Book of Abstracts

The 32nd International Conference on Coastal Engineering (ICCE 2010)

June 30 --- July 5, 2010

Shanghai, China

Prepared and Published
By the ICCE 2010 Local Organizing Committee
The 32nd ICCE Conference Book of Abstracts is available only to registrants of the 32nd ICCE conference.

© Copyright is reserved by the Authors, Coastal Engineering Research Council (CERC) and Chinese Ocean Engineering Society (COES).

All rights reserved, including translation. Except as permitted by the Copyright, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of Coastal Engineering Research Council (CERC) and Chinese Ocean Engineering Society (COES).

CERC and COES, the ICCE 2010 Secretariat and the ICCE 2010 Local Organizing Committee are not responsible for any statements made or opinions expressed in this book. The abstracts presented in this book are unedited versions of files provided by the authors; the authors are solely responsible for contents therein.
The Local Organizing Committee

Honorary Chairmen:
Yang You, Academician of Chinese Academy of Sciences, Honorary President of Chinese Ocean Engineering Society (COES)
Qiu Dahong, Academician of Chinese Academy of Sciences, Honorary President of COES
Cheng Jinpei, Vice Minister, Ministry of Science and Technology
Weng Mengyong, Vice Minister, Ministry of Transport
Hu siyi, Vice Minister, Ministry of Water Resources
Yao Jianian, Vice Director, National Natural Science Foundation of China
Wang Shuguang, President of Chinese Society for Oceanography

Chairman:
Xie Shiileng, Academician of Chinese Academy of Engineering, Honorary President of COES

Executive Member:
Zuo Qihua, Vice President, Nanjing Hydraulic Research Institute

Members:
Chen Gang, Vice President, Shanghai Jiao Tong University
Ding Pingxing, Prof., East China Normal University
Fan Qijin, Chief Engineer, Yangtze Estuary Administration Bureau
Kao Chia Chuen, Prof., Cheng Kung University
Joseph Hun-wei Lee, Pro-Vice-Chancellor (Staffing), The University of Hong Kong
Li Huajun, Prof., Ocean University of China
Li Jiachun, Academician of Chinese Academy of Sciences
Li WanHong, Director, Department of Hydraulic Engineering and Ocean Engineering, NSFC
Ou Jinping, President, Dalian University of Technology
Sun Ziyu, Chief Engineer of China Communications Construction Company, Ltd.
Yan Yixin, Vice President, Hohai University
Yu Jianxing, Vice President, Tianjin University
Yu Xiping, Prof., Tsinghua University

Secretary-General:
Dou Xiping, Prof., Nanjing Hydraulic Research Institute

Deputy Secretaries-General:
Liu Hua, Prof., Shanghai Jiao Tong University
Ge Jiufeng, Prof., Nanjing Hydraulic Research Institute
Coastal Engineering Research Council (CERC)

Chairman:
Robert Dalrymple USA

Vice-Chairman:
Billy Edge USA

Members:
Ida Brøker Denmark
Robert Dean USA
James Houston USA
William Kamphuis Canada
David Kriebel USA
Patrick Lynett USA
Orville Magoon USA
Masaru Mizuguchi Japan
Ronald Noble USA
Marcel Stive The Netherlands

Secretary:
Jane Smith USA
Organizer:
Chinese Ocean Engineering Society

Under Auspices of:
Coastal Engineering Research Council of COPRI of ASCE

Host:
Nanjing Hydraulic Research Institute

Co-hosts:
Shanghai Jiao Tong University
East China Normal University

Sponsoring and Supporting Institutions:
National Natural Science Foundation of China
China Harbor Engineering Company, Ltd.
Dalian University of Technology
Hohai University
Key Lab of Port, Waterway and Sedimentation Engineering of the Ministry of Transport
Shanghai International Port Group
Yangtze Estuary Waterway Administration Bureau of the Ministry of Transport
China International Conference Center for Science and Technology
Water Research Laboratory, University of New South Wales, Australia
IHC Hydrohammer B.V., the Netherlands
Foreword

The 32nd International Conference on Coastal Engineering (ICCE 2010), which will be convened on June 30 to July 5, 2010, in Shanghai, is the first of its kind ever held in the mainland of China. Delegates from 46 countries will gather in this great event.

A total of 725 papers were submitted. After review jointly by Technical Paper Review Committee (TPRC), Coastal Engineering Research Council (CERC) and the Local Organizing Committee (LOC) of ICCE 2010, the abstracts-in-depth of 436 papers and 55 posters have been selected for inclusion in this Book of Abstracts.

With the rapid development of science and technology in recent years, much progress has been made in the basic theory, computational methodology and data processing approaches in coastal engineering studies; the understanding of various physical phenomena in coasts and seas has been deepened; and the relationship among various disciplines has become much closer. The accepted papers and posters cover the science and technology relating to planning, design, management and construction for coastal protection, estuary training and port engineering, including topics on wave; swash, nearshore currents and long waves; coastal management, risk and environmental restoration; sediment transport and morphology; and coastal structure. Interdisciplinary topics, covering more than three sub-disciplines, number quite a few, leading to the understanding that scientists of today and in the future need a more comprehensive and integrated ability to handle various problems. This conference will surely help to broaden the vision of coastal researchers and engineers, trigger new approaches and concepts, and promote the development of coastal engineering studies, which is the very goal of ICCE conferences.

We wish to express our sincere thanks to the organizer and hosting institutions of ICCE 2010 for their hard work to ensure the success of the conference; thanks also to the sponsoring and supporting institutions and exhibitors for their strong support of and active participation in the conference. We believe that delegates from all over the world will enjoy their participation in ICCE 2010 both academically and culturally.

May ICCE 2010 be a great success!

Xie Shileng
Chairman, LOC
ICCE 2010
Contents

Sessions Summary
Abstract and Session Index
Keynote Speech
Paper Abstracts
Poster Abstracts
Author Index
C2 Overtopping II
Chairperson: Christopher Bender

185 Mathematical Modelling of Wave Overtopping at Complex Structures: Validation and Comparison
 Cordula Berkenbrink, Ralf Kaiser, Hanz Dieter Niemeyer

186 Wave Overtopping and Rubble Mound Stability under Combined Loading of Waves and Current
 Paul VAN STEEG, Marcel R.A. VAN GENT

187 Sliding Stability of Inner Slope Clay Cover Layers of Sea Dikes Subject to Wave Overtopping
 Andre van Hoven, Bianca Hardeman, Jentsje W. van der Meer, Gosse Jan Steendam

188 Overtopping Uncertainties and Harbour Functionality. The Case of Barcelona Harbours
 Xavier Gironella, Tiago Oliveira, Agustín Sanchez-Arcilla, Oriol Garcia,
 Manuel Valdés, Miguel Angel Pindado

189 Modelling Storm Surge Wave Overtopping of Seawalls with Negative Freeboard
 David K. Jones, Dominic Reeve, Qingping Zou

C3 Overtopping III
Chairperson: Masaru Mizuguchi

190 Reduction of Wave Overtopping on Dikes by Means of a Parapet
 Koen Van Doorslaer, Julian De Rouck, Jimmy Geeraerts

191 Waves Overtopping a Wide-Crested Dike
 Toon Verwaest, Philippe Vanpoucke, Marc Willems, Tom De Mulder

192 Destructive Wave Overtopping Tests on Grass Covered Landward Slopes of Dikes and Transitions to Berms
 Gosse Jan Steendam, Jentsje W. van der Meer, Bianca Hardeman,
 Andre van Hoven

193 Flow Depths and Velocities at Crest and Inner Slope of a Dike, in Theory and with the Wave Overtopping Simulator
 Jentsje van der Meer, Bianca Hardeman, Gosse Jan Steendam,
 Holger Schüttrumpf, Henk Verheij

194 Modelling the Erosive Impact of Overtopping Waves on Grassed Landward Slopes of Dikes and Levees
 Henk Verheij, Gijs Hoffmans, Maurice Paulissen, Gert Jan Akkerman,
 Bianca Hardeman, Jentsje van der Meer

C4 Wave Impacts
Chairperson: Hemming Schäffer

195 Experimental Formula for the Wave-Induced Ship Mooring Force
 Xiangwei Meng, Xuéping Gao, Wenzhong Zhang, Yunpeng Jiang

196 Large Scale Wave Impacts on a Vertical Wall
 Bas Hofland, Mirosław Lech (Mirek) Kaminski, Guido Wolters
197 3D Large-Eddy Simulation of Water-Wave Impact during Violent Overtopping Events
Xin Lv, Qingping Zou, Dominic Reeve

198 Wave Loads on Exposed Jetties: Description of Large Scale Experiments and
Preliminary Results
Luca Martinelli, Matteo Tirindelli, John Alderson, Stefan Schimmels

C5 Wave-Structure Interaction I
Chairperson: David Kriebel
199 Calculation of Permeability Parameter of Perforated Wall
Kyung-Duck Suh, Yeul Woo Kim, Chang-Hwan Ji

200 An Icelandic-Type Berm Breakwater for the Okajee Port Project in Western Australia
Sigurdur Sigurdsson, Richard Mocke, Omar Smarason, Matt Primer, Bill Carlton

201 Hydrodynamic Performance of A Perforated Free-Surface Semicircular Breakwater
Hee Min Teh, Venugeresan Venugopal, Tom Bruce

202 Response Analysis of Flapgate Breakwater for Tsunami and Storm Surge Protection
Yuichiro Kimura, Hideyuki Nizato, Kyoichi Nakayasu, Tomohiro Yasuda, Nobuhiro Mori,
Hajime Mase

C6 Wave-Structure Interaction II
Chairperson: Robert Whalin
203 Design Methods for Pile-Supported Floating Wave Attenuators
David L. Kriebel

204 Hydraulic Performance of Bonded Permeable Elastomeric Revetments and Subsoil
Response to Wave Loads
Hocine Oumeraci, Tijl Staal, Saskia Pförtner, Matthias Kudella, Stefan Schimmels,
Henk-Jan Verhagen

Made of Geotextile Sand Containers
Juan Recio, Hocine Oumeraci

206 IH-3VOF: A Three Dimensional Navier-Stokes Model for Wave and Structure Interaction
Lara, J. L., Losada I. J., del Jesus, M., Barajas, G., Guanche, R.

207 Reassessing Reliability Based on Survived Loads
Timo Schweckendiek

C7 Wave-Structure Interaction III
Chairperson: Ioan Nistor
209 Pressure Distributions on A Vertical Breakwater: Experimental Study and Scale Effects
Dulce M Pérez Romero, Mariana Correa, Miguel Ortega-Sánchez,
María Clavero, Miguel A. Losada

210 Study on the Performance-Based Design for Breakwater with Wave Dissipating Block
Katsumi Seki, Taro Arikawa, Masahiro Mizutani, Ken-ichiro Shimosako
REDUCTION OF WAVE OVERTOPPING ON DIKES BY MEANS OF A PARAPET

INTRODUCTION
The worldwide rise of the sea level reduces the freeboard of existing coastal constructions, and thus increases the overtopping. Above that, there is a tendency to protect the coastlines against a storm with higher return period, e.g. 1000 years, which also initiates a bigger overtopping discharge if such a storm would occur.

On the other hand, coastal structures are often restricted in height and space due to tourism, buildings, architectural reasons, etc. In this paper, an innovative crest design will be proposed to reduce wave overtopping without increasing the crest height of the structures: the parapet.

GEOMETRY
A parapet or return wall consists of a vertical wall with a seaward bent "nose", as presented in Figure 1. This construction can be integrated in the existing structure without increasing its crest height.

TESTS AND OBJECTIVES
All tests in this study are carried out in the wave flume of the Coastal Engineering Laboratory of Ghent University, with dimensions 30m x 1m x 1.20m (length x width x height). Test results are presented by overtopping-formulae as described in the TAW guidelines (van der Meer, 2002). Three different slopes are tested (1/2, 1/4 and 1/6) to examine both breaking and non-breaking waves, as categorized in the TAW guidelines. Though, emphasis is put on the steepest slope 1/2 since that's the main geometry for the dikes along the Belgian coastline.

Within this study, lots of different angles β and height ratios $\lambda = h_r/h_0$ of the parapet are tested, to find an expression of the reduction as a function of β and λ. This reduction will be presented as a factor γ, and theoretically represents a virtual increase of the crest height.

RESULTS
According to the prediction formula for non-breaking waves, no reduction factors for a vertical wall should be included in the formula (van der Meer, 2002). Though, figure 2 shows that dikes with a vertical wall (yellow dots) overtop less than natural smooth dikes without this vertical wall (blue diamonds). Dikes with a parapet, constructed as in Figure 1, reduce the overtopping discharge much more: the green triangles in figure 2 lie beneath all other points. Another remarkable fact in this graph is the scatter among the green triangles. This is due to the fact that all different geometries (angles and height ratios) of the parapet are plotted in the same graph. This leads to the conclusion that one general reduction factor for all geometries isn't valid. In the presentation, γ_{parapet} will be presented as a function of the dimensionless parameters: angle β and height ratio λ.

REFERENCES