zm with orthonormal basis ej , j = 1, . . . ,m. We then introduce the traditional one-sided forward
and backward di�erences ∆±j , j = 1, . . . ,m, respectively acting on a function u as

∆+
j [u] =

u(·+ hej)− u(·)
h

∆−j [u] =
u(·)− u(· − hej)

h
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where h denotes the mesh width, which in the standard case considered here, will be h = 1. So
from now, let

∆+
j u = u(·+ ej)− u(·), ∆−j u = u(·)− u(· − ej)

A Cli�ord vector x will, in the current setting, only show integer co-ordinates. With respect to
the Zm-neighbourhood of x, the usual de�nition of the discrete Laplacian then explicitly reads

∆∗[f ](x) =

m∑
j=1

[
∆+
j [f ] (x)−∆−j [f ] (x)

]
=

m∑
j=1

[f(x+ ej) + f(x− ej)]− 2mf(x)

the notation ∆∗ referring to this operator being called the �star Laplacian�, since it contains func-
tion values at the midpoints of the faces of the unit cube centered at x.

The discrete Dirac operator factorizing this star Laplacian is introduced using the so-called
Hermitean setting. In this setting each basis element ej is split into two basis elements e+j and

e−j , cf. [9, 2, 3], and we consider the free algebra over {e+j , e
−
j }, satisfying the following relations:

e−j e
−
` + e−` e

−
j = 0

e+j e
+
` + e+` e

+
j = 0

e+j e
−
` + e−` e

+
j = δj`

Observe that these conditions imply that e2j = +1, j = 1, . . . ,m, in contrast to the usual Cli�ord

setting where traditionally e2j = −1 is chosen. To introduce the Dirac operator, one then combines
each di�erence, forward or backward, with the corresponding forward or backward basis vector,
i.e.

D =

m∑
j=1

e+j ∆+
j + e−j ∆−j (1)

It can be readily checked that the resulting Dirac operator indeed factorizes the star Laplacian:
D2 = ∆. Considering the di�erences ∆±j (j = 1, . . . ,m) as lowering operators, we then introduce,

see [7], the raising operators X±j (j = 1, . . . ,m) satisfying the following �skew� Weyl relations:

∆+
j X

+
j −X

−
j ∆−j = 1 (2)

∆−j X
−
j −X

+
j ∆+

j = 1 (3)

which replace the classical Weyl relations holding in the continuous case for the partial derivatives
and the vector variable. The traditional vector variable corresponding to the Dirac operator is
then replaced by the operator

X =

m∑
j=1

e+j X
−
j + e−j X

+
j

of which the components X±j are no longer independent, but they are interconnected by (2)�(3).

Next, the discrete Euler operator E, see also [7], is de�ned by imposing the intertwining relation

DX +XD = 2E +m

which holds for the Dirac operator and the vector variable in the continuous Cli�ord case. This
translates into the following explicit form:

E =

m∑
j=1

e+j e
−
j X
−
j ∆−j + e−j e

+
j X

+
j ∆+

j
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Moreover, this discrete Euler operator E is then easily seen to satisfy also the usual intertwining
relations with the Dirac operator and the vector variable respectively, i.e.:

DE = ED +D, EX = XE +X (4)

The notion of homogeneity of a discrete polynomial is then de�ned as follows.

De�nition 2.1 A discrete polynomial P is called homogeneous of degree k if and only if it is an
eigenfunction with eigenvalue k of the discrete Euler operator: EP = kP .

In combination with (4), this de�nition implies that application of the operator X to a discrete ho-
mogeneous polynomial of degree k will result in a discrete homogeneous polynomial of degree k+1.

Introduction of the co-ordinate variable ξj = X+
j e
−
j +X−j e

+
j , j = 1, . . . ,m, enables us to work

simultaneously on the considered graph and on its dual. Likewise we also consider the co-ordinate
di�erence operator ∂j = e+j ∆+

j + e−j ∆−j , j = 1, . . . ,m, decomposing in this way the discrete Dirac
operator and the vector variable respectively as

D =

m∑
j=1

∂j , X =

m∑
j=1

ξj

On account of the skew Weyl relations (2)-(3) for the raising operators X±j and the lowering

operators ∆±j , it is easily seen that ξj and ∂j (j = 1, . . . ,m) satisfy the Weyl relations

∂jξj − ξj∂j = 1 and ∂`ξj + ξj∂` = 0, ` 6= j

Moreover, using the intertwining relation EX = X(E+1), it directly follows that Eξj = ξj(E+1),
whence ξkj [1], i.e. natural powers of the operator ξj acting on the ground state 1, are the basic

homogeneous discrete polynomials of degree k in the variable xj , similar to the basic powers xkj in
the continuous setting. In the following lemma, their fundamental properties are listed, see [7].

Lemma 2.1 For all k ∈ N and j, ` = 1, . . . ,m we have

∂j ξ
k
j [1] = k ξk−1j [1]

∂` ξ
k
j [1] = 0, ` 6= j

∂jξ
k1
j ξ

k2
` [1] = k1 ξ

k1−1
j ξk2` [1], ` 6= j

Moreover, for any two multi-indices α = (α1, . . . , αm) and β = (β1, . . . , βm) with |α| = |β|, it then
holds that

∂α1
1 . . . ∂αmm

(
ξβ1

1 . . . ξβmm

)
[1] =

{
α! if α = β
0 if α 6= β

where we have put α! = α1!α2! . . . αm!.

Furthermore, a closed form for these polynomials is obtained in the following theorem.

Theorem 2.1 The homogeneous discrete polynomials ξkj [1] are given by ξj [1](xj) = xj (e+j + e−j )
and

ξ2n+1
j [1](xj) = xj (e+j + e−j )

n∏
i=1

(x2j − i2) (5)

ξ2nj [1](xj) =
(
x2j + nxj(e

+
j e
−
j − e−j e

+
j )
) n−1∏
i=1

(x2j − i2) (6)

for n = 1, 2, . . . and j = 1, . . . ,m.

4



Proof
From the de�nition of ξj itself it follows that ξj [1](xj) = xj ej , j = 1, . . . ,m. Next, take k > 1,
then it follows by induction that ξkj [1](0) = 0 = ξkj [1](1), for j = 1, . . . ,m. The homogeneous

polynomial ξkj [1](xj) thus is to be found as the unique solution of the system
∂jξ

k
j [1] = k ξk−1j [1]

ξkj [1](0) = 0

ξkj [1](1) = 0

Explicit low order calculations then reveal the form (5) when n = 2k + 1 and the form (6) when
n = 2k, respectively, which may indeed be checked by direct calculation to submit to the above
conditions for any k ≥ 1 and any j = 1, . . . ,m. �

A function de�ned on Zm is then called (left) discrete monogenic in a domain Ω ⊂ Zm i� it
satis�es in Ω the equation Df = 0, or, in other words, if it is a null solution for the left action
of the discrete Dirac operator. Homogeneous polynomial null solutions of D are called spherical

discrete monogenics. For further use, we still mention that the dimension of the space M(m)
k of

spherical discrete monogenics of degree k on Zm was established in [7] to be

dim(M(m)
k ) =

(k +m− 2)!

k!(m− 2)!
(7)

3 The discrete Cauchy-Kovalevskaya extension

In this section we deal with the following problem.

Let f be a discrete function in the variables x2, . . . , xm, de�ned on the grid Zm−1 and taking
values in the algebra over

{
e+2 , e

−
2 , . . . , e

+
m, e

−
m

}
. Does there exist a discrete monogenic func-

tion F in the variables x1, . . . , xm, de�ned on the grid Zm and taking values in the algebra over{
e+1 , e

−
1 , . . . , e

+
m, e

−
m

}
, such that F |x1=0 = f?

This problem will be called the discrete Cauchy-Kovalevskaya extension (or CK extension) prob-
lem. To obtain a positive answer to it, preferably by explicit construction, is important, since it
will enable us to generate discrete monogenic functions starting from ordinary discrete ones.

Now, putting

F (x1, x2, . . . , xm) =

∞∑
k=0

ξk1 [1](x1)

k!
fk(x2, . . . , xm)

with f0 = f , it is directly seen, on account of (5)�(6), that the function F takes the correct values
and satis�es F |x1=0 = f . For F to be moreover discrete monogenic it must vanish under the action
of the Dirac operator D, (1), which we rewrite as

D = ∂1 +

m∑
j=2

∂j = ∂1 +D′

In order to determine the coe�cient functions fk, k = 1, 2, . . . in such a way that the condition
DF = 0 is ful�lled, we proceed by direct calculation, invoking Lemma 2.1 for the action of ∂j on
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ξk1 [1]. Since ∂1 only acts on ξk1 [1] and D′ anticommutes with ξ1[1] we obtain

0 = DF = (∂1 +D′)

( ∞∑
k=0

ξk1 [1]

k!
fk

)
=

∞∑
k=0

ξk1 [1]

k!
fk+1 +

∞∑
k=0

(−1)k
ξk1 [1]

k!
D′fk

resulting into the recurrence relation

fk+1 = (−1)k+1D′fk (8)

All of the above can now be summarized into the following de�nition.

De�nition 3.1 The CK extension CK [f ] of a discrete function f(x2, . . . , xm) is the discrete
monogenic function

CK [f ] (x1, x2, . . . , xm) =

∞∑
k=0

ξk1 [1](x1)

k!
fk(x2, . . . , xm) (9)

where f0 = f and fk+1 = (−1)k+1D′fk.

Observe that the foregoing de�nition does not contain any conditions on the original function f .
Indeed, from (5)-(6) it follows that

ξ2n+1
1 [1](x1) = 0 for n > |x1| (10)

ξ2n1 [1](x1) = 0 for n > |x1|+ 1 (11)

implying that for every point (x1, . . . , xm) of the grid Zm, there exists an N ∈ N such that all but
the �rst N terms of the series in (9) vanish, whence the series reduces to a �nite sum in every
point of Zm. Thus, for any discrete function f(x2, . . . , xm), its CK extension is well-de�ned on
Zm. Moreover, it is unique, as is stated in the following theorem.

Theorem 3.1 Let F be a discrete monogenic function de�ned on Zm, with F |x1=0 ≡ 0. Then F
is the null function.

Proof
The discrete monogenicity of F explicitly reads as

e+1 ∆+
1 F (x) + e−1 ∆−1 F (x) +

m∑
j=2

(
e+j ∆+

j F (x) + e−j ∆−j F (x)
)

= 0

Now take x ∈ Zm with x1 = 0. Since F |x1=0 ≡ 0 the above expression reduces to

e+1 F (x+ e1)− e−1 F (x− e1) = 0 (12)

Furthermore also ∆∗F = D2F = 0, i.e.

m∑
j=1

(F (x+ ej) + F (x− ej))− 2mF (x) = 0

from which we obtain, again for x ∈ Zm with x1 = 0,

F (x+ e1) + F (x− e1) = 0 (13)
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Combination of (12) and (13) results into

(e+1 + e−1 )F (x− e1) = 0

whence F (x − e1) = 0 and also F (x + e1) = 0 for any x with x1 = 0 and (x2, . . . , xm) arbitrary,
implying that F ≡ 0 on x1 = 1 and x1 = −1. Repeating this procedure, we �nd that F ≡ 0 on
Zm. �

Corollary 3.1 (Uniqueness of the CK extension) Let F1 and F2 be two discrete monogenic
functions such that F1|x1=0 ≡ f and F2|x1=0 ≡ f . Then F1 and F2 coincide.

4 Discrete Fueter polynomials

The discrete CK extension procedure, as explained in the previous section, establishes a homo-

morphism between the space Π
(m−1)
k of discrete homogeneous polynomials of degree k in m − 1

variables and the space M(m)
k of spherical discrete monogenics of degree k in m variables. This

homomorphism is injective, as stated in Theorem 3.1 and Corollary 3.1. Moreover, a basis for the

space Π
(m−1)
k being given by the discrete homogeneous polynomials ξα2

2 . . . ξαmm , α2 + . . .+αm = k,
its dimension is

dim Π
(m−1)
k =

(k + (m− 1)− 1)!

k!(m− 2)!

which exactly equals the dimension ofM(m)
k , see (7), whence the homomorphism also is surjective.

The CK extension procedure thus establishes an isomorphism between Π
(m−1)
k andM(m)

k , allowing

us to determine a basis for the spaceM(m)
k .

De�nition 4.1 Let α ∈ Nm−1 with α2 + . . .+ αm = k. Then the discrete spherical monogenics

Vα = CK [ξα2
2 . . . ξαmm ]

are called the discrete Fueter polynomials of degree k.

Theorem 4.1 The set
{
Vα |α2 + . . .+ αm = k

}
constitutes a basis forM(m)

k .

Proof
The CK extension procedure constituting an isomorphism between both spaces, the basis

{ξα2
2 . . . ξαmm |α2 + . . .+ αm = k}

of Π
(m−1)
k is transformed into the basis

{CK [ξα2
2 . . . ξαmm ] |α2 + . . .+ αm = k}

ofM(m)
k . �

Example 4.1 The space M(3)
2 has dimension 3, on account of (7). A basis for it is given by the

elements

V(2,0) = CK[ξ22 ] = ξ22 − 2ξ1ξ2 − ξ21
V(1,1) = CK[ξ2ξ3] = ξ2ξ3 − ξ1ξ3 + ξ1ξ2 + ξ21

V(0,2) = CK[ξ23 ] = ξ23 − 2ξ1ξ3 − ξ21
of which it can be checked also directly that they are discrete monogenic, of homogeneity degree 2
in (x1, x2, x3) and linearly independent.

The explicit construction of the discrete Fueter basis, in arbitrary dimensionm and for arbitrary
homogeneity degree k, is the subject of the forthcoming paper [8].
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5 CK extension of the discrete delta-function

As an interesting and illustrative example we present the CK extension of the restriction to the
Zm−1 grid of the function de�ned on Rm−1 by

δ0(x2, . . . , xm) =

{
1 (x2, . . . , xm) = (0, . . . , 0)
0 (x2, . . . , xm) 6= (0, . . . , 0)

This restriction, still denoted by δ0, is usually called the discrete delta-function. Since every dis-
crete function given by its values in the vertices of the grid can be written as a linear combination
of shifted delta-functions, the CK extension of the delta-function will be a basic building block for
the CK extension of other functions. Here we will treat only the case m = 2 explicitely; however,
other dimensions may be directly computed as well.

Consider, for m = 2, the delta-function δ0 in the variable x2, i.e.

δ0(x2) =

{
1 x2 = 0
0 x2 6= 0

and, in general, for k ∈ Z arbitrary

δk(x2) = δ0(x2 − k) =

{
1 x2 = k
0 x2 6= k

Proposition 5.1 The CK-extension of the delta-function δ0(x2) is well-de�ned in all points of the
grid Z2, and given by

CK[δ0](x1, x2) =

∞∑
k=0

ξk1 [1](x1)

k!
fk(x2) (14)

where f0 = δ0 and

f2n =

2n∑
j=0

(−1)j+n
(

2n

j

)
δn−j (15)

f2n+1 = e+2

2n+1∑
j=0

(−1)j+n+1

(
2n+ 1

j

)
δj−n−1

+ e−2

2n+1∑
j=0

(−1)j+n
(

2n+ 1

j

)
δn+1−j

 (16)

Proof
>From the previous section it follows that the CK extension of δ0 indeed takes the form (14), with
f0(x2) = δ0(x2) and, according to (8), fk+1(x2) = (−1)k+1D′fk(x2). Here D′ = e+2 ∆+

2 + e−2 ∆−2
and the action of ∆±2 on δk(x2) is given by

∆+
2 [δk](x2) = δk(x2 + 1)− δk(x2) = δk−1(x2)− δk(x2)

∆−2 [δk](x2) = δk(x2)− δk(x2 − 1) = δk(x2)− δk+1(x2)

The explicit expressions (15)�(16) then follow by an induction argument. �

Now we determine the value of the CK extension of δ0 in a point (x1, x2) = (`1, `2) of the grid
Z2. Since CK[δ0] consists of products of delta-functions δk(x2) with powers of ξ1 (acting on the
ground state), the value of the CK[δ0] in (`1, `2) is given by the x1-depending coe�cient of δ`2 in
the CK extension, evaluated in `1. We obtain the following result.

8



Theorem 5.1 The value of the CK extension of the discrete delta function δ0 in a point (`1, 0) of
the grid Z2 is

1 +

|`1|∑
n=1

ξ2n1 [1](`1)

(n!)2
+

|`1|−1∑
n=0

ξ2n+1
1 [1](`1)

n! (n+ 1)!

(
e+2 − e−2

)
(17)

Furthermore, its value in a point (`1, `2) with `2 > 0 is

(−1)`2−1
ξ2`2−11 [1](`1)

(2`2 − 1)!
e−2 + (−1)`2

|`1|∑
n=`2

ξ2n1 [1](`1)

(n− `2)! (n+ `2)!

+ (−1)`2
|`1|−1∑
n=`2

ξ2n+1
1 [1](`1)

(n− `2)! (n+ `2)!

(
e+2

n+ `2 + 1
− e−2
n− `2 + 1

)
(18)

while its value in a point (`1, `2) with `2 < 0 is

(−1)`2
ξ
2|`2|−1
1 [1](`1)

(2 |`2| − 1)!
e+2 + (−1)`2

|`1|∑
n=|`2|

ξ2n1 [1](`1)

(n− `2)! (n+ `2)!

+ (−1)`2
|`1|−1∑
n=|`2|

ξ2n+1
1 [1](`1)

(n− `2)! (n+ `2)!

(
e+2

n+ `2 + 1
− e−2
n− `2 + 1

)
(19)

where ξ2n+1
1 [1] and ξ2n1 [1] are given by (5)�(6).

Proof

First, consider a point (`1, 0) ∈ Z2. The coe�cient of δ0 in f2n is

(
2n

n

)
while its coe�cient in

f2n+1 is
(
e+2 − e−2

)(2n+ 1

n+ 1

)
. Invoking (10)�(11) we obtain (17). Next, consider a point (`1, `2)

with `2 6= 0. The coe�cient of δ`2 in f2n is given by

(−1)`2
(2n)!

(n− `2)! (n+ `2)!

while its coe�cient in f2n+1 is
(−1)`2−1 e−2 `2 = n+ 1

(−1)`2−1
(2n+ 1)!

(n+ `2)! (n− `2 + 1)!
e−2 + (−1)`2

(2n+ 1)!

(n− `2)! (n+ `2 + 1)!
e+2 −n 6 `2 6 n

(−1)`2 e+2 `2 = −n− 1

Combining this result with (14) we obtain (18)�(19). �

Corollary 5.1 The scalar part of CK[δ0] (x1, x2) is given by

1 +

|x1|∑
n=1

x21
n−1∏
i=1

(
x21 − i2

)
(n!)2

x2 = 0

(−1)x2

|x1|∑
n=|x2|

x21
n−1∏
i=1

(
x21 − i2

)
(n− x2)! (n+ x2)!

x2 6= 0
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Remark 5.1 Figure 1(a) depicts the behaviour of the scalar part of CK[δ0] between the values
10−6 . . . 106 for −50 6 x1, x2 6 50, while Figure 1(b) is a contourplot of its absolute value in the
same region. At the same time it thus depicts the support in Z2 of CK[δ0]. Note that it follows
from Corollary 5.1 that a point (x1, x2) of the grid Z2 with |x2| > |x1| cannot belong to the support
of the scalar part of CK[δ0]. This speci�c form of the support is a consequence of the successive
actions of D′.

(a) Scalar part of the CK extension (b) Contourplot

6 Grid with arbitrary mesh width h

In the previous sections the standard case of the grid Zm was considered. The aim of this section
is to introduce a grid with arbitrary mesh width h > 0. In particular, we will investigate how this
change of mesh will a�ect the CK extension of the delta function δ0. Let Rm be m-dimensional
Euclidean space; over this space a uniform lattice with mesh width h > 0 is de�ned by

Zmh = {(`1h, `2h, . . . , `mh) | (`1, `2, . . . , `m) ∈ Zm}

So a Cli�ord vector x will now only be allowed to show co-ordinates which are integer multiples of
the mesh width h. The discrete Dirac operator then depends on the mesh width:

Dh[f ](x) =

m∑
j=1

(
e+j

f(x+ hej)− f(x)

h
+ e−j

f(x)− f(x− hej)
h

)
as is the case for the star Laplacian:

∆∗h[f ](x) =

m∑
j=1

f(x+ hej)− f(x− hej)
h2

− 2m
f(x)

h2

Observe that still D2
h = ∆∗h, and that Dh → ∂x as h→ 0 (for the continuous setting with e2j = +1,

j = 1, . . . ,m, as mentioned before).

10



The co-ordinate variables are connected with the forward and backward di�erences through the
skew Weyl relations (2)�(3) and thus will also depend on the mesh width h. The action of natural
powers of (ξj)h on the ground state 1 is now given by (ξj)h[1] = xj (e+j + e−j ) and

(ξj)
2n+1
h [1] = xj (e+j + e−j )

n∏
i=1

(x2j − i2h2) (20)

(ξj)
2n
h [1] =

(
x2j + nhxj (e+j e

−
j − e−j e

+
j )
) n−1∏
i=1

(x2j − i2h2) (21)

for n = 1, 2, . . . and j = 1, . . . ,m. As could be expected, we have that (ξj)
2n+1
h [1](xj) → x2n+1

j ej
and (ξj)

2n
h [1](xj)→ x2nj , when h→ 0.

Isolating, as before, the �rst term in the Dirac operator, i.e. writing Dh = ∂1h + D′h, and
repeating the calculation of Section 3, we obtain a CK extension which, at least formally, is not
a�ected by the introduction of the mesh width h, though ξk1 [1] should be replaced by (ξ1)kh[1].

De�nition 6.1 The CK extension CKh [f ] of a discrete function f(x2, . . . , xm) de�ned on the grid
Zmh is the discrete monogenic function

CKh [f ] (x1, x2, . . . , xm) =

∞∑
k=0

(ξ1)kh[1]

k!
fk(x2, . . . , xm)

where f0 = f and fk+1 = (−1)k+1D′hfk.

Seen the behaviour of the natural powers of (ξ1)h for h→ 0, and the fact that D′h → ∂′x, it directly
follows that CKh[f |Zm−1

h
] will tend to the CK extension of f in the corresponding continuous

setting, reading

F (x1, x2, . . . , xm) = exp
(
−x1e1∂x′

)
[f ] =

∞∑
k=0

1

k!
xk1(−e1∂x′)k[f ]

for any function f de�ned on Rm−1, which is real-analytic.

For the CK extension of the function δ0 restricted to the mesh Zmh , we will again only consider
the case m = 2. It is well-de�ned on the grid Z2

h and given by

CKh(δ0)(x1, x2) =

∞∑
k=0

(ξ1)kh[1](x1)

k!
fk(x2)

with f0(x2) = δ0(x2) and fk+1(x2) = (−1)k+1D′fk, where now

∆+
2 (δk)(x2) =

δk−h(x2)− δk(x2)

h
, ∆−2 (δk)(x2) =

δk(x2)− δk+h(x2)

h

whence we obtain for the components fk in CKh[δ0], k = 1, 2, . . .:

f2n(x2) =

2n∑
j=0

(−1)j+n
(

2n

j

)
δ(n−j)h

h2n

f2n+1(x2) = e+2

2n+1∑
j=0

(−1)j+n+1

(
2n+ 1

j

)
δ(j−n−1)h

h2n+1

+ e−2

2n+1∑
j=0

(−1)j+n
(

2n+ 1

j

)
δ(n+1−j)h

h2n+1
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So CKh[δ0] can also be rewritten as

CKh(δ0)(x1, x2) =

∞∑
k=0

(ξ1)kh[1](x1)

hk k!
gk(x2)

where the coe�cient functions gk(x2) ≡ hkfk(x2) no longer contain any powers of h. We will use
this form to evaluate CKh[δ0] in an arbitrary point (x1, x2) = (`1h, `2h) of the grid Z2

h.

Theorem 6.1 The value of the CK extension of the discrete delta function δ0 in a point (`1h, 0)
of the grid Z2

h is

1 +

|`1|∑
n=1

(ξ1)2nh [1](`1h)

h2n (n!)2
+

|`1|−1∑
n=0

(ξ1)2n+1
h [1](`1h)

h2n+1 n! (n+ 1)!

(
e+2 − e−2

)
Furthermore, its value in a point (`1h, `2h) with `2 > 0 is

(−1)`2−1
(ξ1)2`2−1h [1](`1h)

h2`2−1 (2`2 − 1)!
e−2 + (−1)`2

|`1|∑
n=`2

(ξ1)2nh [1](`1h)

h2n (n− `2)! (n+ `2)!

+ (−1)`2
|`1|−1∑
n=`2

(ξ1)2n+1
h [1](`1h)

h2n+1 (n− `2)! (n+ `2)!

(
e+2

n+ `2 + 1
− e−2
n− `2 + 1

)
while its value in a point (`1h, `2h) with `2 < 0 is

(−1)`2
(ξ1)

2|`2|−1
h [1](`1h)

h2|`2|−1 (2 |`2| − 1)!
e+2 + (−1)`2

|`1|∑
n=|`2|

(ξ1)2nh [1](`1h)

h2n (n− `2)! (n+ `2)!

+(−1)`2
|`1|−1∑
n=|`2|

(ξ1)2n+1
h [1](`1h)

h2n+1 (n− `2)! (n+ `2)!

(
e+2

n+ `2 + 1
− e−2
n− `2 + 1

)

with (ξ1)2n+1
h [1] and (ξ1)2nh [1] given by (20)-(21).

Remark 6.1 Since δ0 is de�ned on Rm−1, we may also here consider the limit case for h tending
to 0. However, the only powers of h in the above function values appearing as

ξ2n+1
1

h2n+1
[1] =

x1
h

n∏
i=1

((x1
h

)2
− i2

)
(e+1 + e−1 )

ξ2nj [1]

h2n
=

((x1
h

)2
+ n

x1
h

(e+1 e
−
1 − e−1 e

+
1 )

) n−1∏
i=1

((x1
h

)2
− i2

)
it is clear that the limit of CKh[δ0] for h → 0 will not exist, since x1

h → ∞ for a �xed point
(x1, x2) 6= (0, 0). This is in accordance with the fact that δ0 is not continuous, whence certainly
not real-analytic, and thus has no CK extension in the continuous case.
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