On the algebraic variety $\mathcal{V}_{r,t}$

V. Pepe

Abstract

The variety $\mathcal{V}_{r,t}$ is the image under the Grassmannian map of the $(t-1)$-subspaces of $PG(rt-1, q)$ of the elements of a Desarguesian spread. We investigate some properties of this variety, with particular attention to the case $r = 2$: in this case we prove that every $t + 1$ points of the variety are in general position and we give a new interpretation of linear sets of $PG(1, q')$.

Keywords: Desarguesian spread; Grassmann variety; Veronese variety; Segre variety; subgeometry; linear set.

1 Definitions and preliminary results

Let $V(n, q)$ be the vector space of dimension n over $GF(q)$ and $PG(n-1, q)$ be the projective space defined by the lattice of subspaces of $V(n, q)$; we will denote by (x_0, \ldots, x_{n-1}) both the vector of homogeneous coordinates of a certain point $P \in PG(n-1, q)$ and the point P as well. The group $PGL(n, q)$ is the group of all the projectivities of $PG(n-1, q)$. A subspace Π of $PG(n-1, q)$ has dimension $t-1$ and rank t if it is a t-dimensional subspace of $V(n, q)$. A subgeometry Σ of $PG(n-1, q)$ is a subset isomorphic to $PG(n-1, q')$, where $GF(q')$ is a subfield of $GF(q)$. Since a frame consisting of $n+1$ points determines a $PG(n-1, q')$ and $PGL(n, q)$ acts transitively on frames, all the subgeometries $PG(n-1, q')$ contained in $PG(n-1, q)$ are projectively equivalent. It is easy to see that a subgeometry $PG(n-1, q')$ is the set of fixed points of a suitable cyclic semilinear (i.e. $GF(q')$-linear) collineation (see [9], Theorem 4.28 and [6], Chapter 1).

A $(t-1)$-spread S of $PG(n-1, q)$ is a partition of the point set of $PG(n-1, q)$ in subspaces of dimension $(t-1)$ and it exists if and only if t divides n ([16]). Let S be a $(t-1)$-spread of $PG(rt-1, q)$, embed $PG(rt-1, q)$ into $PG(rt, q)$ as a hyperplane and let $A(S)$ be the following incidence structure: the points are the points of $PG(rt, q) \setminus PG(rt-1, q)$, the lines are the t-dimensional subspaces of $PG(rt, q)$ intersecting $PG(rt-1, q)$ in an element of S and the incidence is the natural one. Then $A(S)$ is a $2 - (q^{rt}, q^t, 1)$ translation design with parallelism (see [1]) and we will say that S is a Desarguesian spread if $A(S)$ is isomorphic to the affine space $AG(r, q^t)$. An easy construction of a Desarguesian spread of $PG(rt-1, q)$ is by the so called field reduction of $PG(r-1, q^t)$. The underlying vector space of the projective space $PG(r-1, q^t)$ is $V(r, q^t)$; if we consider $V(r, q^t)$ as a vector space over $GF(q)$, then it has dimension rt and it defines a $PG(rt-1, q)$. Every point $P \in PG(r-1, q^t)$ corresponds in this way to a subspace Π_P of $PG(rt-1, q)$ of dimension $(t-1)$ and the set $S = \{\Pi_P, P \in PG(r-1, q^t)\}$ is a spread of $PG(rt-1, q)$. Moreover, it is easy to see that any
two elements \(\Pi \) and \(\Pi' \) of \(S \) span a \((2t-1)\)-dimensional subspace completely partitioned by elements of \(S \), and they are precisely the ones corresponding to the points of the line \(\langle P, P' \rangle \) of \(PG(r-1, q^t) \). For \(r > 2 \), such a spread is called normal in [14] and in [1] it is proven that \(S \) is normal if and only if it is Desarguesian; for \(r = 2 \), the proof that a spread constructed in such a way is Desarguesian is in [16].

In [14], a linear set is defined as a generalization of the concept of subgeometry. More precisely, a \(GF(q) \)-linear set \(L \) of \(PG(r-1, q^t) \) of rank \(s \) is a set of points of \(PG(r-1, q^t) \) defined by a subset \(U \) of \(V(r, q^t) \) that is an \(s \)-dimensional vector space over \(GF(q) \). Such a linear set \(L \) is equivalent, by field reduction, to the elements of a Desarguesian spread \(S \) of \(PG(rt-1, q) \) having non-empty intersection with the subspace of \(PG(rt-1, q) \) defined by \(U \). Finally, there is another equivalent way to define a linear set as a (projected) subgeometry of a suitable projective space (for an overview about this topic see [15]). In this paper we present a fourth point of view to describe linear sets of \(PG(1, q^t) \).

We now introduce some algebraic varieties that play an important role in finite geometry.

The Veronese variety \(V(n, d) \) is an algebraic variety of \(PG(\binom{n+d}{d}-1, q) \) image of the injective map \(\nu_{n,d} : PG(n, q) \to PG(\binom{n+d}{d}-1, q) \), where \(\nu_{n,d}(x_0, x_1, \ldots, x_n) \) is the vector of all the monomials of degree \(d \) in \(x_0, \ldots, x_n \) (for \(d = 2 \), see [10], Chapter 25, and for general \(d \) see e.g. [5]) and we recall that \(V(1, d) \) is a normal rational curve of \(PG(d, q) \). We will use the notation \(V(n, d, q) \) to recall also the field under consideration.

Let \(PG(n_1-1, q), PG(n_2-1, q), \ldots, PG(n_k-1, q) \) be \(k \) projective spaces, then the Segre embedding \(\sigma : PG(n_1-1, q) \times PG(n_2-1, q) \times \cdots \times PG(n_k-1, q) \to PG(n_1, n_2, \ldots, n_k-1, q) \) is such that \(\sigma(x^{(1)}_1, x^{(2)}_2, \ldots, x^{(k)}_k) \) is the vector of all the products \(x^{(1)}_j x^{(2)}_j \cdots x^{(k)}_k \), with \(x^i = (x^{(i)}_0, x^{(i)}_1, \ldots, x^{(i)}_{n_i-1}) \in PG(n_i-1, q) \). The image of \(\sigma \) is called the Segre variety \(\Sigma_{n_1,n_2,\ldots,n_k} \) and it is in some way the product of projective spaces (see [10], Chapter 25 and [7]): for this reason we will say the image under \(\sigma \) of the subset \(S_1 \times S_2 \times \cdots \times S_k \) of \(PG(n_1-1, q) \times PG(n_2-1, q) \times \cdots \times PG(n_k-1, q) \) is the Segre product of the subsets \(S_1, S_2, \ldots, S_k \), \(S_i \in PG(n_i-1, q) \). We remark that \(V(n, d) \) is the diagonal of the Segre product of \(d \) \(PG(n, q) \)'s.

To introduce the last variety, we give some more details because the way it is defined is useful in the proof of a proposition of the next section. Let \(\Pi \) be an \((r-1)\)-dimensional subspace of \(PG(n-1, q) \), let \(x^{(1)}, x^{(2)}, \ldots, x^{(r)} \), with \(x^{(i)} \in V(n, q) \) be the coordinate vectors of \(r \) linearly independent points of \(\Pi \) and let \(T_\Pi \) be the matrix whose rows are the vectors \(x^{(1)}, x^{(2)}, \ldots, x^{(r)} \).

After choosing an ordering, we can then construct the vector of length \(\binom{n}{r} \) of all possible \(r \times r \) minors of \(T_\Pi \) and it is called a coordinate vector of \(\Pi \); by Lemma 24.1.1 of [10], this is unique up to a non-zero scalar factor. So we can define the Grassmannian map \(g_{n,r} : PG((r-1)(n-1), q) \to PG((r-1), q) \), where \(PG((r-1)(n-1), q) \) is the set of all \((r-1)\)-subspaces of \(PG(n-1, q) \), such that \(g_{n,r}(\Pi) \) is a coordinate vector of \(\Pi \). This map is injective and its image \(G_{n,r} \Pi \) is called the Grassmannian or the Grassmann variety of the \((r-1)\)-subspaces of \(PG(n-1, q) \) (for more details we refer to [10], Chapter 24).

The varieties described in this section are the image of injective maps, so every collineation of the projective space where the map is defined induces a collineation fixing the variety setwise and viceversa (for the Grassmann and
the Segre variety, see [10] Theorem 24.2.16 and Theorem 25.5.13 respectively; for the Veronese variety, see [5] Theorem 2.15). If σ is a collineation of the projective space, we will denote by σ* the collineation induced on the variety and we will call it the lifting of σ.

2 The algebraic variety $\mathcal{V}_{r,t}$

The algebraic variety $\mathcal{V}_{r,t}$ appeared for the first time in the literature in [16] and it has been described in a more detailed way and with a modern terminology in [14]. This variety is the image under the Grassmannian map $g_{r,t,t}$ of the elements of a Desarguesian $(t-1)$–spread S of $PG(rt-1,q)$; in [14], Lunardon proves that $\mathcal{V}_{r,t}$ is the complete intersection of the Grassmann variety $\mathcal{G}_{r,t,t}$ with a suitable $(t-1)$–space. In fact he proves that $\mathcal{V}_{r,t} = \Delta \cap \Sigma_{r,r_1,...,r_t}$, where $\Delta = PG(r^t-1,q)$ and $\Sigma_{r,r_1,...,r_t}$ is the Segre variety product of $t \: PG(r-1,q^t)$’s contained in the Grassmannian of the $(r-1)$–subspaces of $PG(n-1,q^t)$. As showed in the previous section, by field reduction, we can get a Desarguesian $(t-1)$–spread S of $PG(rt-1,q)$ from $PG(r-1,q^t)$: in this way, to every point P of $PG(r-1,q^t)$ corresponds a spread element Π_P and to every line m of $PG(r-1,q^t)$ is isomorphic to $PG(r-1,q^t)$. There are remarkable examples of such varieties: for $r = t = 2$, $\mathcal{V}_{2,2}$ is an elliptic quadric contained in the Klein quadric $Q^+(5,q)$ (see [8], Chapter 16); for $t = 2$, we have the so called Hermitian Veronesean (see for example [4]); for $t = 3, r = 2$ and q even, $\mathcal{V}_{3,2}$ is the Desarguesian ovoid of $Q^+(7,q)$ and for $t = 2, r = 3$ and $q = 2$ mod 3, a suitable hyperplane section of $\mathcal{V}_{2,3}$ is the Unitary ovoid of $Q^+(7,q)$, (see [11, 14]).

We start giving an explicit description of $\mathcal{V}_{r,t}$ in terms of coordinates.

Proposition 1. The algebraic variety $\mathcal{V}_{r,t}$ is isomorphic to the set of points of $PG(r^t-1,q^t)$ with coordinates $(x^{a_1}, x^{a_2}, \ldots, x^{a_{r^t}})$, where $x^{a_i} = x_0^{a_{i,0}} x_1^{a_{i,1}} \cdots x_{r^t-1}^{a_{i,r^t-1}}$, $(a_{i,0}, a_{i,1}, \ldots, a_{i,r^t-1})$ is such that $a_{i,k}$ is a sum of distinct powers of q, $\sum_{k=0}^{q^{t-1} + q^{t-2} + \ldots + 1} a_{i,k} = q^{t-1}$ and $(x_0, x_1, \ldots, x_{r^t-1}) \in PG(r-1,q^t)$ and it is contained in a subgeometry isomorphic to $PG(r^t-1,q)$.

Proof. In $\Sigma^* = PG(rt-1,q^t)$, consider the subgeometry $\Sigma = \{ (x_0, x_1, x_{r-1}, x_0^q, x_1^q, x_{r-1}^q, x_0^{q^2}, x_1^{q^2}, x_{r-1}^{q^2}, \ldots, x_0^{q^{t-1}}, x_1^{q^{t-1}}, x_{r-1}^{q^{t-1}}) : x_i \in GF(q^t) \}$; Σ is the set of fixed points of the $GF(q)$–linear collineation

\[\sigma : (x^{(1)}, x^{(2)}, \ldots, x^{(t)}) \mapsto (x^{(t)q}, x^{(t)q}, \ldots, x^{(t-1)q}), x^{(i)} = (x_0^{(i)}, x_1^{(i)}, x_{r-1}^{(i)}) \in V(r, q^t) \]

of order t, hence $\Sigma = PG(tr-1,q)$. Let $\Pi = \{ (x, 0, \ldots, 0) : x \in V(r, q^t) \} \subset \Sigma^*$ and for any $P \in \Pi$ let $\ell(P) = (P, P^q, \ldots, P^{q^{t-1}})$, then $S = \{ \ell(P) : P \in \Pi \}$ is a Desarguesian spread of Σ (see [3]). Let $g_{r,t,t}^*$ be the Grassmannian map of subspaces of rank t of Σ^*: by [14], page 250, the image under $g_{r,t,t}^*$ of the subspaces of rank t of Σ is the Grassmannian of $(t-1)$–subspaces of Σ. The image under $g_{r,t,t}^*$ of $\ell(P)$ is the vector of all minors of order t of the matrix
whose rows are the coordinate vectors of $P,P^r,\ldots,P^{r^{l-1}}$, that is the matrix

$$T(P) = \begin{pmatrix}
x & 0 & \cdots & 0 \\
0 & x^q & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & x^{r^{l-1}}
\end{pmatrix},$$

where $x = (x_0,\ldots,x_{r-1}) \in V(r,q^t)$ and $P = (x,0,\ldots,0) \in \Pi$. The submatrices of order t of $T(P)$ are such that every column has only one non–zero entry, hence the determinant is 0 or it is in the form $x_0^{a(0)} \cdot x_1^{a(1)} \cdots x_{r-1}^{a(r-1)}$, with $\sum_{k=0}^{R} a(k) = q^{t-1}+q^{t-2}+\cdots+1$, $a(k)$ is a sum of distinct powers of q. This set of points is contained in a subgeometry isomorphic to $PG(r-1,q)$ by [14], page 250.

Remark 1 We want to emphasize the analogy of $V_{r,t}$ with the Veronese variety $V(r-1,t,q^t)$. We have already mentioned that $V_{r,t}$ is the intersection of $\Sigma_{r,t,...}$ the Segre variety product of $t \, PG(r-1,q^t)'$s with a suitable subgeometry $PG(r^t-1,q)$, more precisely, it is the Segre embedding of the points of type $(x,x^q,\ldots,x^{q^{t-1}}) \in PG(r-1,q^t) \times PG(r-1,q^t) \times \cdots PG(r-1,q^t)$, whereas $V(r-1,t,q^t)$ is the diagonal of $\Sigma_{r,t,...}$, i.e. is the Segre embedding of the points of type $(x,x,\ldots,x) \in PG(r-1,q^t) \times PG(r-1,q^t) \times \cdots PG(r-1,q^t)$. Moreover, $V(r-1,t,q^t)$ is defined by the vectors of all monomials of degree t in x_0,x_1,\ldots,x_{r-1}, whereas $V_{r,t}$ is defined by the vectors of all monomials of degree $1+q+\cdots+q^{t-1}$, but the only powers admitted for x_i are of type $q^{a_1}+\cdots+q^{a_k}$, $a_i \neq a_j \forall i \neq j$.

Example 1 The variety $V_{3,2}$ is the image of the map $\alpha : (x_0,x_1,x_2) \in PG(2,q^3) \rightarrow (x_0^{q+1},x_0,x_1,x_1^{q+1},x_1x_2,x_2,x_2^{q+1},x_2x_0,x_0) \in PG(8,q^2)$. Let σ be the following $GF(q)$–linear collineation of order two:

$$(y_0,y_1,y_2,y_3,y_4,y_5,y_6,y_7) \in PG(8,q^2) \rightarrow (y_0^q,y_1^q,y_2^q,y_3^q,y_4,y_5,y_6,y_7^q) \in PG(8,q^2).$$

The points of $V_{3,2}$ are fixed by σ and hence $V_{3,2}$ is contained in the $PG(8,q)$ defined by σ (compare with [4]).

Example 2 The variety $V_{2,4}$ is the image of the map $\alpha : (x,y) \in PG(1,q^4) \rightarrow (x^{q^2+q^3+q},x^{q^3+q^4+q},x^{q^2+q+q^4+q},x^{q^3+q+q^4+q},x^{q^3+q^2+q},x^{q+q^2+q^4+q},x^{q^3+q+q^4+q},x^{q^3+q^2+q},x^{q^2+q^3+q^4+q},x^{q+q^2+q^4+q}) \in PG(15,q^4)$. Let τ be the following $GF(q)$–linear collineation of order four: $(z_0,z_1,\ldots,z_{15}) \in PG(15,q^4) \rightarrow (z_0^q,z_1^q,z_2^q,z_3^q,z_4^q,z_5^q,z_6^q,z_7^q,z_8^q,z_9^q,z_{10}^q,z_{11}^q,z_{12}^q,z_{13}^q,z_{14}^q,z_{15}^q)$. The points of $V_{2,4}$ are fixed by τ and hence $V_{2,4}$ is contained in the $PG(15,q)$ defined by τ.

Remark 2 There is a group isomorphic to $PGL(r,q^t)$ acting 2–transitively on $V_{r,t}$ ([14], Corollary 1).

The following result is the group isomorphic to $PGL(r,q^t)$ acting 2–transitively on $V_{r,t}$ ([14], Corollary 1).

Theorem 2. Let g be the map $P \in PG(r-1,q^t) \rightarrow g_{r,t}(\ell(P))$. The image under g of a subgeometry $PG(r-1,q^t)$ is the intersection of the Segre product of s Veronese varieties $V(r-1,\frac{t}{2},q^s)$ with a $PG((r-1+\frac{t}{2})^s-1,q)$ and
it is the complete intersection of $\mathcal{V}_{r,t}$ with a suitable space of rank $(t-\frac{r}{2})^s$.

In particular, the image of a subgeometry $\text{PG}(r-1,q)$ is a Veronese variety $\mathcal{V}(r-1,t,q)$ and it is the intersection of $\mathcal{V}_{r,t}$ with a suitable space of rank $(t^s)^s$.

Proof. Since all the subgeometries are projectively equivalent and by Remark 2, we can assume that the points of $\text{PG}(r-1,q)$ are the ones with coordinates in $\text{GF}(q^s)$. If $P \in \text{PG}(r-1,q^s)$, then the image under the Grassmannian map of $\ell(P)$ is the vector of all minors of order t of the matrix

$$T(P) = \begin{pmatrix} x & 0 & \ldots & 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\ 0 & x^q & \ldots & 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & x^{q-1} & \ldots & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & \ldots & \ldots & x & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 & \ldots & \ldots & 0 & x^q & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & \ldots & \ldots & 0 & 0 & \ldots & x^{q-1} \end{pmatrix}$$

where $x = (x_0, \ldots, x_{r-1}) \in V(r,q^s)$. Next, consider the following matrix:

$$T(P)^* = \begin{pmatrix} x_1 & 0 & \ldots & 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\ 0 & x_2 & \ldots & 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & x_s & \ldots & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & \ldots & \ldots & x_1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 & \ldots & \ldots & 0 & x_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & \ldots & \ldots & 0 & 0 & \ldots & x_s \end{pmatrix}$$

where $x = (x_0, \ldots, x_{r-1}) \in V(r,q^s)$; the vectors of all the minors of $T(P)^*$ is the Segre product of s Veronese varieties $\mathcal{V}(r-1, \frac{r}{2}, q^s)$ and the minors of $T(P)$ are the points of this variety fixed by the $GF(q^s)$–linear collineation σ^s. Hence, as in [14] page 250, this variety is $V(r-1, \frac{r}{2}, q^s) \cap \Delta$, where $\Delta = \text{PG}(t^{\frac{r}{2}} - 1, q)$.\hfill\Box

2.1 The case $r = 2$

In this section, we focus on the case $r = 2$. In [14], Theorem 1, Lunardon proves that the algebraic variety $\mathcal{V}_{r,t}$ is a cap of $\text{PG}(t^2 - 1, q)$, i.e. any three points of $\mathcal{V}_{r,t}$ are not collinear. In the case $r = 2$, we can prove a stronger result, but we first need a technical lemma.
Lemma 1. Let $S = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be a set of n distinct non-negative integers, with $n \leq t$ and $\alpha_i < t \ \forall i$. Let M be the $(n+1) \times 2^n$ matrix over $GF(q^t)$, such that the columns of M are in bijective correspondence with the elements of the power set of S, namely $\mathcal{P}(S)$, and $M_{i,j} = x_{(j)}^{\alpha_i}$, where $v(j) = q^{\alpha_1} + \ldots + q^{\alpha_i}$ and $\{i_1, \ldots, i_k\}$ is the j-th element of $\mathcal{P}(S)$ (by convention, if the j-th element is the empty set, then $x_j^{(j)} = 1$). If $x_h \neq x_k \ \forall h \neq k$, then the $GF(q^t)$-rank of M is $n+1$.

Proof. We prove the statement by induction on n. For $n = 1$, $M = \begin{pmatrix} 1 & x_1^{q^t} \\ 1 & y_1^{q^t} \end{pmatrix}$ and the statement is obviously true. Let now $n > 1$ and suppose it is true for $n-1$. We assume that the first column is the all-one column. After adding to every column a suitable linear combination of the other ones, we can get a matrix M' such that the first row is the vector $(1,0,\ldots,0)$ and $M'_{i,j} = (x_i - x_j)^{(j)}$, $\forall i = 2, \ldots, n+1$ and $\forall j = 1, \ldots, 2^n$. Consider the submatrix of components $M'_{i,j}$ with $i \geq 2$ and j such that the j-th element of $\mathcal{P}(S)$ contains α_1; under the hypothesis that $x_i \neq x_1 \ \forall i \geq 2$, we can divide each row by $(x_i - x_1)^{\alpha_1}$ and in this way we get a $n \times 2^{n-1}$ matrix over $GF(q^t)$ determined by the set $S' = S \setminus \{\alpha_1\}$: by the induction hypothesis the rank of this matrix is n and so the rank of M is $n+1$.

Theorem 3. Any $t+1$ points of $\mathcal{V}_{2,t}$ are in general position, i.e. any $t+1$ points of $\mathcal{V}_{2,t}$ span a t-dimensional space.

Proof. The points of $\mathcal{V}_{2,t}$ are $\{(x^{\alpha_1}, x^{\alpha_2}, \ldots, x^{\alpha_k}) \alpha_i \text{ are all the sums of distinct powers } q^i, 0 \leq i \leq t-1 \} \cup \{ P = (0,0,\ldots,0,1) \}$. Since by Remark 2 there is a transitive group fixing $\mathcal{V}_{2,t}$, we can assume that the $t+1$ points we consider are distinct from P. Let M be the matrix the rows of which are the coordinate vectors of $t+1$ points of $\mathcal{V}_{2,t} \setminus \{P\}$. We can apply the Lemma 1 to M with $n = t$, hence the $t+1$ rows vectors of M are $GF(q^t)$-linearly independent and so they are also $GF(q)$-linearly independent.

Remark 3 This is another analogy with the Veronese variety: $\mathcal{V}(1,t)$ is a normal rational curve and it has the property that any $t+1$ points span a t-dimensional space.

The next theorem is about linear sets of $PG(1,q^t)$. In Section 1 we have recalled the three different ways to define a linear set of a projective geometry, but for our proof we shall use the following: a linear set of $PG(1,q^t)$ of rank r is the set of the elements of S, where S is a Desarguesian $(t-1)$-spread of $PG(2t-1,q)$, with non-empty intersection with a subspace of $PG(2t-1,q)$ of dimension $r-1$; in this case, a linear set is a proper one when $r \leq t$.

We need to recall the following property of the Grassmannian. Let \mathcal{G} be the Grassmannian of the $(t-1)$-subspaces of $PG(2t-1,q)$: \mathcal{G} is in $PG(N-1,q)$, where $N = \binom{2t}{2}$. By [10], page 109, in $PG(N-1,q)$ there exists a polarity, called the fundamental polarity of \mathcal{G}, such that for every $(t-1)$-space Π, the $(t-1)$-spaces with non-empty intersection with Π correspond to the points of $\mathcal{G} \cap g(\Pi)^\perp$, where g is the Grassmannian map.

Theorem 4. A linear set L of rank $r \leq t$ of $PG(1,q^t)$ corresponds to the points of $\Pi \cap \mathcal{V}_{2,t}$, where Π is a suitable subspace of the $PG(2t-1,q)$ containing $\mathcal{V}_{2,t}$. Moreover, if $r = t$, then Π is a hyperplane of $PG(2t-1,q)$; if $r = t-1$, then Π is a subspace of codimension $t+1$ of $PG(2t-1,q)$.
The points of L correspond to the elements of S intersecting an $(r - 1)$-dimensional subspaces Ω of $PG(2t - 1, q)$. An element $\pi \in S$ intersects Ω if and only if π intersects all the $(t - 1)$-spaces through Ω. In $PG(N - 1, q)$, let Λ be the $(2^t - 1)$-dimensional subspace containing $\mathcal{V}_{2,t}$, and let $\mathcal{G}' = \{g(\pi), \Omega \subseteq \pi\}$: by [10], Corollary 1 page 117, \mathcal{G}' is projectively equivalent to the Grassmannian of the $(t - r - 1)$-spaces of $PG(2t - r - 1, q)$, hence $\langle \mathcal{G}' \rangle = \Sigma$ a $(t^2 - r - 1)$-space. Hence, the points of L correspond to the points of $\mathcal{V}_{2,t} \cap \Sigma$ if $r = t$, then Σ is a point and $\mathcal{V}_{2,t} \cap \Sigma^⊥$ is a hyperplane section of $\mathcal{V}_{2,t}$ (since $\mathcal{V}_{2,t}$ can not be contained in the hyperplane because not all the elements of S can intersect a given $(t - 1)$-space). If $r = t - 1$, then \mathcal{G}' is a maximal subspace of \mathcal{G} and it has dimension t. The space $\Lambda^⊥$ has empty intersection with \mathcal{G}, since no $(t - 1)$-space can intersect all the spread elements, hence $\Lambda^⊥ \cap \mathcal{G}' = \emptyset$, and so $\Lambda \cap \mathcal{G}'^⊥$ is the minimum possible, i.e. it is a subspace of codimension $t + 1$ of Λ.

The following result is a generalization of the main result of Section 3 of [12], where Lavrauw and Van de Voorde show how a $GF(q)$-linear set of $PG(1, q^s)$ can intersect a subline $PG(1, q)$.

Proposition 5. A $GF(q)$-linear set L of $PG(1, q^s)$ either contains a fixed subline $PG(1, q^r)$, $s | r$, or it intersects it in at most $\frac{1}{2}(q^{s-1} + q^{s-2} + \ldots + 1)$ points.

Proof. The points of L correspond to the points of the intersection of $\mathcal{V}_{2,t}$ with a suitable subspace. The variety $\mathcal{V}_{2,t}$ consists of the points $(x^{\alpha_1}, x^{\alpha_2}, \ldots, x^{\alpha_m}) \in PG((1 + \frac{1}{t})^s - 1, q)$, where $x^{\alpha_1} = x_0^{\alpha_{(i)}} x_1^{\alpha_{(i)}}$, $(\alpha_{(i)}, \alpha_{(i)})$ is such that $\alpha_{(i)}^{(i)}$ is a sum of distinct powers of q, $\alpha_0^{(i)} + \alpha_1^{(i)} = \frac{1}{t}(q^{s-1} + q^{s-2} + \ldots + 1)$ $\forall i$, $x^{\alpha_i} \neq (x^{\alpha_i})y$ $\forall i \neq j$, $\forall h = 0, \ldots, t - 1$, and $(x_0, x_1) \in PG(1, q^s)$. Hence, if a hyperplane section of $\mathcal{V}_{2,t}$ does not contain the image of $PG(1, q^s)$, then it consists of the points corresponding to the points of $PG(1, q^s)$ that satisfy a homogeneous equation of degree $\frac{1}{t}(q^{s-1} + q^{s-2} + \ldots + 1)$ and so they are at most $\frac{1}{t}(q^{s-1} + q^{s-2} + \ldots + 1)$.

Acknowledgments

The author thanks G. Lunardon for valuable discussions about the topic of this article.

References

V. Pepe

Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000 Ghent, Belgium

valepepe@cage.ugent.be