Advanced search
1 file | 260.22 KB

Robust principal component analysis based on pairwise correlation estimators

Author
Organization

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 260.22 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Van Aelst, Stefan, Ellen Vandervieren, and Gert Willems. 2010. “Robust Principal Component Analysis Based on Pairwise Correlation Estimators.” In Proceedings in Computational Statistics 2010, ed. Yves Lechevallier and Gilbert Saporta, 573–580. Heidelberg, Germany: Springer.
APA
Van Aelst, S., Vandervieren, E., & Willems, G. (2010). Robust principal component analysis based on pairwise correlation estimators. In Y. Lechevallier & G. Saporta (Eds.), Proceedings in computational statistics 2010 (pp. 573–580). Presented at the 19th International Conference on Computational Statistics (COMPSTAT - 2010), Heidelberg, Germany: Springer.
Vancouver
1.
Van Aelst S, Vandervieren E, Willems G. Robust principal component analysis based on pairwise correlation estimators. In: Lechevallier Y, Saporta G, editors. Proceedings in computational statistics 2010. Heidelberg, Germany: Springer; 2010. p. 573–80.
MLA
Van Aelst, Stefan, Ellen Vandervieren, and Gert Willems. “Robust Principal Component Analysis Based on Pairwise Correlation Estimators.” Proceedings in Computational Statistics 2010. Ed. Yves Lechevallier & Gilbert Saporta. Heidelberg, Germany: Springer, 2010. 573–580. Print.
@inproceedings{1242770,
  author       = {Van Aelst, Stefan and Vandervieren, Ellen and Willems, Gert},
  booktitle    = {Proceedings in computational statistics 2010},
  editor       = {Lechevallier , Yves  and Saporta, Gilbert },
  isbn         = {9783790826036},
  language     = {eng},
  location     = {Paris, France},
  pages        = {573--580},
  publisher    = {Springer},
  title        = {Robust principal component analysis based on pairwise correlation estimators},
  url          = {http://dx.doi.org/10.1007/978-3-7908-2604-3\_59},
  year         = {2010},
}

Altmetric
View in Altmetric