The role of CLE peptides during nodulation

Virginie Mortier
Figure cover: Drawing of a transversal root section showing the MtCLE13 expression pattern during early nodule development. A high-to-low MtCLE13 expression gradient, radiating from the inner towards the outer cortical cell layers is observed in a root cortical region defining the incipient nodule.
The role of CLE peptides during nodulation

Virginie Mortier

Promotor: Prof. Dr. Sofie Goormachtig
Co-promotor: Prof. Dr. Marcelle Holsters

Ghent University
Faculty of Sciences
Department of Plant Biotechnology and Genetics
VIB Department of Plant Systems Biology

Research funded by Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO).

Dissertation submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Sciences, Biotechnology.

Academic year: 2010-2011
Examination committee

Prof. Dr. Ann Depicker (chair)
Faculty of Sciences, Department of Plant Biotechnology and Genetics, Ghent University

Prof. Dr. Sofie Goormachtig (promotor)
Faculty of Sciences, Department of Plant Biotechnology and Genetics, Ghent University

Prof. Dr. Marcelle Holsters (co-promotor)
Faculty of Sciences, Department of Plant Biotechnology and Genetics, Ghent University

Dr. Pascal Ratet
Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France

Dr. Florian Frugier
Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France

Prof. Dr. Tom Beeckman
Faculty of Sciences, Department of Plant Biotechnology and Genetics, Ghent University

Dr. Giel van Noorden
Faculty of Sciences, Department of Plant Biotechnology and Genetics, Ghent University

Prof. Dr. Ir. Monica Höfte
Faculty of Bioscience Engineering, Department of Crop Protection, Ghent University

Prof. Dr. Dirk Inzé
Faculty of Sciences, Department of Plant Biotechnology and Genetics, Ghent University
Het neerschrijven van een dankwoord gaat, volgens mij, meestal gepaard met tegenstrijdige gevoelens. Enerzijds komt dit overeen met het finaliseren van je doctoraat en is dit een uitstekend moment om een aantal mensen in de bloemetjes te zetten, anderzijds is het een droef moment van afscheid nemen, afscheid van vele mooie jaren op het PSB en meer bepaald bij de plant-microob interactie groep aka de Marcellekes. Alhoewel ik er gedurende mijn universitaire studies rotsvast van overtuigd was, met behulp van biotechnologie, kanker en aids de wereld uit te helpen, belandde ik enkele jaren geleden in de groep van Prof. Dr. Sofie Goormachtig en Prof. Dr. Marcelle Holsters voor mijn masterthesis over . . . nodulatie op *Sesbania rostrata*?! Een redelijk onbekende, maar bijzonder interessante wereld ging voor mij open en het duurde dan ook niet lang voor ik volledig verkocht was. Niet enkel omwille van het onderwerp en de praktische kant van het plantenonderzoek, maar eveneens omwille van de fijne collega’s en de fantastische sfeer die er heerst. Ook al moest ik de aanvang van mijn doctoraat een jaartje uitstellen, ik voelde me bijzonder vereerd terug te mogen keren naar de plant-microbes!

Zonder iemand te kort te doen, zijn er een aantal mensen die ik persoonlijk wil bedanken. Ten eerste, mijn promoter Sofie: woorden zullen sowieso te kort schieten, maar weet dat ik heel veel aan je heb gehad! Je motivatie, enthousiasme, relativeringsvermogen, geduld en luisterend oor waren voor mij de perfecte mix om steeds maar verder door te zetten. Ook wil ik je nog speciaal bedanken voor de buitenlandse ervaringen die ik dankzij jou heb kunnen opdoen. Het noorden, zuiden en westen liet je me zelf verkennen, het oosten bracht je binnen in ons labo! Op de tweede plaats op mijn lijstje staat mijn co-promoter Marcelle: de deur van jouw bureau stond altijd open, niet enkel om mijn nogal vaak hongerige maag met wat lekkers te vullen, ook voor wat wijze raad, een tweede mening en een goedkeurende blik kon ik steeds bij je langskomen. Bedankt daarvoor! Ik wens je nog het allerbeste bij de plant-microbes en tijdens de mooie jaren die daar ongetwijfeld op zullen volgen. Ik was alvast zeer
verneder één van je laatste doctoraatsstudenten te mogen zijn!

Next, I would like to thank the members of my examination committee for their time and helpful suggestions to improve my thesis. Speciale dank aan Giel die steeds een grote interesse vertoonde in mijn onderzoek.

Maar laat ons nog even terugkeren naar de onderzoeksgroep waar ik deel van uitmaakte... De plant-microbes zouden de plant-microbes niet zijn zonder de aanwezigheid van Christa en Annick. Terwijl de ene me inwijdde in de wereld van de legumineuzen, leerde de andere me de kneepjes van de Gateway technologie. Voeg daar nog eens aan toe dat beiden super gezellig en aangenaam zijn om mee samen te werken, ze steeds overlopen van enthousiasme voor onze al dan niet wetenschappelijke projecten en ze over een ongelofelijk grote dosis geduld beschikken! Dat laatste kwam niet enkel mij, maar ook meermaals mijn thesisstudenten goed van pas ;-)!! Bedankt voor ALLES!

Elisabeth, onze ‘loopbaan’ liep min of meer parallel en ik had me geen betere collega kunnen bedenken om niet enkel de IWT perikelen, maar ook de ups en downs die met een doctoraat gepaard gaan, te doorstaan. Je bent een fantastische meid, ik zal je missen en hoop dan ook dat onze wegen elkaar nog meermaals zullen kruisen. Alumni PSB here we come?! Ook de rest van de plant-microbes zou ik willen bedanken: Nathan, onze manager-in-spe voor het brengen van een mannelijke toets in het labo. Carolien, omdat ze zo een leuke thesisstudente was en de plant-microbe spirit onder andere via haar nog minstens een aantal jaren gegarandeerd zal zijn. Guangling, for the exotic touch in the lab and for the continuation of the CLE peptide story. Katrien, omdat je een fijne collega was en ik de eerste jaren van mijn doctoraat heel veel aan je heb gehad! Stephen, die de plant-microbes nooit echt heeft verlaten en misschien zelfs terugkomt, gewoon omdat ik altijd met mijn vragen en verhalen bij hem terecht kon. Danny, omdat ze overloopt van een aanstekelijk enthousiasme en een grote dosis energie. Liesbeth, omdat ze nog steeds een beetje één van ons is. Mary, for the nice collaboration. Jeroen, Juan-Carlos, Griet, Ward, Willem, Isolde en Ine omdat zij mijn ‘voorbeeld’ waren en mij inspireerden om ook te doctoreren. Naast Carolien, wil ik uiteraard ook mijn andere studenten bedanken omdat ik heel veel van hen heb geleerd, en dat hopelijk wederzijds was. Daarom, bedankt Jorik, Assia, Lorin, Mieke, Katja, Martijn en Eva. Tenslotte wil ik Eva, Judith en Cedrick nog heel veel succes wensen bij het afwerken van hun masterthesis. En moesten jullie nog twijfelen over jullie toekomst... volgens mij zit je nergens zo goed als bij de plant-microbes!

Buiten de plant-microbes zijn er uiteraard nog een groot aantal mensen die ik wil
bedanken: Cindy en Stéphane, omdat zij mij geïntroduceerd hebben in de duistere wereld van de bio-informatica. Bovendien zou ik Cindy nog extra willen bedanken voor haar fijne vriendschap die nu reeds meer dan tien jaar duurt! Of het nu tijdens een werkcollege, een practicum of tijdens ons doctoraat was, het was steeds leuk om met jou een ‘team’ te vormen! Ook bedankt voor de fantastische hulp bij de lay-out van deze thesis! Martine, bedankt voor je dagelijkse aanmoedigingen en grote blik van interesse enerzijds, en voor je welgekomen hulp bij het verwerken van manuscripten anderzijds. Marnik zou ik willen bedanken voor zijn hulp bij statistische analyses. Ook Hendrik, Raf, Wilson, Mansour, Nino, Karel, Jacques, Jackie, Kristof, Nancy, Nico, Miguel, David, Blanchke, Agnieszka en de vele anderen die het PSB maken tot wat het is, wil ik bedanken!

Prof. Dr. Hubert De Brabander en alle collega’s van de Faculteit Diergeneeskunde: bedankt om mij een jaartje in jullie groep op te vangen. Het was er zeer aangenaam werken en bijzonder interessant om het reilen en zeilen in een ander labo mee te maken.

Prof. Dr. Karl Kunert en alle collegas uit Pretoria: dankie om my verblyf in Suid-Afrika so welgevalig en interessant te maak! Ek het daar enorm van geniet, het baie geleer en gesien en hoop julle ooit terug te ontmoet. Ek sal julle nie rap vergeet nie!

Tenslotte verdient mijn familie nog een woordje van dank, mijn broer, zus, oma, maar toch vooral mijn ouders omdat ze een grote steun zijn, mij aanmoedigen wanneer nodig, steeds in mij geloven en de fierheid van hun gezicht valt af te lezen. And ‘last but not least’ Guillaume omdat hij de meest fantastische persoon is die ik ken! Hij steeds een grote interesse vertoont voor mijn onderzoek en het wel en wee in het labo. Bovendien had hij de laatste maanden heel veel begrip voor de situatie en wist hij als geen ander hoe me vrolijk en rustig te maken. Ventje, bedankt voor alles wat je me reeds gaf, ik ben alvast benieuwd naar wat de toekomst ons nog allemaal zal brengen!

Liefs,
Virginie*
Table of Contents

Examination committee .. i
Acknowledgements .. iii
Abbreviations ... xiii

1 Scope and objectives ... 1

2 Plant peptides involved in nodulation 5
 2.1 Nodulation: a macroscopic view 6
 2.2 Involvement of plant hormones in nodulation 7
 2.3 Peptide signals and nodulation 9
 2.3.1 CLE peptides and nodulation 10
 2.3.2 The ENOD40 peptide, a never ending story? 16
 2.3.3 RALF peptides involved in nodule organogenesis and infection 19
 2.3.4 DVL1/ROT4 ... 20
 2.3.5 The role of NCRs in symbiosome development 21

3 Regulation of nodule numbers ... 23
 3.1 Nodulation: coordinated bacterial infection and organ formation . 24
 3.2 Different mechanisms control the nodulation process 29
 3.2.1 Ethylene, abscissic acid and jasmonic acid as local, negative regulators of nodulation 29
 3.2.2 Autoregulation of nodulation 31
 3.2.3 Role of the shoot in AON 32
 3.2.4 Role of the root in AON 35
 3.2.5 Are CLE peptides the Q signals? 37
 3.2.6 Systemic suppression of nodulation, a matter of hormonal regulations? ... 38
 3.2.7 Perception of the return signal in the root 40

vii
3.2.8 The negative effect of nitrate on nodulation, is there a link with AON and CLE peptide signaling? 41
3.3 What remains to be discovered? 42

4 MtCLE peptides control nodulation 45
4.1 Introduction .. 46
4.2 Results ... 50
 4.2.1 Search for up-regulated MtCLE genes during nodulation . . 50
 4.2.2 Effects of exogenous application of MtCLE4, MtCLE12, and MtCLE13 peptides on root growth and nodulation 52
 4.2.3 MtCLE12 and MtCLE13 expression pattern in roots and developing nodules 54
 4.2.4 MtCLE12 and MtCLE13 expression in nodulation mutants . . 56
 4.2.5 Induction of MtCLE12 and MtCLE13 transcription by auxin and cytokinin .. 59
 4.2.6 Effect of ectopic expression of 35S:MtCLE12 and 35S:MtCLE13 on nodulation 60
 4.2.7 Long-distance effect of 35S:MtCLE12 and 35S:MtCLE13 transgenic roots on wild type shoots 61
 4.2.8 Long-distance effect of 35S:MtCLE12 and 35S:MtCLE13 transgenic roots on nodulation of wild type roots . . 63
 4.2.9 Analysis of the long-distance responses in the sunn-1 mutant background 65
4.3 Discussion ... 66
 4.3.1 CLE family in M. truncatula 66
 4.3.2 Nodule-related MtCLE12 and MtCLE13 expression is linked with differentiation and dedifferentiation processes 68
 4.3.3 MtCLE12, MtCLE13, or a peptide with a related sequence might control nodule number 69
4.4 Materials and methods 72

Addendum Chapter 4 - Search for nitrate-induced MtCLE genes 81
4.5 Introduction .. 82
4.6 Results .. 82
 4.6.1 Involvement of SUNN in nitrate control of nodulation . . 82
4.6.2 Search for *M. truncatula* CLE genes upregulated by nodulation or nitrate .. 85

4.7 Discussion .. 88

4.8 Materials and methods .. 91

4.9 Supplemental data ... 94

5 MtCLE peptides control nodule number and nodule meristem activity 97

5.1 Introduction .. 98

5.2 Results .. 103

5.2.1 *MtCLE13* induction by cytokinin 103

5.2.2 *SUNN* dependence of 35S:*MtCLE13*-induced inhibition of nodulation .. 104

5.2.3 Effect of knock-down of *MtCLE12* and *MtCLE13* expression on nodulation 106

5.2.4 Analysis of the knock-down of *MtCLE12* and *MtCLE13* in a *sunn-4* mutant background 110

5.3 Discussion .. 111

5.4 Materials and methods .. 116

6 Insight in the gain-of-function of *MtCLE12* and *MtCLE13* 121

6.1 Introduction .. 122

6.2 Results .. 126

6.2.1 Effect of ectopic expression of *MtCLE12* and *MtCLE13* on nodule development in stable transgenic lines 126

6.2.2 Effect of ectopic expression of *MtCLE12* and *MtCLE13* on root development, petiole length and leaf area 128

6.2.3 Effect of ectopic expression of *MtCLE12* and *MtCLE13* on mycorrhization .. 129

6.2.4 A gene-specific approach to study effects of 35S:*MtCLE13* 131

6.2.5 A micro-array analysis to study effects of 35S:*MtCLE13* 133

6.2.6 *NFP* promoter activity in 35S:*MtCLE13* transgenic roots 136

6.2.7 Long distance effect of 35S:*MtCLE13* transgenic roots on the expression of potential *MtCLE13* target genes in wild type roots 137

6.3 Discussion .. 140

6.4 Materials and methods .. 146

6.5 Supplemental data ... 153
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>GmCLE genes expressed during nodulation</td>
<td>227</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>228</td>
</tr>
<tr>
<td>9.2</td>
<td>Results</td>
<td>231</td>
</tr>
<tr>
<td>9.2.1</td>
<td>In silico identification of GmCLE genes</td>
<td>231</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Identification of two stages in soybean nodule development</td>
<td>234</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Search for GmCLE genes that are differentially expressed during nodulation</td>
<td>236</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Tissue- or organ-specific expression of nodulation-related CLE peptide genes</td>
<td>237</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Induction of nodulation-related GmCLE genes by the addition of auxin or cytokinin</td>
<td>238</td>
</tr>
<tr>
<td>9.2.6</td>
<td>Influence of nitrate on the expression of the nodulation-related GmCLE genes</td>
<td>239</td>
</tr>
<tr>
<td>9.3</td>
<td>Discussion</td>
<td>240</td>
</tr>
<tr>
<td>9.4</td>
<td>Materials and Methods</td>
<td>245</td>
</tr>
<tr>
<td>9.5</td>
<td>Supplemental data</td>
<td>246</td>
</tr>
<tr>
<td>10</td>
<td>GmRLKs involved in nodulation</td>
<td>255</td>
</tr>
<tr>
<td>11</td>
<td>Discussion and perspectives</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Nederlandse samenvatting</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Publications</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>285</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>amino acid</td>
<td></td>
</tr>
<tr>
<td>ABA</td>
<td>abscissic acid</td>
<td></td>
</tr>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-1-carboxylic acid</td>
<td></td>
</tr>
<tr>
<td>ACR4</td>
<td>Arabidopsis crinkly4</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>agamous</td>
<td></td>
</tr>
<tr>
<td>AHK</td>
<td>Arabidopsis histidine kinase</td>
<td></td>
</tr>
<tr>
<td>AHP</td>
<td>Arabidopsis histidine phosphotransfer proteins</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variation</td>
<td></td>
</tr>
<tr>
<td>AOC</td>
<td>allene oxide cyclase</td>
<td></td>
</tr>
<tr>
<td>AON</td>
<td>autoregulation of nodulation</td>
<td></td>
</tr>
<tr>
<td>ARR</td>
<td>Arabidopsis response regulator</td>
<td></td>
</tr>
<tr>
<td>At</td>
<td>Arabidopsis thaliana</td>
<td></td>
</tr>
<tr>
<td>AUT</td>
<td>autoregulation of nodulation</td>
<td></td>
</tr>
<tr>
<td>AUX</td>
<td>auxin-resistant</td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>1-aminoethoxyvinylglycine</td>
<td></td>
</tr>
<tr>
<td>BAC</td>
<td>bacterial artificial chromosome</td>
<td></td>
</tr>
<tr>
<td>BAM</td>
<td>barely any meristem</td>
<td></td>
</tr>
<tr>
<td>BAP</td>
<td>benzyl amino purine</td>
<td></td>
</tr>
<tr>
<td>bit</td>
<td>branching infection threads</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>brassinolide</td>
<td></td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
<td></td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>brassinosteroid</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
<td></td>
</tr>
<tr>
<td>CaMV</td>
<td>cauliflower mosaic virus</td>
<td></td>
</tr>
<tr>
<td>CCaMK</td>
<td>calcium calmodulin dependent kinase</td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
<td></td>
</tr>
<tr>
<td>CDS</td>
<td>coding sequence</td>
<td></td>
</tr>
<tr>
<td>CHS</td>
<td>naringenin-chalcone synthase</td>
<td></td>
</tr>
<tr>
<td>CKX</td>
<td>cytokinin oxydase/dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>CLE</td>
<td>CLV3/ESR</td>
<td></td>
</tr>
<tr>
<td>CLV</td>
<td>clavata</td>
<td></td>
</tr>
<tr>
<td>co-IP</td>
<td>co-immunoprecipitation</td>
<td></td>
</tr>
<tr>
<td>CRE</td>
<td>cytokinin response</td>
<td></td>
</tr>
<tr>
<td>CRF</td>
<td>cytokinin response factor</td>
<td></td>
</tr>
<tr>
<td>CRN</td>
<td>coryne</td>
<td></td>
</tr>
<tr>
<td>cv</td>
<td>cultivar</td>
<td></td>
</tr>
<tr>
<td>cyc</td>
<td>cyclin</td>
<td></td>
</tr>
<tr>
<td>cZ</td>
<td>cis-zeatin</td>
<td></td>
</tr>
<tr>
<td>DAG</td>
<td>days after germination</td>
<td></td>
</tr>
<tr>
<td>DFCI</td>
<td>Dana-Farber Cancer Institute</td>
<td></td>
</tr>
<tr>
<td>DMI</td>
<td>doesn’t make infection</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>dpi</td>
<td>days post inoculation</td>
<td></td>
</tr>
<tr>
<td>DVL1</td>
<td>devil1</td>
<td></td>
</tr>
<tr>
<td>EFR</td>
<td>EF-TU receptor</td>
<td></td>
</tr>
<tr>
<td>EIN</td>
<td>ethylene insensitive</td>
<td></td>
</tr>
<tr>
<td>ENOD</td>
<td>early nodulation</td>
<td></td>
</tr>
<tr>
<td>ERF</td>
<td>ethylene response factor</td>
<td></td>
</tr>
<tr>
<td>ERN</td>
<td>ethylene-responsive binding domain factor required for nodulation</td>
<td></td>
</tr>
<tr>
<td>ESR</td>
<td>embryo-surrounding region</td>
<td></td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>iron</td>
<td></td>
</tr>
<tr>
<td>FLS</td>
<td>flagellin sensitive</td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>gibberellic acid/gibberellin</td>
<td></td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
<td></td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
<td></td>
</tr>
<tr>
<td>GLMM</td>
<td>generalized linear mixed model</td>
<td></td>
</tr>
<tr>
<td>Gm</td>
<td>Glycine max</td>
<td></td>
</tr>
<tr>
<td>GUS</td>
<td>beta glucuronidase</td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>hypernodulation abberant root formation</td>
<td></td>
</tr>
<tr>
<td>HCL</td>
<td>hair curling locus</td>
<td></td>
</tr>
<tr>
<td>HIT</td>
<td>hyperinfected</td>
<td></td>
</tr>
<tr>
<td>HMM</td>
<td>hidden Markov model</td>
<td></td>
</tr>
<tr>
<td>HY5</td>
<td>hypocotyl5</td>
<td></td>
</tr>
<tr>
<td>IAA</td>
<td>indol-3-acetic acid</td>
<td></td>
</tr>
<tr>
<td>IDA</td>
<td>inflorescence deficient in abscission</td>
<td></td>
</tr>
<tr>
<td>iP</td>
<td>isopentenyl adenine</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>IPD3</td>
<td>interacting partner of DMI3</td>
<td></td>
</tr>
<tr>
<td>IPT</td>
<td>isopentenyl transferase</td>
<td></td>
</tr>
<tr>
<td>ISV</td>
<td>Institut de Sciences du Végétal</td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>infection thread</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>jasmonic acid</td>
<td></td>
</tr>
<tr>
<td>KAPP</td>
<td>kinase associated protein phosphatase</td>
<td></td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
<td></td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
<td></td>
</tr>
<tr>
<td>KLV</td>
<td>klavier</td>
<td></td>
</tr>
<tr>
<td>Km</td>
<td>kanamycin</td>
<td></td>
</tr>
<tr>
<td>LATD</td>
<td>lateral root defective</td>
<td></td>
</tr>
<tr>
<td>LHK</td>
<td>Lotus histidine kinase</td>
<td></td>
</tr>
<tr>
<td>Lj</td>
<td>Lotus japonicus</td>
<td></td>
</tr>
<tr>
<td>LjCLE-RS</td>
<td>LjCLE-root signal</td>
<td></td>
</tr>
<tr>
<td>ln</td>
<td>logaritmus naturalis</td>
<td></td>
</tr>
<tr>
<td>LNOD</td>
<td>late nodulation</td>
<td></td>
</tr>
<tr>
<td>LOG</td>
<td>lonely guy</td>
<td></td>
</tr>
<tr>
<td>LRR</td>
<td>leucine rich repeat</td>
<td></td>
</tr>
<tr>
<td>LSS</td>
<td>like sunn supernodulator</td>
<td></td>
</tr>
<tr>
<td>LUC</td>
<td>luciferase</td>
<td></td>
</tr>
<tr>
<td>LYK</td>
<td>LysM receptor-like kinase</td>
<td></td>
</tr>
<tr>
<td>LysM</td>
<td>lysin motif</td>
<td></td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
<td></td>
</tr>
<tr>
<td>Mbp</td>
<td>mega base pairs</td>
<td></td>
</tr>
<tr>
<td>MGI</td>
<td>Medicago gene index</td>
<td></td>
</tr>
<tr>
<td>mRFP</td>
<td>monomeric red fluorescent protein</td>
<td></td>
</tr>
<tr>
<td>Ms</td>
<td>Medicago sativa</td>
<td></td>
</tr>
<tr>
<td>Mt</td>
<td>Medicago truncatula</td>
<td></td>
</tr>
<tr>
<td>MTGI</td>
<td>Medicago truncatula gene index</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
<td></td>
</tr>
<tr>
<td>NARK</td>
<td>nodule autoregulation receptor kinase</td>
<td></td>
</tr>
<tr>
<td>NAS</td>
<td>nicotianamine synthase</td>
<td></td>
</tr>
<tr>
<td>NCR</td>
<td>nodule specific cysteine rich</td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>nod factor</td>
<td></td>
</tr>
<tr>
<td>NFP</td>
<td>nod factor perception</td>
<td></td>
</tr>
<tr>
<td>NFR</td>
<td>nod factor receptor</td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>uninoculated</td>
<td></td>
</tr>
<tr>
<td>NIC</td>
<td>nitrate induced CLE gene</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

NIN nodule inception
NIP numerous infection threads, polyphenolics
NLS nuclear localization signal
nM nanomolar
NOD nodulation
NORK nodulation receptor kinase
NPA 1-naphthylphtalamic acid
NRT nitrate transporter
NTS nitrate tolerant symbiotic
OC organizing centre
ODD 2-oxoglutarate-dependent dioxygenase
ORF open reading frame
PAM point accepted mutation
PAMP pathogen associated molecular pattern
PAT polar auxin transport
PCR polymerase chain reaction
PIN PIN-formed
PLL POL-like
POL poltergeist
PRR pattern recognition receptor
Ps *Pisum sativum*
PSK phytosulfokine
PXL PXY-like
PXY phloem intercalated with xylem
QC quiescent centre
qRT-PCR quantitative reverse transcription polymerase chain reaction
RALF rapid alkalinisation factor
RAM root apical meristem
RDN root determined nodulation
RDH root determined hypernodulation
RHC root hair curling
RIC rhizobia induced CLE gene
RLK receptor like kinase
RNA ribonucleic acid
RNAi RNA interference
ROS reactive oxygen species
ROT4 rotundifolia4
RPK receptor protein kinase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>response regulator</td>
</tr>
<tr>
<td>SAM</td>
<td>shoot apical meristem</td>
</tr>
<tr>
<td>SCR</td>
<td>S-locus cysteine rich proteins</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDI</td>
<td>shoot derived inhibitor</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SKL</td>
<td>sickle</td>
</tr>
<tr>
<td>Sm</td>
<td>Sinorhizobium meliloti</td>
</tr>
<tr>
<td>snf</td>
<td>spontaneous nodule formation</td>
</tr>
<tr>
<td>SOL2</td>
<td>suppressor of overexpression of LLP1-2</td>
</tr>
<tr>
<td>SOLi</td>
<td>Solution i</td>
</tr>
<tr>
<td>SP11</td>
<td>S-locus protein 11</td>
</tr>
<tr>
<td>Sr</td>
<td>Sesbania rostrata</td>
</tr>
<tr>
<td>SUNN</td>
<td>super numeric nodules</td>
</tr>
<tr>
<td>SYM</td>
<td>symbiosis</td>
</tr>
<tr>
<td>SYMRK</td>
<td>symbiosis receptor-like kinase</td>
</tr>
<tr>
<td>TAIR</td>
<td>the Arabidopsis information resource</td>
</tr>
<tr>
<td>TC</td>
<td>tentative consensus</td>
</tr>
<tr>
<td>TDIF</td>
<td>tracheary element differentiation inhibitory factor</td>
</tr>
<tr>
<td>T-DNA</td>
<td>transfer-DNA</td>
</tr>
<tr>
<td>TDR</td>
<td>TDIF receptor</td>
</tr>
<tr>
<td>TIGR</td>
<td>the institute for genomic research</td>
</tr>
<tr>
<td>TML</td>
<td>too much love</td>
</tr>
<tr>
<td>TOAD</td>
<td>toadstool</td>
</tr>
<tr>
<td>tRNA</td>
<td>transfer RNA</td>
</tr>
<tr>
<td>tZ</td>
<td>trans-zeatin</td>
</tr>
<tr>
<td>WOL</td>
<td>woodenleg</td>
</tr>
<tr>
<td>WOX</td>
<td>wus-related homeobox</td>
</tr>
<tr>
<td>wpi</td>
<td>weeks post inoculation</td>
</tr>
<tr>
<td>WT</td>
<td>wild type</td>
</tr>
<tr>
<td>WUS</td>
<td>wuschel</td>
</tr>
</tbody>
</table>
Nitrogen is one of the most important nutrients for plant development, because it is an essential component of nucleic and amino acids. However, for most plants, nitrogen sources are restricted to those available in the soil. Industrial nitrogen fertilizers can be applied, but their production and use is costly, energy-consuming and polluting. Legumes overcome this problem by interacting with soil-borne bacteria, rhizobia, resulting in root-based organs, called nodules, in which the rhizobia develop into nitrogen fixing bacteroids, which supply nitrogen to the host in exchange for energy-rich carbon sources and a protected niche. Many different processes are required to establish this interaction, making it an interesting yet complex research field. Apart from the nitrogen fixing symbiosis, research on root nodule formation also contributes to our understanding of processes of organogenesis and hormone signaling.

Research on nodule organogenesis has mainly focused on the role of the cell division hormones auxin and cytokinin. Much less is known about the involvement of peptide hormones, and more specifically CLAVATA3/EMBRYO SURROUNDING
REGION (CLV3/ESR or CLE) peptides.

The major objective was to characterize the function of nodulation-related CLE peptides during nodule organogenesis and in the control of nodule numbers during indeterminate nodulation on *Medicago truncatula*. This work especially focused on the role of two CLE peptide genes *MtCLE12* and *MtCLE13*, which are upregulated during nodulation and which encode structurally-related peptides. In addition, putative receptors of these nodulation-related CLE peptides were identified and characterized. Moreover, pathways and genes affected by *MtCLE12* and *MtCLE13* signaling were investigated in detail.

To elucidate differences in CLE peptide signaling between indeterminate and determinate nodulation and to have a more complete overview of the role of CLE peptides during nodulation, nodule-related CLE peptides and putative receptors were identified in soybean (*Glycine max*).

Finally, the interaction between cytokinin and CLE peptide signaling was investigated in more detail. Therefore, the influence of cytokinin activation via cytokinin riboside 5’-monophosphate phosphoribohydrolases, LONELY GUYs (LOGs), on nodule development was analyzed, as well as the putative involvement of CLE peptides in this pathway.
Plant peptides involved in nodulation

Virginie Mortier, Ulrike Mathesius, Marcelle Holsters and Sofie Goormachtig

In preparation
2.1 Nodulation: a macroscopic view

A symbiotic interaction of legume plants with rhizobia results in the development of novel root organs, nodules, the inner cells of which are colonized by bacteria, that fix nitrogen for the host. In return, the microsymbionts receive carbon sources and a protective niche. Nodulation is a sophisticated program that requires strictly coordinated bacterial infection and de novo organ formation. How this is achieved varies between different legume species and here we mainly focus on the Nod factor dependent root hair infection strategy and nodule development as observed in the model legume *Medicago truncatula*.

The symbiosis is initiated by a specific chemical signal exchange and recognition. When the rhizobia sense a specific array of flavonoid compounds secreted by the host, the expression of nodulation (nod) genes is switched on, resulting in the production and secretion of lipochitooligosaccharide signals, the Nod factors (NFs) (D’Haeze and Holsters, 2002). The NFs are sensed by LysM receptor-like-kinases (RLKs) located in the plasma membrane of susceptible root hairs and activate the nodulation process. The first responses observed take place within seconds to minutes after NF application and consist of plasma membrane depolarization and extracellular alkalisation (Felle et al., 1999). A few minutes later, Ca$^{2+}$ oscillations are observed in and around the nucleus, and it is currently thought that this event is central in the activation of the epidermal and cortical responses and the coordination between both by triggering the expression of nodulin genes, classified early nodulin (ENOD) and late nodulin (LNOD), depending whether the induction of their expression precedes or accompanies nitrogen fixation (Miwa et al., 2006; Sun et al., 2007a; Talukdar et al., 2009; Crespi and Galvez, 2000; Schultze and Kondorosi, 1998). Morphological changes are an arrest of root hair growth, followed by swelling and deformation of the root hair tip (Gage, 2004). As a result, the root hair will curl and entrap a rhizobial colony. This event is commonly referred to as root hair curling (RHC). Subsequently, the plant cell wall is locally degraded within the curl, followed by invagination of the plasma membrane. Cell wall material is deposited around the invaginated membrane ensuing the formation of a tubular structure, the infection thread, through which the bacteria are guided towards deeper root cell layers (Gage, 2004). The cortical cells respond to NFs by dedifferentiation and re-iteration of the cell cycle: while the inner cortical cells progress through the cell cycle and develop into a nodule primordium, the outer cortical cells arrest in G2 for pre-infection thread formation via cytoplasmic bridges.
through which infection threads will pass (Yang et al., 1994; van Spronsen et al., 2001; Timmers, 2008). Once the infection threads reach the cells of the nodule primordium, the bacteria are released inside the cytoplasm via infection droplets, surrounded by a plant derived peribacteroid membrane. Within these new organelles, the symbiosomes, bacteria develop into bacteroids to fix nitrogen (Brewin, 2004; Kouchi et al., 2010).

Two types of nodules have been intensively studied: determinate and indeterminate ones. While determinate nodules develop from division of outer cortical cells and in mature nodules all meristematic tissue has been consumed, indeterminate nodules arise from the inner cortex and are characterized by a persistent apical meristem (Crespi and Galvez, 2000; Ferguson et al., 2010). Hence, mature indeterminate nodules are zonated with a meristem, an infection zone, a fixation zone and a senescence zone. The nodule parenchyma surrounds the central zone and contains the vascular tissue, via which nutrients are exchanged between both symbiotic partners (Van de Velde et al., 2010).

2.2 Involvement of plant hormones in nodulation

There is ample evidence that the classical hormones cytokinin, auxin, abscissic acid, gibberellins, ethylene and jasmonic acid are all involved in the initiation and coordination of the nodulation process (Smit et al., 1995a; Heidstra et al., 1997; van Spronsen et al., 2001; Mathiesius et al., 1998; van Noorden et al., 2006; Boot et al., 1999; Wassen et al., 2006; Pacios-Bras et al., 2003; Grunewald et al., 2009; Murray et al., 2007; Gonzalez-Rizzo et al., 2006; Tirichine et al., 2007; Frugier et al., 2008; Oldroyd and Downie, 2008). The central hormone for nodule organogenesis is however cytokinin, as suggested by numerous experiments. The most convincing ones involved the *Lotus japonicus* knock-out mutant for the cytokinin receptor gene *LOTUS HISTIDINE KINASE1 (LHK1)*, *M. truncatula* transgenic plants with suppressed expression of *CYTOKININ RESPONSE1 (CRE1)*, or *Mtcre1* mutants, which were defective in nodule primordia formation (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Plet et al., 2011). Similarly, the ectopic expression of a cytokinin degrading enzyme in *L. japonicus* resulted in reduced nodulation (Lohar et al., 2004). Additionally, a *L. japonicus* gain-of-function mutant for the LHK1 receptor provoked spontaneous nodules, indicating that cytokinin signaling is both necessary and sufficient for nodule formation (Tirichine et al., 2007). Next to cytokinin, also auxin is a prerequisite for nodule formation (Oldroyd and Downie, 2008; Ding and Oldroyd, 2009). In white clover (*Trifolium repens*), the auxin flow within the root vasculature was transiently inhibited at
the site of infection, leading to auxin accumulation in the cortical region where the nodule primordia form (Mathesius et al., 1998). A reduction in auxin flow has been confirmed by radioactive auxin tracer experiments for *M. truncatula* and vetch (*Vicia faba*), but not *L. japonicus* (Boot et al., 1999; Pacios-Bras et al., 2003; van Noorden et al., 2006; Wasson et al., 2006). The involvement of auxin during early nodulation is also supported by the fact that application of synthetic auxin transport inhibitors, such as 1-naphthylphtalamic acid (NPA), lead to spontaneous nodule formation (Hirsch and Fang, 1994). Moreover, proteome studies in *M. truncatula* revealed a high overlap in protein changes in the roots 24 h after auxin or *Sinorhizobium meliloti* treatment (van Noorden et al., 2007). A positive role for gibberellins during nodulation was suggested, by the reduced nodule number observed on a gibberellin biosynthetic mutant (Kawaguchi et al., 1996; Ferguson et al., 2005). Moreover, exogenous application of gibberellins rescued the phenotype by restoring the nodule number (Kawaguchi et al., 1996; Ferguson et al., 2005). A role of gibberellin in the intercellular invasion process of lateral root base nodulation in *Sesbania rostrata* has also been suggested (Lievens et al., 2005). Abscisic acid (ABA) is believed to be involved in nodulation at the level of nodule initiation, where it would interfere with NF signaling, leading to a reduction in nodule number, and at the level of nodule development, where it can suppress cytokinin induced nodulation processes (Ferguson and Mathesius, 2003; Ding et al., 2008). It has also been suggested that ABA plays a role at the latest stages of nodulation, because an increase in ABA levels is observed at the onset of nodule senescence (Ferguson and Mathesius, 2003).

High concentrations of ethylene inhibit nodulation, by exerting a negative effect at multiple levels during nodulation. First, ethylene suppresses the NF signaling pathway, either at or during NF induced calcium spiking, leading to inhibition of root hair deformation, shortening of the calcium spike period, blocking of bacterial infection and suppression of nodulin genes expression (Oldroyd et al., 2001). In addition, ethylene has been shown to regulate infection thread formation and to dictate the positioning of nodules along the protoxylem poles independent of the NF signaling pathway (Pennetsa and Cook, 1997; Heidstra et al., 1997). Indeed, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase involved in the last step of ethylene biosynthesis is highly expressed at the protophloem poles (Heidstra et al., 1997). Presumably an ethylene gradient is made with the lowest concentration located at the protoxylem poles, allowing nodulation at that place. Moreover, the addition of inhibitors of ACC synthase (AVG) and antagonists of ethylene action (Ag+ ions) had a positive effect on nodule number
Plant peptides involved in nodulation

(Nukui et al., 2000; Oldroyd et al., 2001). Analysis of the ethylene insensitive sickle (skl) mutant confirmed the negative effect of ethylene on nodulation, as this mutant has a supernodulation and hyperinfection phenotype (Penmetsa and Cook, 1997; Penmetsa et al., 2008). Also transgenic L. japonicus plants expressing a mutated ethylene receptor gene produce an elevated number of infection threads and nodule primordia (Nukui et al., 2004). Like ethylene, JA inhibits nodulation by suppressing calcium spiking and NF induced gene expression (Sun et al., 2006; Hause and Schaarschmidt, 2009). Moreover, several lines of evidence indicate that JA signaling in the leaves is involved in the autoregulation of nodulation (AON) signal transduction pathway a process by which the plant controls the number of nodules (Kinkema and Gresshoff, 2008).

2.3 Peptide signals and nodulation

Peptide hormones have been extensively studied in animals where they act as the most common signal molecules to regulate and coordinate spatial and temporal expression of genes for the development of a multi-cellular organism. Peptide hormones consist of short stretches of amino acids (an informal dividing line is mostly set at 50 amino acids in length) that are mostly post-translationally modified, by for example glycosylation, arabinosylation and hydroxyprolination. Animal peptides are highly diverse in sequence and length, but members of the same family are highly conserved. While some peptides are derived from small ORFs and supposedly act within the cytoplasm, most peptides are derived from the C-terminal end of pro-proteins, often by cleavage at the level of dibasic amino acid residues. In addition, the presence of signal peptides at the N-terminal end of the preproproteins causes those peptides to be secreted in the extracellular medium where they act non-cell-autonomously as intercellular signaling molecules.

A restricted number of plant peptides have been identified until now mostly by chance and many are expected to be discovered by conducting more direct searches. The identified peptides play a role in various aspects of plant development, growth and defence.

Systemin, the first plant peptide hormone to be described, is involved in systemic defences triggered by insect attack or mechanical wounding (McGurl et al., 1992; Pearce et al., 1991). Systemin signalling has been thoroughly investigated and currently it is thought that the peptide acts as an enhancer of JA signalling in solanaceous species (Degenhardt et al., 2010).
Phytosulfokines (PSKs), 5-amino acids long peptides with sulphated tyrosine residues, were the next peptides to be discovered. They regulate cellular dedifferentiation, proliferation and differentiation in suspension cultures of carrot, rice and Asparagus officinalis (Hanai et al., 2000; Matsubayashi and Sakagami, 1996; Yang et al., 2000a,b). Moreover, PSKs trigger tracheary element differentiation of cultured Zinnia mesophyll cells at nanomolar concentrations (Matsubayashi et al., 1999). PSKs also promote various stages of plant growth, including adventitious bud and root formation, pollen germination and somatic embryogenesis (Hanai et al., 2000; Igasaki et al., 2003; Kobayashi et al., 1999; Yamakawa et al., 1998; Chen et al., 2000).

The S-LOCUS CYSTEINE RICH PROTEINS (SCRs) and S-LOCUS PROTEIN11 (SP11) are involved in pollen self-incompatibility in Brassicaceae (Schopfer et al., 1999; Kachroo et al., 2002). POLARIS plays a role in root vascular patterning by maintaining responsiveness to exogenous auxin and cytokinin (Casson et al., 2002). INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) controls floral organ abscission (Butenko et al., 2003).

Finally, peptides from the CLAVATA3/EMBRYO SURROUNDING REGION (CLE), EARLY NODULIN40 (ENOD40), RAPID ALKALINISATION FACTOR (RALF), DEVIL1/ROTUNDIFOLIA4 (DVL1/ROT4) and NODULE SPECIFIC CYSTEINE RICH (NCR) families carry out a range of different functions, but have in common that at least one of their members is involved in the process of nodulation. Here we will discuss these nodule-related peptides and how they control the nodulation process.

2.3.1 CLE peptides and nodulation

CLE peptides have been identified in the genome of monocotyledonous and dicotyledonous plants, in families that can consist of up to 40 members (Mitchum et al., 2008; Cock and McCormick, 2001; Oelkers et al., 2008). They were also found in the genome of the moss Physcomitrella patens, the green alga Chlamydomonas reinhardtii and the pteridophyte Selaginella moellendorfii, indicating that they occurred already at the early beginning of plant evolution (Oelkers et al., 2008).

CLE peptides (< 15 kDa) are 12 to 13 amino acids long and are cleaved from a 14 amino acids long conserved domain, located at or close to the carboxyl terminus of larger CLE proteins (Kondo et al., 2006; Ito et al., 2006; Ni and Clark, 2006). Post-translational modifications such as hydroxyprolination and arabinosylation have been reported (Kondo et al., 2006; Ito et al., 2006; Ohyama et al., 2009). A hydrophobic sig-
Plant peptides involved in nodulation

A single peptide can be distinguished at the N-terminal site of most CLE proteins suggesting that the proteins are targeted to the secretory pathway and that the peptides act as intercellular signals (Sawa et al., 2006). The region between the signal peptide and the CLE domain is highly variable and its sequence can be substituted by the sequence of other, unrelated proteins, without disrupting the function of the peptide (Ni and Clark, 2006). Despite variability in the core structure of the peptides, all members of the CLE family share certain structural parameters such as charge, length and hydrophilicity. The genomes of *Oryza sativa*, *M. truncatula*, *Tritium aestivum* and *Selaginella moelendorffii* encode CLE members with multiple CLE domains (Oelkers et al., 2008; Mortier et al., 2010). Processing of several CLE peptides from one pro-protein might be a mechanism to provide an amplification effect. These multiple CLE domains are probably the result of duplication events occurring during evolution.

CLE peptides are involved in balancing cell division and differentiation during several aspects of plant development. They control shoot and root meristem activity, apical dominance, organ size, vascular differentiation and nodulation (Brand et al., 2000; Hirakawa et al., 2008; Hobe et al., 2003; Okamoto et al., 2009; Mortier et al., 2010). Interestingly, the only CLE peptide that was identified outside the plant kingdom is encoded in the genome of the cyst nematode *Heterodera glycines* (Wang et al., 2001, 2011). This peptide, *HgSYV46*, is exclusively expressed in the dorsal esophageal gland cell of parasitic nematodes during syncitium formation in plants and is believed, after being injected in the plant root, to mimic endogenous CLE peptides to activate root cell proliferation for syncytial feeding cell formation (Wang et al., 2001, 2011).

Due to a high level of functional redundancy observed between the different CLE members, the gene specific function of only a small number of CLE peptides (CLV3, TDIF and CLE40) was so far identified. CLV3, the best studied peptide of the CLE family, is involved in shoot apical meristem (SAM) homeostasis in Arabidopsis. *Clv3* mutants have an expanded SAM, fasciation of stems and leaves and supernumerary floral organs, caused by the accumulation of stem cells in the shoot apical and flower meristems (Clark et al., 1995). Ectopic expression of *CLV3*, on the other hand, results in plants in which the SAM is not maintained and organogenesis from the shoot tip is arrested (Brand et al., 2000). Hence, *CLV3* plays a key role in the suppression of stem cell proliferation in the SAM. Further studies have shown that *CLV3* is part of a cell non-autonomous negative feedback regulation loop, comprising amongst others, the homeodomain transcription factor *WUSCHEL* (*WUS*) (Brand et al., 2000; Schoof et al., 2000): *WUS*, which is expressed in the cells of the organizing centre, induces ex-
pression of \textit{CLV3} in the overlying neighboring cells and confers their stem cell identity (Mayer \textit{et al.}, 1998; Rojo \textit{et al.}, 2002), while \textit{CLV3} down-regulates \textit{WUS} expression and thereby confines the size of the organizing centre (Schoof \textit{et al.}, 2000; Lenhard and Laux, 2003). Recruitment of cells from the peripheral zone to the central zone and vice versa were observed as well, suggesting that \textit{CLV3} is also involved in setting the boundary between both zones (Reddy and Meyerowitz, 2005; Muller \textit{et al.}, 2006).

The \textit{CLV3} peptide is perceived by a complex interplay of membrane receptors. The peptide is directly bound by the leucine-rich-repeat RLK (LRR-RLK) \textit{CLV1}, which can form homodimers or heterodimers in combination with their close homologs BARELY ANY MERISTEM1 (BAM1) or BAM2 (Trotochaud \textit{et al.}, 1999, 2000; Ogawa \textit{et al.}, 2008; Guo and Clark, 2010). In addition, genetic and physiological studies have recently demonstrated that the \textit{CLV1}-unrelated LRR-RLK RECEPTOR PROTEIN KINASE2/TOADSTOOL2 (RPK2/TOAD2) and the LRR receptor-like-protein \textit{CLV2} interacting with CORYNE/SUPPRESSOR OF LLP1 2 (CRN/SOL2), a RLK lacking an extracellular domain, mediate \textit{CLV3}-dependent SAM homeostasis in parallel to \textit{CLV1} (Miwa \textit{et al.}, 2008; Muller \textit{et al.}, 2008; Bleckmann \textit{et al.}, 2010; Zhu \textit{et al.}, 2010a,b; Guo \textit{et al.}, 2010; Guo and Clark, 2010; Kinoshita \textit{et al.}, 2010). However, different regulations might be observed throughout the plant kingdom as an evolutionary analysis suggested that \textit{CLV2} and \textit{CRN} are restricted to vascular plants, while \textit{CLV1} and \textit{RPK2} are highly conserved (Miwa \textit{et al.}, 2009; Sawa and Tabata, 2011). Still more receptors and putative CLE peptides might contribute to SAM homeostasis. Other components of the \textit{CLV-WUS} pathway are a KINASE ASSOCIATED PROTEIN PHOSPHATASE (KAPP) and POLTERGEIST (POL) type 2C phosphatase which negatively regulate \textit{CLV} signaling through interaction with \textit{CLV1} (Trotochaud \textit{et al.}, 1999; Yu \textit{et al.}, 2003). Next to their expression in the centre of the SAM, BAM receptors are also expressed at the flanks of the SAM and are proposed to sequester exterior \textit{CLV3}-like CLE peptides thereby preventing their entrance in the core region of the SAM (Deyoung and Clark, 2008).

The signaling components for stem cell maintenance in the shoot and in the root apical meristems are relatively conserved, hence it is not surprising that CLE peptides were also shown to control root apical meristem homeostasis. Loss-of-function of the \textit{Arabidopsis} \textit{CLE40} caused roots to exhibit a slightly waving pattern, a reduced length and strong slant, indicative of a defect in gravity response (Hobe \textit{et al.}, 2003). A reduction in root length was also reported in experiments in which CLE peptides were supplemented to the growth medium of \textit{Arabidopsis} or \textit{M. truncatula} seedlings or in
which CLE genes were ectopically expressed (Fiers et al., 2005; Ito et al., 2006; Oelkers et al., 2008; Mortier et al., 2010; Strabala et al., 2006; Whitford et al., 2008; Wang et al., 2011). In these experiments, a high level of redundancy was observed between members with related sequences. Probably, the spatial and temporal expression patterns regulate the range of action of related CLE peptides. Indeed, expression analysis of Arabidopsis, soybean and M. truncatula CLE genes indicated different expression patterns for different CLE genes, often restricted to well defined tissues (Sharma et al., 2003; Mortier et al., 2010, 2011).

Another well-characterized CLE peptide, TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF), isolated from Zinnia elegans cell cultures during in vitro experiments, suppresses tracheary element differentiation and controls the rate and orientation of vascular cell division (Ito et al., 2006; Etchells and Turner, 2010). The sequence of the TDIF peptide is identical to CLE41 and CLE44 and highly homologous to CLE42 and CLE46. In vitro experiments performed with these Arabidopsis peptides indeed resulted in a suppression of xylem development, while the other CLE peptides tested did not exhibit TDIF activity (Ito et al., 2006). Applying mature CLV3 peptides to the Z. elegans cell culture resulted in the opposite effect, the promotion of tracheary element cell differentiation (Ito et al., 2006). Hence, based on these experiments, it was proposed that two counteracting pathways are involved in CLE signaling, one promoting and one inhibiting cell differentiation. Nevertheless, Whitford et al. (2008) reported synergistic actions between CLV3-like and TDIF-like peptides. Ectopic expression or exogenous application of TDIF-like peptides, but not of CLV3-like peptides, resulted in proliferation of vascular cells. However, when both types of peptides were simultaneously overexpressed, or ectopically applied onto A. thaliana seedlings, the effect of the TDIF gain-of-function was enhanced, resulting in a massive proliferation of vascular cells. Additional experiments revealed that this cell proliferation was auxin mediated (Whitford et al., 2008).

Both during RAM homeostasis and vascular patterning, CLE peptides are perceived by membrane bound receptor like kinases. Arabidopsis CRINKLY4 (ACR4) is suggested as the receptor for CLE40 in the roots and would be involved in the suppression of the WUS homolog, WUS-RELATED HOMEBOX5 (WOX5), to maintain distal root stem cells (Stahl et al., 2009; Stahl and Simon, 2009). In accordance, TDIF was shown to bind in vitro the PHLOEM INTERCALATED WITH XYLEM/TDIF RECEPTOR (PXY/TDR) receptor expressed in the procambial cells to inhibit vascular differentiation (Hirakawa et al., 2008).
Chapter 2

There are two main reasons to propose that CLE peptides might control nodule formation. Firstly, because of the similarity between the CLE peptide receptors CLV1, BAM1-3 and TDR, and the *M. truncatula* receptor SUPER NUMERIC NODULES (SUNN), and its orthologs of *L. japonicus*, pea and soybean (HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1), SYMBIOSIS29 (SYM29) and NODULE AUTOREGULATION RECEPTOR KINASE (NARK), respectively), all belonging to the subclass XI of the LRR-RLKs (Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005; Shiu and Bleecker, 2001). These legume receptors, although most similar to CLV1, seem not to control SAM organization but rather are involved in AON, a systemic mechanism that involves root to shoot signaling to control nodule number (Kosslak and Bohlool, 1984; Carroll et al., 1985a,b; Delves et al., 1986; Pierce and Bauer, 1983; Nutman, 1952; Magori and Kawaguchi, 2009). The similarity to CLV1 suggested that SUNN/HAR1/SYM29/NARK might perceive CLE peptides (Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005). Secondly, CLE peptides might be important to balance cell division and differentiation at the level of primordium formation, and during the formation and maintenance of nodule meristems. Indeed, in *L. japonicus*, soybean as well as in *M. truncatula*, CLE genes were identified with upregulated expression during nodulation (Figure 2.1) (Okamoto et al., 2009; Mortier et al., 2010, 2011; Reid et al., 2011). Tissue specific expression analysis in *M. truncatula* revealed that the expression of two CLE genes, *MtCLE12* and *MtCLE13*, was linked to proliferation and differentiation during nodulation (Mortier et al., 2010). *MtCLE13* expression was up-regulated early in nodule development and a high-to-low expression gradient, radiating from the inner towards the outer cortical cell layers was observed in a root cortical region defining the incipient nodule. At later stages, *MtCLE12* and *MtCLE13* were expressed in the meristem and early infection zone of mature, elongated nodules.

In the legumes, *L. japonicus*, *M. truncatula* and soybean, overexpression of nodule related CLE proteins, *LjCLE-RS1*, *LjCLE-RS2*, *MtCLE12*, *MtCLE13*, *GmRIC1*, *GmRIC2* and *GmNIC1*, resulted in the abolishment or strong reduction of nodulation (Okamoto et al., 2009; Mortier et al., 2010; Reid et al., 2011). This effect involved long-distance signaling and was totally or partially dependent on SUNN/HAR1/NARK, suggesting that these CLE peptides might be involved in AON (Okamoto et al., 2009; Mortier et al., 2010; Reid et al., 2011). In *M. truncatula* this inhibition was shown to occur at the level of the NF signal transduction (Mortier et al., 2010).

Whether these CLE peptides directly bind SUNN/HAR1/NARK is currently not
known. Many studies have shown that SUNN/HAR1/NARK act in the shoot to provoke AON although the genes are also expressed in the root (Krusell et al., 2002; Nishimura et al., 2002a; Schnabel et al., 2005; Searle et al., 2003; Delves et al., 1986; Jiang and Gresshoff, 2002; Francisco and Harper, 1995). Hence, because the peptide genes are expressed in the nodule, direct binding would indicate a long distance traveling of the CLE peptides from the root to the shoot. This would be a novel feature, as so far all characterized CLE peptides act within short distances from the cells by which they are produced (Fukuda et al., 2007; Hirakawa et al., 2008; Whitford et al., 2008; Miwa et al., 2009).

Figure 2.1: Schematic diagram of peptide involvement during nodulation. Peptides of the CLE (1), ENOD40 (2), RALF (3), DLV1/ROT4 (4) and NCR (5) families have roles at different stages of nodulation, including nodule primordium formation, infection thread development, nodule and bacteroid differentiation as well as in the systemic control of nodule numbers involving the receptor-like kinase, SUNN/NARK/HAR1/SYM29 acting in the shoot.

In *L. japonicus*, apart from HAR1, another shoot-controlled LRR-RLK, KLAVIER
Chapter 2

(KLV), is involved in AON, as well as a CLV2 ortholog (Oka-Kira et al., 2005; Krusell et al., 2011). This suggests that complex receptor interactions exist in the shoot to control AON, which is in accordance to the CLV1, RPK2, CLV2 and CRN interactions observed to sustain SAM homeostasis and to the CLV2/CRN receptor complex, which is suggested to bind root CLE peptides (Meng et al., 2010; Meng and Feldman, 2010). Although the sunn mutant did not show any SAM phenotypes, Lotus and pea clv2 mutants and klavier have a shoot phenotype which is very similar to the phenotype reported for the Arabidopsis clv1 and clv2 mutants (Oka-Kira et al., 2005; Miyazawa et al., 2010; Krusell et al., 2011). Hence, the same receptor complex might rule AON and SAM/RAM homeostasis but probably different plants will use different contributions of each receptor to induce different effects. Also the ACR4 and TDR/PXY receptors acting in the root apical meristem (RAM) and vascular tissue, respectively, might interact with currently unidentified receptors.

2.3.2 The ENOD40 peptide, a never ending story?

The ENOD40 gene has been isolated from soybean as an early upregulated gene encoding a short mRNA (± 0.7 kb) lacking one long open reading frame (ORF) (Yang et al., 1993). The gene is widely conserved across the plant kingdom and was found in several other legumes such as M. truncatula, L. japonicus and Sesbania rostrata but also in non legumes including monocots like rice, barley, rye grass, Zea mays and sorghum and dicots such as tobacco, tomato and citrus (Matvienko et al., 1996; Kouchi et al., 1999; Corich et al., 1998; Compaan et al., 2003; Larsen, 2003; Vleghels et al., 2003; Gultyaev and Roussis, 2007). ENOD40 sequences carry two conserved nucleotide regions and several short small ORFs. The 10 to 13 amino acids long translation product of ORF A has been detected in Medicago sativa and soybean (Sousa et al., 2001; Rohrig et al., 2002). Moreover, during in vitro experiments with soybean, a second translation product (ORF B) has been detected, which is 24 to 27 amino acids long and partially overlapping with ORF A (Rohrig et al., 2002). Next to a function for ENOD40 as a peptide(s), ENOD40 would also play a role as an un-translated, biologically active RNA molecule (Crespi et al., 1994). This is supported by the highly conserved secondary structure of the transcript and the isolation of an ENOD40 RNA binding protein (RBP1) in M. truncatula (Crespi et al., 1994; Campalans et al., 2004; Gultyaev and Roussis, 2007). Possibly, the ENOD40 mRNA requires the ENOD40 peptide(s) for its stability and full activity.
The expression of ENOD40 during nodulation has been widely studied in many legumes. It is expressed early after rhizobial infection, in the root pericycle opposite the protoxylem poles and in the dividing cortical cells of the nodule primordium (Crespi et al., 1994; Kouchi and Hata, 1993; Yang et al., 1993; Papadopoulou et al., 1996; Takeda et al., 2005). Also at later stages of nodulation, ENOD40 expression was observed, more specifically in the pre-infection zone, in uninfected cells of the central tissue in mature nodules as well as in the pericycle of the nodule vascular bundles (Yang et al., 1993; Papadopoulou et al., 1996; Takeda et al., 2005; Corich et al., 1998). These nodulation-related expression patterns were reported for Phaseolus, soybean, M. truncatula, M. sativa, L. japonicus and S. rostrata (Papadopoulou et al., 1996; Yang et al., 1993; Compaan et al., 2003; Takeda et al., 2005; Gronlund et al., 2005; Wan et al., 2007; Corich et al., 1998). The two ENOD40 genes identified in L. japonicus are differentially regulated. They are both specifically upregulated during nodule organogenesis, but show different expression patterns upon rhizobial infection (Takeda et al., 2005). Co-localization of different ENOD40 genes within one species has also been reported for M. sativa, M. truncatula, L. japonicus and T. repens (Fang and Hirsch, 1998; Flemetakis et al., 2000; Varkonyi-Gasic and White, 2002; Wan et al., 2007).

Like CLE peptides, ENOD40 is possibly involved in control of cell division and differentiation for nodule primordium formation (Figure 2.1). Ectopic expression of ENOD40 in M. truncatula induced extensive cortical cell divisions and accelerated nodulation (Charon et al., 1997, 1999; Crespi et al., 1994). The latter phenotype was the result of an increase in nodule primordium formation and a proliferation response of the region close to the root tip (Charon et al., 1999). It is thought that ENOD40 is not an inducer of cell division per se, but rather that it relies on other factors for cell cycle activation and subsequent nodule primordium formation (Minami et al., 1996; Mathiesius et al., 2000; Sousa et al., 2001). In M. truncatula, downregulation of ENOD40, via co-suppression or RNAi resulted in a reduction in the number of nodules and nodule development was arrested (Crespi et al., 1994; Charon et al., 1999; Wan et al., 2007). The same phenotype was reported for RNAi knock-down lines of ENOD40 in L. japonicus (Kumagai et al., 2006). Bacterial infection of root hairs was not affected illustrating that ENOD40 is required for nodule initiation and organogenesis, but not for the early infection events (Kumagai et al., 2006). In M. truncatula, impaired bacteroid development was also observed in the RNAi lines (Wan et al., 2007). This could be a consequence of an imbalance between cell division and differentiation rather than that ENOD40 is essential for bacteroid development per se. The expression analysis
together with the functional analysis thus demonstrates that *ENOD40* is involved in the establishment and differentiation of the nodule primordium and meristem. The fact that *ENOD40* is expressed in the pericycle opposite protoxylem poles prior to cortical cell divisions suggests that *ENOD40* might counteract the effects of ethylene to promote mitotic activation of root cortical cells for nodule formation (Heidstra *et al*., 1997). Indeed, the *ENOD40* expression pattern is complementary to the expression pattern of ACC oxidase, a key enzyme in the synthesis of ethylene (Heidstra *et al*., 1997; Dey *et al*., 2004).

Perhaps interlinked with a role in controlling primordium development, *ENOD40* might function in nutrient mobilization. The *ENOD40* peptides A and B from soybean have been shown to interact *in vitro* with the 93 kDa subunit of sucrose synthase (Rohrig *et al*., 2002), and the covalent binding of peptide A to cysteine 264 of sucrose synthase increased the enzyme cleavage activity (Rohrig *et al*., 2004). These findings suggest a role for *ENOD40* in nutrient supply by controlling the breakdown of sucrose for nodule development (Gordon *et al*., 1999).

ENOD40 transcripts were also detected outside developing nodules and gene homologs were identified in non-leguminous plants, suggesting a more general biological function. More specifically, *ENOD40* transcripts were found in stems, in the parenchyma cells surrounding the protoxylem, suggesting a role in vascular development (Kouchi *et al*., 1999; Corich *et al*., 1998). In addition, transcripts were found in developing flowers and lateral roots (Corich *et al*., 1998; Varkonyi-Gasic and White, 2002; Vleghels *et al*., 2003; Papadopoulou *et al*., 1996). Since all these tissues are linked with cell division and differentiation, *ENOD40* may have a common underlying role in organ and tissue development. Indeed, ectopic expression of *ENOD40* in alfalfa affected the formation of somatic embryos under *in vitro* culture conditions (Crespi *et al*., 1994), while its ectopic expression in *A. thaliana* caused a reduction in cell size (Guzzo *et al*., 2005). This function is probably interlinked with phytohormone signaling pathways because ectopic expression of *ENOD40* in tobacco Bright Yellow-2 cells resulted in elongation growth by alteration of ethylene biosynthesis kinetics and changes in phytohormonal signaling were reported for *M. truncatula* and rice plants ectopically expressing *MtENOD40* (Dey *et al*., 2004; Ruttink *et al*., 2006). Despite these many studies, a detailed insight in *ENOD40* action is still not obtained and awaits further investigation.
2.3.3 RALF peptides involved in nodule organogenesis and infection

RALF is a 49 amino acids long peptide, processed from the C-terminus of its preproprotein, probably by cleavage at a dibasic amino acid motif (Pearce et al., 2001; Bedinger et al., 2010). At the N-terminus of the preproprotein, the presence of a signal peptide suggested extracellular secretion (Pearce et al., 2001). Highly conserved homologs are present in various species throughout the plant kingdom, amongst which 39 members in Arabidopsis thaliana and 40 members in M. truncatula (Olsen et al., 2002; Combier et al., 2008; Pearce et al., 2001). RALF peptide genes are expressed in various tissues including shoots, roots, flowers, leaves and nodules (Germain et al., 2005; Pearce et al., 2001; Combier et al., 2008). RALF was originally discovered during the purification of tobacco systemin as a component that induces rapid alkalinisation of the medium, as well as rapid activation of MAPK activity in tobacco cells (Pearce et al., 2001). In contrast to systemin, no defense responses were observed in tobacco cell cultures when supplied at nanomolar concentrations (Pearce et al., 2001).

RALF has been suggested to be involved in the regulation of root growth and development, as synthetic tomato RALF peptides, when supplied to tomato and Arabidopsis seedling, induced a small enlargement of meristematic cells and an immediate arrest of root growth (Pearce et al., 2001). Knock-down of RALF expression in Nicotiana attenuate, resulted in plants with longer roots and abnormal root hair development (Wu et al., 2007). According to Covey et al. (2010) RALF would be involved in pollen tube elongation. Finally, Combier et al. (2008) showed evidence for the involvement of a M. truncatula RALF, named MtRALF1, during nodulation (Figure 2.1).

Expression analysis confirmed that MtRALF1 is transiently upregulated by Nod factor treatment (Combier et al., 2008). A reduced number of nodules was observed on roots ectopically expressing MtRALF1, while the number of aborted infection threads, with a bulbous and sac-like phenotype, was strongly increased (Combier et al., 2008). The few nodules that could form on the roots ectopically expressing MtRALF1 had an abnormal development and remained small, with poor rhizobial colonization. These results suggest that MtRALF1 might be involved in nodule development and rhizobial infection, more specifically during the initial progression of infection threads through the outer cortical cell layers. As both inner and outer cortical cells initiate the cell cycle upon inoculation, RALF peptides might be involved in a common step in cell cycle activation. Until now, two proteins were identified as possible components of
a RALF receptor complex (Scheer and Ryan, 1999). Further investigation of these proteins, and the identification of new RALF interacting partners need to be done to obtain a clear insight in the role of this peptide.

2.3.4 DVL1/ROT4

DVL1/ROT4 are peptides that are also derived from the C-terminus of larger preproproteins. In *A. thaliana*, a gene family of 23 members was identified and the peptides are derived from a conserved 29 amino acids long domain (Narita *et al.*, 2004; Wen *et al.*, 2004). The peptide genes were identified during screens for leaf shape and fruit mutants of *A. thaliana*. A dominant mutation of ROT4 (*rot4-1D*) resulted in plants with short leaves and floral organs, which was mainly caused by a decrease in cell proliferation (Narita *et al.*, 2004). *Dvl1-1D* plants exhibited shortened petioles and siliques, rounder leaves and moderately horned fruits (Wen *et al.*, 2004). Hence, ROT4 and DVL1 affect plant growth and development by regulating polar cell proliferation. The functions of the DVL1/ROT4 family members are expected to be redundant, as ectopic expression caused similar pleiotropic effects on plant development (Wen *et al.*, 2004). However, divergent expression patterns were reported for the family members: *ROT4* is expressed in young leaves and in the SAM; the expression of *DVL1* has been localized to leaves; and the other family members are mostly expressed in flowers and roots (Narita *et al.*, 2004; Wen *et al.*, 2004). In *M. truncatula*, 10 members of the *DVL1*/ROT4 family were identified and expression analysis revealed that one of them, *MtDVL1*, is transiently upregulated after NF treatments during initial phases of nodulation (Figure 2.1) (Combier *et al.*, 2008). Ectopic expression of *MtDVL1* resulted in a reduction in nodule number and in a strong increase in the number of aborted infection threads in outer cortical cell layers, identical to what was observed for *MtRALF1* (Combier *et al.*, 2008). Nevertheless, in contrast to what was observed for *MtRALF1*, nodule development and nitrogen fixation were as normal. Based on all these phenotypes, *MtDVL1* is supposed to act during rhizobial infection at the initial progression of infection threads through the outer cortical cell layers. Because *DVL1* family members are involved in cell proliferation, Combier *et al.* (2008) suggest a role for *MtDVL1* during cellular events leading to the differentiation for pre-infection thread formation. While DVL1 peptides control polar cell proliferation in lateral organs, they might also play a role in the polar growth of root hairs and as such be indirectly linked to nodulation (Narita *et al.*, 2004; Wen *et al.*, 2004). Evidence for this hypothesis is still lacking,
but molecular analysis of root hair growth might reveal the answer.

2.3.5 The role of NCRs in symbiosome development

All the above mentioned peptides seem to affect cell division and differentiation in a certain way. Another group of peptides or small proteins, the NCR proteins, play an important role in controlling the microsymbiont during nodulation (Figure 2.1). NCRs are 30 to 50 amino acids long of which 4 or 6 amino acids are cysteine residues located at conserved positions in the C-terminus. The other amino acid residues are extremely divergent. A signal peptide at the N-terminus targets the proteins to the secretory pathway (Mergaert et al., 2003). More than 300 NCR members were discovered until now and they all occur in the galegoid legumes such as *Medicago* spp. (Fedorova et al., 2002; Graham et al., 2004; Gyorgyey et al., 2000; Mergaert et al., 2003; Alunni et al., 2007), *Pisum sativum* (Kardailsky et al., 1993; Kato et al., 2002; Scheres et al., 1990), *Trifolium repens* (Crockard et al., 2002), *Astragalus sinicus* (Chou et al., 2006), *Galega orientalis* (Kaijalainen et al., 2002) and *Vicia faba* (Fruhling et al., 2000). NCRs are exclusively nodule specific, except for two members which were also expressed in mycorrhizal roots (Mergaert et al., 2003). Different spatial and temporal expression patterns were observed for different NCR genes suggesting that NCRs play a role in different nodule tissues and cell types and at several stages of nodule organogenesis (Mergaert et al., 2003). Many NCRs might work synergistically, as overlapping expression patterns were also observed. From the results of macro-array experiments NCRs seemed to be coregulated with a calmodulin (CaM)-like protein and two signal peptide peptidases (Mergaert et al., 2003). Mergaert et al. (2003) therefore suggest that these genes might be involved in similar functions or pathways (Young, 2000). The exact function of the NCRs is not known, but Mergaert et al. (2003) and Alunni et al. (2007) suggested that they act as antimicrobial peptides especially recruited for bacteroid differentiation (Brogden, 2005). Indeed, NCRs were recently indicated to be involved in the terminal and irreversible differentiation of rhizobia to bacteroids in the *S. meliloti - M. truncatula* symbiosis (Van de Velde et al., 2010).

Authors contributions

The main part of the work was done by V. Mortier. U. Mathesius, S. Goormachtig and M. Holsters were involved in revising the manuscript.
Never too many?

How legumes control nodule numbers

Virginie Mortier, Marcelle Holsters and Sofie Goormachtig

Submitted to: Plant Cell & Environment
Abstract

Restricted availability of nitrogen compounds in soils, is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are highly energy consuming, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant’s needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.

3.1 Nodulation: coordinated bacterial infection and organ formation

Nodulation is initiated by a signal exchange between the symbiotic partners. The process starts when plant root exudates, mostly flavonoids, are perceived by the rhizobia activating the nodulation (nod) genes to produce and secrete the lipo-chitooligosaccharidic Nod Factors (NFs) (D’Haeze and Holsters, 2002). In turn, NFs are sensed by LysM-type receptor-like kinases (RLKs) in the root epidermis and trigger a signaling cascade to elicit infection and cortical cell division (Figure 3.1) (Madsen et al., 2003; Radutoiu et al., 2003; Amor et al., 2003; Arrighi et al., 2006; Jones et al., 2007; Oldroyd and Downie, 2008). NF synthesis as well as nodule initiation is highly dependent on stringent structural requirements of both signal molecules. In most legumes studied, including the model legumes, the bacteria enter via root hairs. After perceiving the NFs, the root hairs respond with Ca2+ influx at the tip, immediately followed by Cl− and K+ effluxes. These ion fluxes induce the deformation and curling of the root hairs (shepherd’s crooks) to entrap a bacterial colony (Kijne et al., 1992; Emons and Mulder, 2000). Only young growing root hairs in a restricted zone just above the root tip are responsive to NF perception (Bhuvaneswari et al., 1981; Lerouge et al., 1990). Local hydrolysis and invagination of the plasma membranes of root hair cells mark the development of intracellular infection threads, plant-derived tubular structures through which the rhizobia are guided towards the underlying cortical cell layers.
(Turgeon and Bauer, 1985; Brewin, 1991; Kijne et al., 1992). Ahead of the advancing threads, cells in the cortex are induced to dedifferentiate, divide and form a nodule primordium (Brewin, 1991; Truchet et al., 1991; Mergaert et al., 1993; Stokkermans and Peters, 1994). Depending on the legume host, the nodules will originate from either the inner or outer root cortex, resulting in indeterminate and determinate nodules, respectively. In Medicago truncatula (barrel medic), cylindrical indeterminate nodules develop, characterized by a distal, persistent meristem and various developmental zones. The meristem is followed by an infection zone with cells containing proliferating infection threads from which infection droplets release bacteria into the cytoplasm of the plant cells. During uptake, the bacteria are surrounded by a plant-derived peribacteroid membrane that together form organelle-like structures, called the symbiosomes. The bacteria in the symbiosomes differentiate into the nitrogen-fixing bacteroids of the fixation zone (Mylona et al., 1995). Upon decay of the infected plant cells, a senescence zone is established (Perez Guerra et al., 2010). In mature determinate nodules, all meristematic tissue has been consumed and the central tissue mainly consists of infected cells, where nitrogen fixation is taking place.

Several components of the NF signaling pathway have been identified. In M. truncatula, a leucine-rich-repeat (LRR) RLK, DOESN’T MAKE INFECTIONS2 (MtDMI2) and a nuclear potassium channel (MtDMI1) are active early in the pathway and trigger Ca$^{2+}$ spiking in and around the nucleus (Oldroyd and Downie, 2004). In addition, orthologous genes with a similar function were found in other legumes as well (Endre et al., 2002; Stracke et al., 2002; Oldroyd and Downie, 2004; Imaizumi-Anraku et al., 2005; Capoen et al., 2005). Decoding of this Ca$^{2+}$ signature by a Ca$^{2+}$ calmodulin-binding protein (LjCCAMK and MtDMI3) and its interacting partner INTERACTING PROTEIN OF DMI3 (MtIPD3 and LjCYCLOPS) triggers the transcription factors NODULATION signaling PATHWAY1 (NSP1), NSP2, ETHYLENE-RESPONSIVE BINDING DOMAIN FACTOR REQUIRED FOR NODULATION1 (ERN1), and NODULE INCEPTION (NIN) (Schauzer et al., 1999; Catoira et al., 2000; Borisov et al., 2003; Oldroyd and Long, 2003; Gleason et al., 2006; Andriankaja et al., 2007; Marsh et al., 2007; Middleton et al., 2007; Oldroyd and Downie, 2008;Messines et al., 2007). Together, these transcription factors are involved in the activation of EARLY NODULATION (ENOD) genes that initiate infection and nodule primordium formation.

As long as rhizobia remain in the infection threads, they produce NFs that set off both cell autonomous and non-autonomous processes (Gage and Margolin, 2000; Gage,
Figure 3.1: The epidermal and cortical Nod Factor (NF) signaling pathway in *Medicago truncatula*. NFs exuded by rhizobia are sensed by root epidermal cells, where they activate the LysM-type receptor like kinases NFP, LYK3 and LYK4. Receptor activation induces Ca\(^{2+}\) influx at the root hair tips, eventually resulting in root hair curling and rhizobial infection. Also the LRR-RLK DMI2 and the nuclear potassium channel DMI1 are active early in the epidermal pathway and trigger Ca\(^{2+}\) spiking in and around the nucleus. Decoding of this Ca\(^{2+}\) signature by the Ca\(^{2+}\) calmodulin-binding protein DMI3 and its interacting partner IPD3 results in the activation of the transcription factors NSP1, NSP2, ERN1 and NIN. Together, these transcription factors are involved in the activation of early nodulation (ENOD) genes to initiate the infection process. In parallel, a mobile signal, suggested to be cytokinin, is activated/produced by the epidermis downstream of DMI3 and is translocated to the cortex where it is sensed by the cytokinin receptor CRE1. Signaling via RRs results in the activation of the transcription factors ERN1, NSP2 and NIN, which activate the expression of ENOD genes to induce cortical cell divisions.
Regulation of nodule numbers

2004). Pre-infection threads and nodule primordia are formed from a distance by cell cycle induction. Pre-infection threads involve the redistribution of the cytoplasm to form cytoplasmic bridges through which the infection threads will pass. The cortical cells that develop pre-infection threads arrest cell cycling before the M phase (van Brussel et al., 1992; Timmers et al., 1999; van Spronsen et al., 2001). Whether cells will develop pre-infection threads or will divide depends on their position within the root and on the legume species involved. In *M. truncatula*, cells of the outer cortex develop into pre-infection threads, while the inner cortical cells divide and make the primordium. Gradients of hormones and signals have been proposed to determine the response of each cell. The NF-dependent signal that activates cell division must be generated after Ca$^{2+}$ spiking, because autoactivation of nodule development is induced when the autoinhibition domain of MtDMI3 is removed, revealing that a functional Mt-DMI3 is sufficient to induce primordium formation in the absence of rhizobia (Gleason et al., 2006).

Many experiments have shown that cytokinin signaling is essential to induce nodule primordia (Crespi and Frugier, 2008; Frugier et al., 2008). For an overview of the cytokinin signal transduction pathway we refer to Figure 3.2. The cortex-located LOTUS HISTIDINE KINASE1 (LjLHK1) and its orthologue CYTOKININ RESPONSE1 (MtCRE1) are involved in cytokinin perception and signaling through cytokinin response regulators (RRs) initiates nodule organogenesis (Gonzalez-Rizzo et al., 2006; Lohar et al., 2006; Murray et al., 2007). Cytokinin signaling occurs downstream the NF signaling cascade and the transcription factors ERN1, NSP2 and NIN act downstream of cytokinin signaling to trigger cortical cell division (Tirichine et al., 2007; Frugier et al., 2008; Plet et al., 2011).

Formation of nodule primordia is characterized by a rhizobia-induced, local accumulation of auxin at the site of nodule initiation in the inner cortex of *M. truncatula*. This local auxin accumulation is generated by an inhibition of the polar auxin transport (PAT) just below the infection site, but does not occur in *L. japonicus*, suggesting that determinate and indeterminate nodulation are differentially regulated (Mathesius et al., 1998; Pacios-Bras et al., 2003; van Noorden et al., 2006). PAT is a highly regulated cell-to-cell transport and involves asymmetrically, cell membrane-localized auxin influx carrier proteins and auxin efflux carrier proteins (Huo et al., 2006; Grunewald and Friml, 2010). Recently, *MtCRE1* has been shown to be essential to inhibit PAT in *M. truncatula* (Plet et al., 2011).

Besides a local auxin accumulation, nodulation is also characterized by a rhizobia-
induced long-distance inhibition of the PAT from the shoot to the root. Inhibition of this long-distance auxin transport seems to control the nodule number (van Noorden et al., 2006). The role of auxin during nodulation has been suggested also by the elevated auxin levels in nodules, the differential expression of auxin response genes and by the induction of nodulin-expressing pseudonodules after the addition of PAT inhibitors (Hirsch et al., 1989; Wu et al., 1996; Ferguson and Mathesius, 2003; van Noorden et al., 2006).
3.2 Different mechanisms control the nodulation process

From the start of the research on nodulation, it has been observed that nodulation is a strictly controlled process and that nodule formation and functioning in legumes are regulated by various mechanisms according to environmental conditions. This observation is not surprising because nodulation is not only an energy-consuming process but also requires the strict control of a bacterial invader (Tjepkema and Winship, 1980). As a result, when the environmental conditions are favorable, roots that are susceptible for nodulation will allow some infection threads to proceed while many others will be arrested in the epidermis or cortex (Gage, 2004). Moreover, the number of nodule primordia is restricted. After formation of the first primordia, new ones will be inhibited. As a consequence, under ideal circumstances, nodules occur together on a specific zone of the root on many legumes, such as *M. truncatula* and *L. japonicus*. Furthermore, environmental conditions, such as nitrate or ammonium availability affect the nodulation process and endogenous signals, such as carbon availability, determine the efficiency of the nodulation and nitrogen fixation processes. Here, we will mainly focus on the mechanisms that influence bacterial infection and primordium development to control nodule number and nodule growth.

3.2.1 Ethylene, abscissic acid and jasmonic acid as local, negative regulators of nodulation

The phytohormones ethylene, abscissic acid (ABA) and jasmonic acid (JA) negatively regulate nodulation by modifying epidermal responses because of their impact on the Ca$^{2+}$ spiking event (Cho and Harper, 1993; Penmetsa and Cook, 1997; Suzuki *et al.*, 2004; Nakagawa and Kawaguchi, 2006; Sun *et al.*, 2006). NF-induced ethylene production inhibits nodulation, suggesting that a local negative feedback loop exists for controlling the nodule number (van Spronsen *et al.*, 1995). Indeed, ethylene suppresses the NF-signaling pathway either at or during NF-induced Ca$^{2+}$ spiking, inhibiting root hair deformation, shortening the Ca$^{2+}$ spike period, blocking bacterial infection and suppressing nodulin genes expression (Oldroyd *et al.*, 2001). Inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (such as aminoethoxyvinylglycine [AVG]) and antagonists of ethylene actions (such as Ag$^+$ ions) have been shown to enhance nodule formation (Nukui *et al.*, 2000; Oldroyd *et al.*, 2001), whereas
exogenous ethylene or one of its immediate precursors decreases nodule number (Nukui et al., 2000). These findings have been confirmed by the identification of sickle (skl), an ethylene-insensitive hypernodulation mutant of *M. truncatula* that is affected in the orthologous gene of *Arabidopsis thaliana* ETHYLENE-INSENSITIVE2 (*EIN2*) (Penmetsa and Cook, 1997; Penmetsa et al., 2003, 2008). The hypernodulation phenotype of skl mutants results in typical sickle-shaped roots and an uncontrolled growth of infection threads (Penmetsa and Cook, 1997; Penmetsa et al., 2003, 2008). Transgenic *L. japonicus* plants expressing a mutated, probably dominant-negative ethylene receptor gene from either melon (*Cucumis melo*) or *Arabidopsis* produce a high number of infection threads and nodule primordia, similar to the skl phenotype (Nukui et al., 2004; Lohar et al., 2009). In pea, exogenous addition of the cytokinin benzylaminopurine (BAP) stimulates the production of ethylene and results in a number of nodulation-related changes (Lorteau et al., 2001). However, it is not clear whether there is a direct correlation between the actions of cytokinin and ethylene and the observed nodulation phenotypes (Lorteau et al., 2001).

Ethylene also imposes the positioning of nodules along the root vasculature (Penmetsa and Cook, 1997; Heidstra et al., 1997). In contrast to nodules on wild-type plants that preferentially arise opposite protoxylem poles, nodules on skl mutants and transgenic plants with hindered ethylene signaling are randomly distributed over the root circumference (Penmetsa and Cook, 1997; Penmetsa et al., 2003, 2008). Transcripts encoding an ACC oxidase, involved in the last step of the ethylene biosynthesis, occur specifically in cells opposite protophloem poles. Based on these results and the negative influence of ethylene on cell division, an ethylene landscape in the root has been proposed, with the highest concentration in the inner cortical cells opposite protophloem poles and the lowest opposite the protoxylem poles, that restricts cell division to inner cortical cells opposite the protoxylem poles (Heidstra et al., 1997).

Furthermore, ABA that negatively influences nodulation is believed to be involved in nodulation at two different levels. On the one hand, at the nodule initiation level, ABA would interfere with NF signaling and affect the nature of the NF-induced Ca$^{2+}$ spiking, reducing the nodule number; on the other hand, at the nodule development level, ABA would suppress cytokinin-dependent organogenesis (Ferguson and Matheusius, 2003; Suzuki et al., 2004; Ding et al., 2008). This negative regulation of nodulation by ABA has been identified in *M. truncatula* and *L. japonicus* (Suzuki et al., 2004; Liang et al., 2007; Ding et al., 2008; Biswas et al., 2009).

Although the exogenous application of JA or methyl-JA (MeJA) affects *M. truncat-
Regulation of nodule numbers

 ula nodule via Ca2+ spiking (Miwa et al., 2006; Sun et al., 2006), the involvement
of JA during nodule development has recently been questioned because the differential
expression of the JA-biosynthetic gene ALLENE OXIDE CYCLASE (AOC) did not
vary between nodulated and non-inoculated roots (Zdyb et al., 2011). Moreover, altered
expression levels of AOC, via either overexpression or knock-down in transgenic
roots, did not result in any nodule phenotype (Zdyb et al., 2011). These results
indicate that the local production of JA is not involved in nodule development, but the
translocation or release of JA should still be investigated. Moreover, a shoot-to-root
movement of JA is not excluded.

3.2.2 Autoregulation of nodulation

In addition to local control mechanisms, split-root experiments have indicated that
long-distance mechanisms exist that control nodule numbers (Koss slack and Bohlool,
1984). After inoculation of one half of the root system, noduleation was suppressed
in the other half of the root system, even a few days after inoculation of the first half
(Koss slack and Bohlool, 1984; Suzuki et al., 2008). Such a long-distance feedback mech-
anism, whereby early noduleation events hinder further noduleation over the
complete root system, has been designated autoregulation of nodulation (AON) (Nut-
man, 1952; Pierce and Bauer, 1983; Koss slack and Bohlool, 1984; Carroll et al., 1985a,b;
Del ves et al., 1986). Thanks to mutant analyses, general insights into AON have been
obtained, but a molecular view on the mechanism is still lacking. Various split-root
experiments have indicated that the signal for the systemic suppression is generated
after root hair curling, but before nitrogen fixation and initiation of visible cortical and
pericyle cell divisions (Koss slack and Bohlool, 1984; Mathews et al., 1989a; Caetano-
Anolles et al., 1991; Sagan and Gresshoff, 1996; Suzuki et al., 2008; Li et al., 2009).
When nodules are excised, a new round of nodulation is observed, suggesting that
the AON signal is generated in nodules (Caetano-Anolles et al., 1991). Furthermore,
the capacity of primary nodules to inhibit further nodulation has been shown exper-
imentally to be the highest in nitrogen-fixing mature nodules (Singleton and Kessel,
1987; Streeter and Wong, 1988; Caetano-Anolles et al., 1991; Suzuki et al., 2008; Li
et al., 2009). However, NFs alone can also activate AON, albeit at low levels (Li et al.,
2009). By means of plant mutants impaired at different stages of bacterial infection or
cortical cell division, AON has been correlated with a signal associated with nodule pri-
mordium development rather than infection thread formation (Li et al., 2009). Indeed,
AON is still active in the spontaneous nodulators, such as the autoactive dmi3 and lhk1 mutants, indicating that AON happens in the cortex downstream of the cytokinin signaling (Tirichine et al., 2007; Okamoto et al., 2009; Miyazawa et al., 2010). Together, these results imply that AON signaling is activated in the cortex after NF-induced cytokinin signaling and that the strength of the signal depends on the number, the activity and the developmental age of the nodules (Pierce and Bauer, 1983; Caetano-Anolles et al., 1991; Olsson et al., 1989).

AON has been demonstrated in a variety of determinate and indeterminate nodules, including soybean (Glycine max) (Delves et al., 1986; Olsson et al., 1989), subterranean clover (Trifolium subterraneum) (Sargent et al., 1987), alfalfa (Caetano-Anolles and Bauer, 1988; Caetano-Anolles et al., 1991), M. truncatula (Schnabel et al., 2005), white bean (Phaseolus vulgaris) (Park and Buttery, 1988), pea (Li et al., 2009) and L. japonicus (Suzuki et al., 2008). The stage at which nodulation is inhibited seemsly differs for determinate and indeterminate nodulation. In indeterminate nodulation, AON prevents the formation of new nodule primordia, whereas in determinate nodulation suppression takes place at the level of nodule primordium development (Caetano-Anolles et al., 1991).

3.2.3 Role of the shoot in AON

Hypernodulating (or supernodulating) mutants in soybean (NODULE AUTOREGULATION RECEPTOR KINASE [GmNARK], also known as NITRATE-TOLERANT SYMBIOSIS 1 [NTS1]), L. japonicus (HYPERNODULATION ABERRANT ROOT FORMATION 1 [LjHAR1]), M. truncatula (SUPER NUMERIC NODULES [MtSUNN]) and pea (PsSYM29) have led to the identification of orthologous LRR-RLKs that play a crucial role during AON (Table 3.1) (Duc and Messager, 1989; Sagan and Gresshoff, 1996; Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Oka-Kira et al., 2005; Schnabel et al., 2005). These receptors consist of N-terminal LRR repeats, a single transmembrane domain and a C-terminal serine/threonine kinase domain and are leguminous homologs of Arabidopsis CLAVATA1 (CLV1), which is part of a receptor complex that controls shoot meristem homeostasis (Clark et al., 1997; Krusell et al., 2002; Nishimura et al., 2002a; Dievart et al., 2003; Searle et al., 2003; Schnabel et al., 2005). Therefore, hereafter, we will refer to this group of legume proteins as CLV1-like RLKs. Mutants in CLV1-like RLKs have a normal sensitivity to ethylene (Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005).
Regulation of nodule numbers

2005). In contrast to skl mutants, which have densely packed nodules on a restricted area of the susceptible root zone, AON mutants carry numerous small nodules all over the roots (Penmetsa and Cook, 1997; Penmetsa et al., 2003, 2008; Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005). Despite their high number of nodules, these hypernodulation mutants do not fix more nitrogen than wild type plants because the nitrogen fixation capacity per nodule is reduced (Carroll et al., 1985a,b; Schuller et al., 1988). Transcripts of genes encoding CLV1-like RLKs occur throughout the plant, more specifically in the vasculature (Nontachaiyapoom et al., 2007; Krusell et al., 2002; Nishimura et al., 2002a; Schnabel et al., 2005; Yamamoto et al., 2000; Searle et al., 2003). Reciprocal grafting experiments between mutant and wild-type plants have shown that the hypernodulation phenotype is determined by the shoot genotype (Delves et al., 1986; Jiang and Gresshoff, 2002; Krusell et al., 2002; Men et al., 2002; Penmetsa et al., 2003; Francisco and Harper, 1995; Nishimura et al., 2002a).

Hence, a receptor complex similar to the one that perceives CLV3 in the Arabidopsis shoot apical meristem (SAM) to regulate stem cell homeostasis is active in legume shoots and controls the nodule number over long distances. Based on the results of these plant mutants, the current model for AON proposes that an unknown signal Q, produced in the roots in response to rhizobia, is translocated to the shoot where it is sensed by receptor complexes, including the CLV1-like RLKs, resulting in the formation/activation of an unknown ‘shoot-derived inhibitor’ (SDI), which is transmitted back to the roots to prevent excessive nodule formation (Figure 3.3). However, the nature of the Q and SDI signals are still unknown.

Mutants of CLV1-like RLKs are characterized by a short root phenotype and frequently by an elevated number of lateral roots in the presence and absence of rhizobia (Buzas and Gresshoff, 2007; Penmetsa et al., 2003; Schnabel et al., 2005; Wopereis et al., 2000; Day et al., 1986; Szczyglowski et al., 1998). Reciprocal grafts between the summ mutants and wild-type plants have revealed that the root phenotypes are also controlled by the shoot (Schnabel et al., 2005). Additional phenotypes observed on the clv1-like RLK mutants include an increase in arbuscule formation and a lack of mycorrhizal autoregulation (Meixner et al., 2005; Solaiman et al., 2000), as well as hyperinfection by a parasitic root-knot nematode (Lohar and Bird, 2003).

The similarity to the CLV1 gene of Arabidopsis is intriguing because no common phenotypes are shared between the clv1 mutants and mutants of CLV1-like RLK-encoding genes of legumes. Nevertheless, other AON mutants do exhibit clv1-like
Figure 3.3: Model of autoregulation of nodulation (AON). Nod Factor-induced nodule development causes the production of an unknown signal Q, in the roots of leguminous plants which is translocated to the shoot where it induces the formation/activation of an unknown shoot controlled inhibition mechanism (SDI), which affects the roots to prevent excessive nodule formation. Perception of the Q signal in the shoot would be mediated by the LRR-RLKs MtSUNN, LjHAR1, GmNARK and PsSYM29. Also LjKL V, PsSYM28, PsNOD4 and MtLSS were shown to be essential in the shoot for proper AON. PsNOD3 and MtRDN are suggested to be involved in the roots in the earliest steps of AON, while LjTML is hypothesized to be involved in the root-perception of the SDI signal. The SDI mechanism remains elusive, but an upregulation of brassinosteroids (BR) or a downregulation of auxin or jasmonic acid (JA) might be involved.

phenotypes, of which two, LjKlavier (klv) and Pssym28, are affected in genes that encode proteins that are homologous to members of the same signaling complex as CLV1. The klv mutant, characterized by a shoot-determined hypernodulation phenotype, is altered in a gene encoding an LRR-RLK structurally unrelated to CLV1-like RLKs,
but closely homologous to RECEPTOR-LIKE PROTEIN KINASE2/TOADSTOOL2 (RPK2/TOAD2). Besides CLV1, the CLV2/CORYNE (CRN) and RPK2/TOAD2 receptor complexes have recently been found to also transmit the signal of the stem-cell-specific peptide hormone CLV3 in the Arabidopsis SAM (Oka-Kira et al., 2005; Miyazawa et al., 2010; Kinoshita et al., 2010; Guo and Clark, 2010; Bleckmann et al., 2010). The non-nodulation phenotypes exhibited by klv include fasciated stems and numerous extra organs (Oka-Kira et al., 2005; Miyazawa et al., 2010). Double mutant analysis has indicated that KLV and HAR1 function in the same genetic pathway and biochemical analyses of their transient expression in Nicotiana benthamiana have revealed that KLV can interact with itself as well as with HAR1, suggesting that the proteins might form a receptor complex in L. japonicus (Miyazawa et al., 2010). In accordance, the Pssym28 mutant that, besides shoot-derived AON defects, also displays clv1-like phenotypes, has recently been found to be affected in the Arabidopsis CLV2 homologue of pea that encodes a membrane-localized protein (Krusell et al., 2011). A similar phenotype has been obtained in the L. japonicus CLV2 mutants. LjCLV2 and HAR1 have overlapping expression patterns, but a direct protein-protein interaction could not be demonstrated (Krusell et al., 2011). Hence, the same receptor complex might control AON and SAM homeostasis but different plants might use different contributions of each receptor to induce different effects. The nodulation4 (nod4) mutant also exhibits shoot-dependent hypernodulation as well as non-symbiotic phenotypes (Table 3.1) (Duc and Messager, 1989; Sagan and Gresshoff, 1996; Sidorova and Shumnyi, 2003; Sidorova et al., 2005), but the affected gene is currently unidentified. In addition, in M. truncatula, a supernodulator mutant has been characterized, like sunn supernodulator (lss), with a phenotype similar to that of sunn mutants. Although its origin is still not known, the mutation might involve an uncharacterized epigenetic modification at the SUNN locus (Schnabel et al., 2010).

3.2.4 Role of the root in AON

In addition to the shoot-regulated hypernodulation mutants, other mutants have been identified, such as too much love (tml) from L. japonicus, nodulation3 (nod3) from pea and root determined nodulation (rdn) from M. truncatula (Table 3.1) that systemically inhibit nodulation and of which the hypernodulation phenotype is controlled by the root (Postma et al., 1988; Magori and Kawaguchi, 2009). The molecular characteristics of the TML, RDN and NOD3 genes remain to be elucidated, but approach-grafting
Table 3.1: Overview of hypernodulating mutants.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Plant</th>
<th>Mutated gene</th>
<th>Shoot/root determined</th>
<th>Nitrate sensitive</th>
<th>Ethylene sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunn</td>
<td>Mt</td>
<td>LRR-RLK SUNN</td>
<td>shoot</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>nts1/nark</td>
<td>Gm</td>
<td>LRR-RLK NARK</td>
<td>shoot</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>har1</td>
<td>Lj</td>
<td>LRR-RLK HAR1</td>
<td>shoot</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>sym29</td>
<td>Ps</td>
<td>LRR-RLK SYM29</td>
<td>shoot</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>klavier</td>
<td>Lj</td>
<td>LRR-RLK KLV</td>
<td>shoot</td>
<td>partially</td>
<td>yes</td>
</tr>
<tr>
<td>sym28</td>
<td>PS</td>
<td>LRR-RLP CLV2</td>
<td>shoot</td>
<td>no</td>
<td>/</td>
</tr>
<tr>
<td>nod4</td>
<td>Ps</td>
<td>/</td>
<td>shoot</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>lss</td>
<td>Mt</td>
<td>/</td>
<td>shoot</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>nod3</td>
<td>Ps</td>
<td>/</td>
<td>root</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>tml</td>
<td>Lj</td>
<td>/</td>
<td>root</td>
<td>/</td>
<td>yes</td>
</tr>
<tr>
<td>plenty</td>
<td>Lj</td>
<td>/</td>
<td>root</td>
<td>partially</td>
<td>yes</td>
</tr>
<tr>
<td>rdh1</td>
<td>Lj</td>
<td>/</td>
<td>root</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>rdn</td>
<td>Mt</td>
<td>/</td>
<td>root</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>skl</td>
<td>Mt</td>
<td>EIN2</td>
<td>root</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>astray</td>
<td>Lj</td>
<td>bZIP TF</td>
<td>root</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Experiments have indicated that \(P_{snod3} \) functions at the onset of AON probably by producing or transporting Q in or to the roots (Li et al., 2009). The same function has been proposed for \(RDN \) based on observation of \(M. \ truncatula \ rdn \) mutants (Frugoli et al., unpublished data). Furthermore, \(nod3 \) mutants are characterized by compact roots with increased secondary lateral roots (Postma et al., 1988). In contrast, double-mutant analysis and inverted-Y grafting experiments have shown that \(TML \) functions locally and downstream of \(HAR1 \), suggesting that TML would rather be a receptor or a mediator of the shoot-derived SDI signal (Magori and Kawaguchi, 2009; Magori et al., 2009). \(Tml \) mutants are characterized by an increased number of infection threads and nodules, which are small and cover a wide part of the roots (Magori et al., 2009) and are not orthologous to \(skl \), because they are not defective in the ethylene responses (Magori et al., 2009). Finally, slightly shorter primary roots with fewer lateral roots are observed on \(tml \) mutants (Magori et al., 2009). The molecular characterization and functional analysis of this \(TML \) gene will help to elucidate its exact role(s) and to get a deeper insight into the process of AON.

In contrast to the hypernodulators mentioned above, the root-determined hypernodulator mutant \(plenty \) has a moderate phenotype, because its nodule number is higher and its nodulation zone wider than those of wild-type plants, but not as enhanced as in \(har1, \ klv \) and \(tml \) of \(L. \ japonicus \) (Yoshida et al., 2010). The nodules of the \(plenty \)
Regulation of nodule numbers

mutants are normal in size, in contrast to the reduced size observed on most AON hypernodulating mutants (Yoshida et al., 2010). Plenty mutants are sensitive to ethylene, display some tolerance against external nitrates (Yoshida et al., 2010) and the PLENTY gene might occur in a different pathway than the HAR1-mediated systemic regulation (Yoshida et al., 2010). These observations, together with its unique phenotype, suggests that the plenty mutant forms a new category of hypernodulation mutants, possibly functioning independently of the AON pathway. The performance of split root experiments might be relevant to determine whether PLENTY involves long-distance signaling. Plenty mutants exhibit non-symbiotic phenotypes, such as a short root and shoot phenotype and an increased number of short lateral roots (Yoshida et al., 2010). Whether the ROOT-DETERMINED HYPERNODULATION1 (RDH1) of *L. japonicus* is involved in long-distance signaling is also unclear (Ishikawa et al., 2008; Yokota et al., 2009). Characterization of LjRDH1 might be of great agricultural importance because it is the only hypernodulating mutant with normal growth, increased nitrogen-fixing activity and high seed and pod yields under optimal cultivation conditions (Ishikawa et al., 2008; Yokota et al., 2009).

3.2.5 Are CLE peptides the Q signals?

Until now, the nature of the root-derived AON signal molecule Q is still elusive. However, SUNN and its orthologues are phylogenetically related to known and putative CLV3/ESR-related (CLE) peptide receptors, such as CLV1, BAM1 and BAM2 and, hence, might perceive CLE peptides (Shiu and Bleecker, 2001; Ogawa et al., 2008; Okamoto et al., 2009; Guo and Clark, 2010), which are small secreted peptides composed of 12 to 13 conserved amino acids that are cleaved from the C-terminal end of CLE preproproteins (Wang and Fiers, 2010). In *Arabidopsis*, the CLE peptide family consists of 31 members and is involved in various developmental processes to balance cell division and differentiation (Sawa et al., 2006; Ito et al., 2006). The best characterized CLE peptide until now is CLV3 that is involved in SAM regulation through interaction with receptor complexes to which CLV1 belong. Signal transduction is carried out by a kinase-associated protein phosphatase (KAPP) that is phosphorylated by CLV1 and, in turn, dephosphorylates CLV1 (Williams et al., 1997; Stone et al., 1998; Trotochaud et al., 1999). Two KAPP genes have been identified in the soybean genome and transphosphorylation activity between the CLV1-like RLK NARK and the two GmKAPP proteins has been demonstrated *in vitro*, hinting at a transduction path-
way in nodule regulation similar to that in SAM homeostasis (Miyahara et al., 2008).

Several nodule-specific CLE peptide genes have been characterized in the genome of *L. japonicus* (*LjCLE-RS1* and *LjCLE-RS2*), *M. truncatula* (*MtCLE12* and *MtCLE13*) and soybean (*GmCLE14-GmCLE39* or *GmRIC1* and *GmCLE35-GmCLE37* or *Gm-RIC2*) (Okamoto et al., 2009; Mortier et al., 2010, 2011; Reid et al., 2011). Functional analysis of the nodule-specific *GmCLE*, *LjCLE* and *MtCLE* genes revealed that these CLE peptides are good candidates for triggering AON (Okamoto et al., 2009; Mortier et al., 2010; Reid et al., 2011). Indeed, ectopic expression of the structurally related genes *GmRIC1*, *GmRIC2*, *LjCLE-RS1*, *LjCLE-RS2*, *MtCLE12* and *MtCLE13* strongly reduced or abolished nodulation locally and systemically in a manner dependent on *NARK*, *HAR1* and *SUNN* in soybean, *L. japonicus* and *M. truncatula*, respectively (Chapter 5) (Okamoto et al., 2009; Mortier et al., 2010; Reid et al., 2011; Saur et al., 2011), whereas overexpression of CLE genes with a structurally unrelated CLE domain did not cause this effect (Okamoto et al., 2009; Mortier et al., 2010; Reid et al., 2011). Interestingly, the expression of *MtCLE12* and *MtCLE13* (Mortier et al., 2010) coincides with the activation and progression of AON that is initiated when the first nodule primordia are formed (Caetano-Anolles et al., 1991; Li et al., 2009), but, thus far, there is no proof that the peptides derived from these genes act as long-distance signals travelling from the developing nodules to the shoot, where SUNN and its orthologs are active. If this were the case, a long-distance root-to-shoot translocation of the peptides would have to occur. Until now, CLE peptides have been shown to act as short-distance signals (Fukuda et al., 2007; Hirakawa et al., 2008; Whitford et al., 2008; Miwa et al., 2009; Stahl and Simon, 2009). It is also possible that local CLE perception in the root triggers secondary signals that proceed to the shoot, where they provoke AON. The creation of fusion proteins might reveal whether the nodule-specific CLE peptides act as long or as short distance signaling molecules during AON. Finally, in soybean, nodule CLE peptides might be involved in the activation of AON, but not in its maintenance because potential AON-related *GmCLE* genes are only expressed in young nodules and not in mature nodules (Mortier et al., 2011).

3.2.6 Systemic suppression of nodulation, a matter of hormonal regulations?

Although what happens downstream of the shoot-located AON receptor complex is still elusive, reciprocal grafting experiments with *L. japonicus har1* roots and *M. trun-
catula wild-type shoots indicated that the AON signal is conserved among legume species (Lohar and VandenBosch, 2005). To elucidate potential downstream signals of NARK, a transcript profiling had been carried out with leaf material from either inoculated or uninoculated wild-type and nark supernodulating mutants in soybean plants (Kinkema and Gresshoff, 2008). The expression of JA-biosynthesis and response genes was downregulated in a systemic, NARK-reliant and rhizobia-dependent manner (Kinkema and Gresshoff, 2008). These results suggest that the shoot-specific downregulation of JA response genes by rhizobial inoculation might be one of the players inhibiting nodule formation during AON (Kinkema and Gresshoff, 2008; Hause and Schaarschmidt, 2009), as supported by the high level of JA measured in AON mutants (Seo et al., 2007; Kinkema and Gresshoff, 2008), although it is still unclear whether these genes are critical for the AON shoot-to-root signaling. Shoot-specific suppression of JA biosynthesis as a mean to control nodule number has been insinuated as well by foliar application of a JA-biosynthesis inhibitor, propyl gallate to M. truncatula, L. japonicus and soybean plants that severely reduced the nodule number without affecting root growth (Sun et al., 2006; Kinkema and Gresshoff, 2008). This negative effect on nodulation has been observed also in har1 and nark mutant backgrounds, hinting again at an action downstream from the shoot-located receptor complex (Seo et al., 2007; Kinkema and Gresshoff, 2008). In contrast, nodulation in L. japonicus has been reported to be strongly suppressed by 10^{-4} to 10^{-3} M shoot-applied MeJA (Nakagawa and Kawaguchi, 2006), but, because this experiment has never been repeated in other plant species, further investigation is needed.

Whether differential JA levels play an active role in shoot-to-root communication in AON is not known. Possibly, other hormones and signals act synergistically to control the nodule number. Indeed, several hormones, such as auxin (indole 3-acetic acid) and brassinosteroids (BRs) have also been associated with long-distance signaling pathways controlling nodule number in various legumes (Ferguson et al., 2005; Nakagawa and Kawaguchi, 2006; Terakado et al., 2006; van Noorden et al., 2006). Foliar application of a BR member, brassinolide (BL) to the soybean hypernodulation mutant En6500 (that is allelic to nts1) reduced nodule numbers (Terakado et al., 2006) and increased the leaf concentration of spermidine, a polyamine, that itself also decreases nodule numbers upon foliar application (Terakado et al., 2006). Hence, BL might be one of the steps in the autoregulation signaling, possibly by inducing the spermidine biosynthesis.

Nevertheless, auxin signaling and PAT might be the central regulators of the long-
distance control of nodulation and all signals mentioned above might impinge on this central hormone. Auxin cargo from the shoots to the roots has been shown to be reduced after inoculation in *M. truncatula* and this reduced auxin flow was absent in the *sunn-1* allele. In addition, the shoot-to-root auxin flux was stronger in *sunn-1* mutants than that of the wild type (van Noorden *et al.*, 2006). Hence, the AON-related shoot signaling complex might downregulate auxin fluxes upon inoculation. Interestingly, AON is seemingly not the only mechanism that controls the shoot-to-root transport of auxin. In the hypernodulating ethylene signaling mutant, *skl*, the auxin transported from shoot to root after inoculation is not inhibited anymore (Prayitno *et al.*, 2006). Thus, to obtain nodules, a certain shoot-to-root auxin flux must be sustained and several control mechanisms might force this central process to allow internal as well as environmental clues to act on nodulation. As a consequence, AON might involve changes in hormone homeostasis rather than in the production of a specific SDI signal. In *Arabidopsis*, overexpression of *CLE6*, related to the AON CLE peptides, can diminish the auxin signaling in the roots (Whitford *et al.*, 2008). Preliminary experiments in the lab hint at the same effect for *MtCLE12* and *MtCLE13* (S. Goormachtig, personal communication), although an opposite observation was recently published (Saur *et al.*, 2011). It is tempting to speculate that in the shoot, SUNN in combination with an unknown CLE peptide, reduces auxin fluxes and that the nodule-specific CLE peptides do the same in combination with root-localized receptors. The reason for the inability of CLE peptides to restrict the number of nodules in AON mutants might be that the action of the nodule-related CLE peptides might not be strong enough to overcome the high levels of auxin present in AON mutants.

Still, shoot-derived nodulation inhibitors might act together with reduced hormone flows. In soybean leaf extracts, a *GmNARK*-dependent SDI factor has been identified as a small (< 1 kDa), heat stable, NF-dependent component unlikely to be an RNA or a protein (Lin *et al.*, 2010). Whatever the SDI signal(s) might be, it(they) would be transported via phloem tissues, because it(they) are generally viewed as a conduit for long-distance communication (Lough and Lucas, 2006; Ruiz-Medrano *et al.*, 2001).

3.2.7 Perception of the return signal in the root

Little is known about the perception of the return signal in the roots. *TML* might play a central role, but awaits further characterization (Magori *et al.*, 2009). Double-mutant analysis and inverted-Y grafting experiments have shown that *TML* functions
Regulation of nodule numbers

locally and downstream of \textit{HAR1}, suggesting a role as a receptor or a mediator of the shoot-derived SDI signal. Moreover, because rhizobial induction of \textit{LjCLE-RS1} and \textit{LjCLE-RS2}, the candidates of the AON-associated root-derived signal molecules, is still observed in the \textit{tml} mutant, \textit{TML} might not be involved in the generation of the root-derived signal (Magori \textit{et al.}, 2009).

Recently, nodules on \textit{sunn} mutant roots have been shown not only to be smaller, but also to have a higher growth rate capability than wild type nodules upon changes in environmental conditions (Jeudy \textit{et al.}, 2010). This interesting observation needs further investigation and indicates that the AON pathway might control nitrogen fixation inside the nodules by regulating the meristem activity and, thus, the balance between growth and differentiation.

3.2.8 The negative effect of nitrate on nodulation, is there a link with AON and CLE peptide signaling?

High concentrations of nitrogen compounds inhibit nodule formation at different stages of the process, regardless of the plant age, nodule size or former inoculation events (Streeter, 1981, 1985; Carroll and Gresshoff, 1983; Carroll \textit{et al.}, 1985a,b; Gibson and Harper, 1985). Via split-root experiments with \textit{M. truncatula}, nitrate limitation has been demonstrated to result in both local and systemic regulation of nodulation that partially depended on \textit{SUNN} (Jeudy \textit{et al.}, 2010). This observation is in agreement with the nitrate-tolerant phenotype of the AON mutants, \textit{har1}, \textit{nark}, \textit{sym29}, \textit{sunn}, \textit{klv} and \textit{tml} that are able to nodulate in the presence of high levels of nitrate (Carroll \textit{et al.}, 1985a,b; Sagan and Gresshoff, 1996; Schnabel \textit{et al.}, 2005; Wopereis \textit{et al.}, 2000; Pennmetsa \textit{et al.}, 2003; Oka-Kira \textit{et al.}, 2005; Magori and Kawaguchi, 2009). These results imply that nitrate tolerance and AON might be linked, possibly by operating through a same ‘control point’ of nodule development (Kinkema \textit{et al.}, 2006). In \textit{L. japonicus}, \textit{LjCLE-RS2} has been shown to be upregulated by rhizobial inoculation as well as by nitrate addition, suggesting that in this plant nitrate might suppress nodulation by activating AON via the induction of specific \textit{CLE} genes (Okamoto \textit{et al.}, 2009). Also in soybean, a nitrate-induced CLE peptide gene (\textit{GmNIC1}) has been identified (Reid \textit{et al.}, 2011).

Although the expression profiles and functional analysis hint at the involvement of AON in nitrate-mediated control on nodulation, the data should be interpreted with caution. Old literature clearly mentions that in AON mutants nodulation is only partially tolerant to nitrate addition and that application of very high concentrations of
nitrate blocks the nodule formation (Eskew et al., 1989). Hence, it is equally possible that the nitrate tolerance of nodulation observed in AON mutants is only a secondary consequence of the mutation. Just as observed in skl, nitrate might also negatively regulate shoot-to-root auxin transport and, hence, increased nitrate concentrations would be needed to reduce the auxin level of AON mutants so as to inhibit nodulation. Because, in Arabidopsis, addition of CLE peptides might reduce the auxin responsiveness in the root vasculature (Whitford et al., 2008), the nitrate-induced CLE peptides might act similarly to control nodule formation. Whether the shoot-located AON complex is involved must however still be demonstrated. In A. thaliana, the systemic inhibitory effect of nitrate on lateral root development has been associated with ABA signaling (Signora et al., 2001; Zhang et al., 2007). Although several ABA mutants are known to be impaired in nodulation, there are no indications for the involvement of ABA in systemic regulation of nodulation (Ding et al., 2008; Tominaga et al., 2009).

3.3 What remains to be discovered?

The identification of a certain number of mutants defective in nodule number has revealed that local as well as systemic signals are involved in the control of nodule numbers. These signals include, amongst others, phytohormones and possibly CLE peptides. In addition, several experiments have indicated that ethylene plays a local role in positioning of nodules around the root circumference. However, information is still lacking on how long-distance signaling pathways, including AON, regulate nodule numbers. Do specific AON signals exist or is AON the consequence of a change in hormone homeostasis? What is the nature of the signals and how are they decoded? Do several signaling pathways work in parallel during AON and impinge on PAT or the transport of other molecules? Are CLE peptides involved during AON, and where are they perceived? To which degree are nitrate inhibition of nodulation and AON intertwined? Does a mild inhibition of nodulation, as observed on the mutant astray, have an impact on AON (Nishimura et al., 2002b)? The isolation and characterization of additional hypernodulating mutants, as well as reverse genetics and biochemical approaches might help us gain more insights into these interesting aspects of nodulation.
Acknowledgements

This work was supported by grants from the European Commission Marie Curie International Research Staff Exchange Scheme (IRSES) (grant no. PIRSES-GA-2008-230830), the Ministerie van de Vlaamse Gemeenschap (grant no. CLO/IWT/020714), and the Research Foundation-Flanders (grants no. G.0350.04N and G.0066.07N). We thank Giel van Noorden for critical reading of the manuscript and Martine De Cock for help in preparing the paper.

Authors contributions

The main part of this work was performed by V. Mortier. S. Goormachtig and M. Holsters were involved in revising the manuscript.
CLE peptides control *Medicago truncatula* nodulation locally and systemically

Virginie Mortier, Griet Den Herder, Ryan Whitford, Willem Van de Velde, Stéphane Rombauts, Katrien D’haeseleer, Marcelle Holsters and Sofie Goormachtig

Chapter 4

Abstract

The CLAVATA3/embryo-surrounding region (CLE) peptides control the fine balance between proliferation and differentiation in plant development. We study the role of CLE peptides during indeterminate nodule development and identified 25 MtCLE peptide genes in the *Medicago truncatula* genome, of which two genes, *MtCLE12* and *MtCLE13*, had nodulation-related expression patterns that were linked to proliferation and differentiation. *MtCLE13* expression was up-regulated early in nodule development. A high-to-low expression gradient radiated from the inner toward the outer cortical cell layers in a region defining the incipient nodule. At later stages, *MtCLE12* and *MtCLE13* were expressed in differentiating nodules and in the apical part of mature, elongated nodules. Functional analysis revealed a putative role for *MtCLE12* and *MtCLE13* in autoregulation of nodulation, a mechanism that controls the number of nodules and involves systemic signals mediated by a leucine-rich repeat receptor-like kinase, SUNN, which is active in the shoot. When *MtCLE12* and *MtCLE13* were ectopically expressed in transgenic roots, nodulation was abolished at the level of the nodulation factor signal transduction and this inhibition involved long distance signaling. In addition, composite plants with roots ectopically expressing *MtCLE12* or *MtCLE13* had elongated petioles. This systemic effect was not observed in transgenic roots ectopically expressing *MtCLE12* and *MtCLE13* in a *sunn-1* mutant background, although nodulation was still strongly reduced. These results suggest multiple roles for CLE signaling in nodulation.

4.1 Introduction

In the symbiotic interaction between legume plants and rhizobia, root nodules develop within which the bacteria fix atmospheric nitrogen. Nodule development requires the spatio-temporal orchestration of developmental programs for infection and organ formation (Jones *et al.*, 2007). In *Medicago truncatula*, the microsymbiont *Sinorhizobium meliloti* enters via curled root hairs and transcellular infection threads. While infection is taking place, inner cortical and pericycle cells divide and form the nodule primordium. The infection threads penetrate primordium cells and bacteria are released into the plant cytoplasm within membrane-enclosed symbiosomes. Inside the symbiosomes, the bacteria differentiate into bacteroids and start the nitrogen fixation process (Jones *et al.*, 2007). Meanwhile, an apical meristem develops and provides
new cells for bacterial internalization. The nodules are of the indeterminate type and have a cylindrical shape.

The perception of bacterial signaling molecules, the nodulation factors (NFs), by specific LysM-type receptor-like kinases (RLKs) in the epidermis of the host plant, elicits various responses to allow root hair invasion and cell division (Madsen et al., 2003; Radutoiu et al., 2003, 2007; Jones et al., 2007; Oldroyd and Downie, 2008). While the inner cortical cells divide, outer cortical cells arrest in the G2 phase of the cell cycle, resulting in cytoplasmic bridges, the preinfection threads, through which the infection threads grow (Yang et al., 1994; van Spronsen et al., 2001).

Opposite pre-existing and NF-induced signal gradients have been proposed to rule the cortical cell responses (Smit et al., 1995a; Heidstra et al., 1997; van Spronsen et al., 2001). Uridine and ethylene are diffusive signals originating from the vasculature that have been identified as positive and negative regulators, respectively. In white clover (Trifolium repens), the auxin flow within the root vasculature was transiently inhibited at the site of infection, leading to auxin accumulation in the cortical region where the nodule primordia form (Mathesius et al., 1998). A reduction in auxin flow has been confirmed by radioactive auxin tracer experiments for *M. truncatula* and vetch (Vicia faba), but not *Lotus japonicus* (Boot et al., 1999; Pacios-Bras et al., 2003; van Noorden et al., 2006; Wasson et al., 2006). Cytokinins are essential for nodule development because *L. japonicus* knockout mutants for the cytokinin receptor gene, *LHK1* or *M. truncatula* transgenic plants with suppressed expression of the ortholog, *CRE1*, were defective in nodule primordia formation (Gonzalez-Rizzo et al., 2006; Murray et al., 2007). Additionally, a *L. japonicus* gain-of-function mutant for the LHK1 receptor provoked spontaneous nodules, indicating that cytokinin signaling is both necessary and sufficient for nodule formation (Tirichine et al., 2007).

Several components that link NF signaling to the initiation of cortical cell division have been identified. In *M. truncatula*, NF perception by LysM-type RLKs at the epidermis, activates a signaling cascade that is mediated by the leucine-rich repeat (LRR)-RLK, Doesn’t Make Infections2 (DMI2), and the nuclear potassium channel, DMI1. This signaling cascade triggers Ca$^{2+}$ spiking in and around the nucleus. Decoding of this Ca$^{2+}$ signature by a Ca$^{2+}$ calmodulin-binding protein (DMI3) results in the activation of the transcription factors, Nodulation Signaling Pathway 1 (NSP1), NSP2, Ethylene-Responsive binding domain Factor Required for Nodulation1 (ERN1), and Nodule Inception (NIN) (Schauser et al., 1999; Catoira et al., 2000; Borisov et al., 2003; Oldroyd and Long, 2003; Gleason et al., 2006; Andriankaja et al., 2007; Marsh...
et al., 2007; Middleton et al., 2007; Oldroyd and Downie, 2008). NSP2, ERN1, and NIN also play a role downstream of the cytokinin signaling to trigger cortical cell division (Tirichine et al., 2007; Frugier et al., 2008; Plet et al., 2011).

Nodule formation and functioning are energy-consuming processes and legumes have evolved several strategies to control the number of nodules. One such strategy, autoregulation of nodulation (AON) (Kossak and Bohlool, 1984), is activated when the first nodules develop and involves systemic signals and shoot-controlled factors (Magori and Kawaguchi, 2009). Insight into this mechanism has been obtained by the identification of supernodulation mutants of soybean (Glycine max) (nts-I), M. truncatula (sun1), L. japonicus (har1), and pea (Pisum sativum) (sym29), which are each deficient in an LRR-RLK that is required in shoots for AON (Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005). Auxin might be implicated in this process because sun1-1 mutants display a higher level of long-distance shoot-to-root auxin transport than wild type plants. Importantly, in contrast to the wild type, this transport is not reduced upon nodulation (van Noorden et al., 2006).

The LRR-RLKs responsible for AON belong to the evolutionary clade of group XI RLKs (Shiu and Bleecker, 2001) that includes the Arabidopsis (Arabidopsis thaliana) receptors CLAVATA1 (CLV1), PXY-like 1-2 (PXL1-2), BARELY ANY MERistem 1-3 (BAM1-3), and the putative tracheary element differentiation inhibitory factor (TDIF) receptor (TDR/PXY) (Clark et al., 1997; DeYoung et al., 2006; Fisher and Turner, 2007; Hirakawa et al., 2008; Ogawa et al., 2008). These LRR-RLKs bind or putatively recognize CLV3/embryo-surrounding region (CLE) peptides (Hirakawa et al., 2008; Ogawa et al., 2008) that are a group of small (12-13 amino acids) secreted peptides derived from the C-terminal region of preproproteins (Mitchum et al., 2008; Oelkers et al., 2008). The Arabidopsis genome contains 32 gene family members, of which the best studied is CLV3, the peptide ligand for a CLV1-containing cell surface receptor complex. Recognition of the CLV3 peptide is important for stem cell homeostasis within the shoot apical meristem (SAM) (Ogawa et al., 2008), whereas TDIF, a phloem secreted CLE peptide, binds in vitro the PXY/TDR receptor expressed in the procambial cells and inhibits vascular differentiation (Hirakawa et al., 2008).

CLE peptides with related sequences exhibit redundancy as proven by similarity in gain-of-function phenotypes (Strabala et al., 2006; Jun et al., 2008). At least two groups of CLE peptides can be distinguished. Group-I peptides, exemplified by CLV3, result in premature root and shoot meristem growth arrest when exogenously applied or ectopically expressed, indicating that they are promoters of cellular differentiation.
MtCLE peptides control nodulation

Members of group-II, exemplified by TDIF, prevent cellular differentiation, as evidenced by the suppression of procambium-to-xylem transdifferentiation in Zinnia (Zinnia elegans) cell cultures and control the rate and orientation of vascular cell division (Ito et al., 2006; Etchells and Turner, 2010). Although these studies would suggest two groups with opposing functions, synergistic actions between these groups of peptides have been demonstrated (Whitford et al., 2008). In Arabidopsis, the proliferation of vascular precursor cells induced by the group-II CLE41 peptides is enhanced by the addition of CLE6 peptides that otherwise have an inhibiting effect on root growth when applied at high concentrations and thus belong to group-I. Moreover, genetic studies with clv3, clv1, and bam mutants reveal complex spatio-temporally controlled interactions between putative ligand/receptor complexes (Deyoung and Clark, 2008).

Cellular dedifferentiation and differentiation processes act at sequential stages of the nodule development. At nodule initiation, pericycle and cortical cells dedifferentiate and divide (van Brussel et al., 1992; Timmers et al., 1999; van Spronsen et al., 2001). When sufficient cells encompassing the nodule primordia have formed, division ceases and the cells differentiate and become infected with rhizobia. Meanwhile, for indeterminate nodules, an apical meristem is established that supplies a constant pool of cells for bacterial infection. Hence, CLE peptides might not only be involved in AON, but also regulate the (de)differentiation processes that control nodule development.

We analyzed the role of CLE peptides in M. truncatula nodulation. By specialized BLAST searches, nine peptide genes were identified in the Mt2.0 release in addition to the 16 previously discovered (Cock and McCormick, 2001; Oelkers et al., 2008). Two genes, designated MtCLE12 and MtCLE13, were differentially expressed during nodule development. The expression patterns hint at roles during (de)differentiation throughout nodule development. Moreover, when MtCLE12 and MtCLE13 were ectopically overexpressed, an inhibition of nodulation by long-distance signaling was observed. Furthermore, transgenic plants bearing roots expressing 35S: MtCLE12 or 35S: MtCLE13 had elongated petioles, a systemic effect not observed in sunn-1 mutants, although nodulation was still strongly hampered.
4.2 Results

4.2.1 Search for up-regulated MtCLE genes during nodulation

Besides the 16 putative *M. truncatula* CLE genes described (Cock and McCormick, 2001; Oelkers et al., 2008), we searched for additional MtCLE genes in the expressed sequence tag (EST) database1 and in the *M. truncatula* genomic data (Mt2.0) with a PAM30 tBLASTn homology-based algorithm to identify peptide sequences corresponding to the conserved CLE motif. Twenty-five MtCLE candidates were identified and designated MtCLE1 to MtCLE25 (Table 4.1). The corresponding CLE preproproteins varied in length between 45 and 221 amino acids and had a high level of sequence divergence outside the CLE motif. Except for MtCLE3, all proteins contained an N-terminal signal peptide as predicted by HMM signalP and neural networks (Bendtsen et al., 2004). Two MtCLE candidates contained multiple CLE domains, namely MtCLE14 and MtCLE22 that had seven and three tandemly arranged CLE domains, respectively.

To determine tissue- or organ-specific expression, quantitative reverse-transcriptase (qRT)-PCR was carried out for each MtCLE candidate on cDNAs derived from root elongation zones, nodulated roots (1 month post inoculation), root tips, stems, SAMs, cotyledons, first leaves, and mature leaves. cDNA of root elongation zones was used as the reference tissue. Transcripts were detected for 15 of the 25 identified MtCLE genes; of which 10 required 30 or more PCR cycles, indicating low transcript levels or cell-specific expression. MtCLE2, MtCLE4, MtCLE5, MtCLE11, MtCLE15, and MtCLE24 were mainly expressed in root tissues, MtCLE1, MtCLE16, and MtCLE23 predominantly in shoot tissues, and MtCLE6, MtCLE12, and MtCLE17 in several plant tissues (Figure 4.1A). For MtCLE3 and MtCLE13, expression was restricted to stems and cotyledons and to nodulated roots, respectively, while for MtCLE20 transcripts were detected in nodulated roots, leaves, and SAMs. Four MtCLE genes (MtCLE12, MtCLE13, MtCLE16, and MtCLE20) were more abundantly transcribed in nodulated than in control roots (Figure 4.1A). Biological repeats however only consistently confirmed the differential expression of MtCLE12 and MtCLE13.

To study the temporal expression during nodule development, the relative transcript levels of each MtCLE gene was analyzed at 4, 6, 8, and 10 days postinoculation (dpi). The elongation zone of uninoculated roots, the nodule initiation site, was used as the

1http://www.tigr.org/tdb/tgi
MtCLE peptides control nodulation

Table 4.1: MtCLE identification. Identified MtCLE genes with their corresponding names in the general nomenclature and number of the bacterial artificial clone or of the expressed sequence tag. General nomenclature according to Cock and McCormick (2001) and Oelkers et al. (2008), who numbered each CLE member independently of the species origin and prefixed the numbers with ‘CLE’.

<table>
<thead>
<tr>
<th>MtCLE</th>
<th>General nomenclature</th>
<th>BAC clone, EST number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtCLE1</td>
<td>CLE74</td>
<td>AW586793, BQ139113</td>
</tr>
<tr>
<td>MtCLE2</td>
<td>CLE67</td>
<td>AC137080.13, AC135319.28, AC147499.5, BI311733</td>
</tr>
<tr>
<td>MtCLE3</td>
<td>CLE69</td>
<td>BQ157494</td>
</tr>
<tr>
<td>MtCLE4</td>
<td>CLE71</td>
<td>AW329414</td>
</tr>
<tr>
<td>MtCLE5</td>
<td>CLE70</td>
<td>BM812815, BE9999212</td>
</tr>
<tr>
<td>MtCLE6</td>
<td>CLE64</td>
<td>BF650504, BE941833, CX518468</td>
</tr>
<tr>
<td>MtCLE7</td>
<td></td>
<td>AC157502.1</td>
</tr>
<tr>
<td>MtCLE8</td>
<td></td>
<td>AC151458.10, CX530629, CX530352</td>
</tr>
<tr>
<td>MtCLE9</td>
<td></td>
<td>AC155894.1</td>
</tr>
<tr>
<td>MtCLE10</td>
<td></td>
<td>AC157779.7</td>
</tr>
<tr>
<td>MtCLE11</td>
<td></td>
<td>BC122845</td>
</tr>
<tr>
<td>MtCLE12</td>
<td></td>
<td>AC144893.15, AL381238, AL381237</td>
</tr>
<tr>
<td>MtCLE13</td>
<td></td>
<td>AC144893.15, AL380420, AL380419</td>
</tr>
<tr>
<td>MtCLE14</td>
<td></td>
<td>AC155894.1</td>
</tr>
<tr>
<td>MtCLE15</td>
<td></td>
<td>AC151522.2</td>
</tr>
<tr>
<td>MtCLE16</td>
<td></td>
<td>AC146785.12</td>
</tr>
<tr>
<td>MtCLE17</td>
<td></td>
<td>AC123570.7, AC147960.8, AC147961.3, AY379776.1</td>
</tr>
<tr>
<td>MtCLE18</td>
<td></td>
<td>AC146570.4</td>
</tr>
<tr>
<td>MtCLE19</td>
<td></td>
<td>AC150244.2</td>
</tr>
<tr>
<td>MtCLE20</td>
<td></td>
<td>AC158501.3</td>
</tr>
<tr>
<td>MtCLE21</td>
<td></td>
<td>CT009655.15</td>
</tr>
<tr>
<td>MtCLE22</td>
<td></td>
<td>AC151522.11</td>
</tr>
<tr>
<td>MtCLE23</td>
<td></td>
<td>CU024869.31</td>
</tr>
<tr>
<td>MtCLE24</td>
<td></td>
<td>CR955009.22</td>
</tr>
<tr>
<td>MtCLE25</td>
<td></td>
<td>CU013514.50</td>
</tr>
</tbody>
</table>

reference tissue. MtCLE12 expression was low at 4 dpi (Figure 4.1C), but increased until 6 dpi, and remained high until 10 dpi. MtCLE13 transcript increased until 10 dpi (Figure 4.1D). As we were interested in the function of CLE peptides during nodulation, MtCLE12 and MtCLE13 were selected for further analysis and compared to MtCLE4 given its root-specific expression (Figure 4.1, A and B).

As shown in Figure 4.2, the CLE peptide sequence of MtCLE12 and MtCLE13 differ by 4 amino acids. We analyzed the homology of MtCLE12, MtCLE13, and MtCLE4 to A. thaliana CLE peptides. MtCLE12 and MtCLE13 were most similar to
Figure 4.1: Expression analysis of *MtCLE* genes. A, Heat map of *MtCLE* expression in different tissues as measured by qRT-PCR. Samples are cDNA from root elongation zones (root), nodulated roots, 1 month post inoculation (nod root), root tips, stems, SAMs (sam), cotyledons (cotyl), first leaves (1st leaf), and mature leaves (leaf). B to D, Expression analysis of *MtCLE4*, *MtCLE12*, and *MtCLE13*, respectively, by qRT-PCR on cDNA samples of zone-I root tissues of uninoculated plants (NI) and at 4 dpi, 6 dpi, 8 dpi, and 10 dpi. Data and error bars represent means ± SD.

AtCLE1-AtCLE7 and MtCLE4 to AtCLE9/10. Upon *L. japonicus* nodulation, three CLE genes were described to be up-regulated (Okamoto et al., 2009). Peptides derived from MtCLE12 and MtCLE13 differed by three and one amino acids (an A/G change at position 4) from the identical LjCLE-RS1 and LjCLE-RS2, respectively.

4.2.2 Effects of exogenous application of MtCLE4, MtCLE12, and MtCLE13 peptides on root growth and nodulation

To check the effect on root growth, we supplied 10 μM of chemically synthesized peptides, corresponding to the CLE domain of these three proteins (MtCLE4p, MtCLE12p, and MtCLE13p; see Materials and Methods page 74) exogenously to the primary roots
MtCLE peptides control nodulation

Figure 4.2: Comparison of the CLE peptide sequence of MtCLE4, MtCLE12, and MtCLE13 with the CLE peptide sequences from Arabidopsis CLE genes and of LjCLE1, LjCLE2, and LjCLE3. CLE peptide sequences homologous to MtCLE12 and MtCLE13 are framed in blue and those to MtCLE4 in red.

MtCLE12	RLSPPGPNH1HN
MtCLE13	RLSPPGDPQPNH
LjCLE1	RLSPPGDPQPNH
LjCLE2	RLSPPGDPQPNH
AtCLE7	RFSPGGDPQPHH
AtCLE5/6	RVSPGGDPQPHH
AtCLE2	RLSPPGDPQPHH
AtCLE1/3/4	RLSPPGDPQPHH
AtCLE46	HKHPSGPNPNTGN
AtCLE41/44	HEVPSGPNPISN
AtCLE42	HGVPSPGPNISN
LjCLE3	RVVPTGNPLHN
MtCLE4	RGVPSSGPPLHN
AtCLE9/10	RLVPSGPNLHN
AtCLE11	RVPSPGPNLHH
AtCLE12	RVPSPGPNLHH
AtCLE13	RLVPSGPNLHH
AtCLE14	RLVPKGPNLHN
AtCLE16	RVHHTGPNLHN
AtCLE17	RVPHTGPNLHN
AtCLE18	RQIPTGPDLHN
AtCLE19	RVVIPGPNLHN
AtCLE20	RKVKTGPNPLHN
AtCLE21	RSPITGPNLHN
AtCLE22	RVVTTGPNLHN
AtCLE25	RKPNGPDP1HN
AtCLE26	RKPRGPDP1HN
AtCLE27	RVPSGDPPLHN
AtCLE40	RVVPGPDPPLHN
AtCLE45	RRVRSGPDP1HN
AtCLV3	RTVPSGDPPLHN

Figure 4.2: Comparison of the CLE peptide sequence of MtCLE4, MtCLE12, and MtCLE13 with the CLE peptide sequences from Arabidopsis CLE genes and of LjCLE1, LjCLE2, and LjCLE3. CLE peptide sequences homologous to MtCLE12 and MtCLE13 are framed in blue and those to MtCLE4 in red.

of 2-day-old seedlings. Root length was measured after 8 days of growth. As controls, seedlings were grown on media either supplemented or not (no peptide) with a synthetic 16-amino-acid peptide corresponding to the C terminus of the Arabidopsis AGAMOUS protein. Primary root length for 16 plants per treatment was measured (Figure 4.3). After addition of MtCLE12p or MtCLE13p, an average root length of 91.0 ± 13.2 mm and 103.4 ± 5.8 mm was observed, respectively, which did not differ significantly from the average root length (101.9 ± 8.0 mm) with and without (97.0 ± 6.2 mm) addition of the control peptide. For the seedlings treated with MtCLE4p,
the average primary root length was 73.8 ± 8.0 mm, which is 24% shorter than the controls (p < 0.001, Linear mixed models). The difference in number of lateral roots per primary root was not statistically significant. Exogenous peptide application (10 μM up to 50 μM) had no effect on the nodule number.

![Graph showing root length comparison](image)

Figure 4.3: Effect of *in vitro* application of MtCLE4, MtCLE12, and MtCLE13 peptides on the root length of *M. truncatula*. The plants were grown for 6 days on plates containing 10 μM peptides (n = 39 for each treatment). As control, plants were not treated (H2O) or treated with the AGAMOUS (Ag) peptide. Data and error bars represent means ± SD. Asterisk marks a statistically different group (p < 0.001, Linear mixed models).

4.2.3 MtCLE12 and MtCLE13 expression pattern in roots and developing nodules

Spatial expression patterns of *MtCLE12* and *MtCLE13* in roots and developing nodules was investigated by promoter:GUS analysis and *in situ* hybridizations. A 2-kb region upstream of *MtCLE12* and *MtCLE13* was isolated based on the available genomic data\(^2\) and cloned 5’ to the *uidA* gene. Transcriptional activation of the *uidA* gene was visualized by GUS staining.

No GUS staining was observed in uninoculated transgenic roots. At 3 dpi, *MtCLE13* expression was detected in cell clusters along root zones susceptible to rhizobial infection (Figure 4.4A). At that time point, some incipient nodule primordia were present, but not all were at the same stage on a single root. As a result, in-between the most developed primordia and the roottip, many more incipient nodulation events occurred and the closer to the roottip, the less developed the primordia. Inoculations with

\(^2\)http://www.ncbi.nlm.nih.gov/
MtCLE peptides control nodulation

Figure 4.4: *MtCLE13* promoter activity during nodulation. A, Transgenic *pMtCLE13:GUS* root segment of the susceptible root zone I at 3 dpi. GUS staining was observed in patches along the root. B, Transversal section through a root segment at an initial stage of nodule formation when still no cell divisions occur. Blue staining is the highest in the inner cortical cells. Arrowheads indicate pericycle. C and D, Longitudinal sections through the root segment shown in (A). In the incipient nodulation event (indicated by an asterisk in (C)), staining is seen in inner cortical cells, but not in the pericycle cells. In slightly more developed nodule primordia, where cell divisions are visible in cortex and pericycle (examples marked by arrows in (C) and (D)), GUS staining is the strongest in the dividing cells of the cortex but also in the pericycle. E, Transversal section through a young developing nodule primordium at a stage similar to that in (D). Cell division is clearly visible in the cortex (arrows). The pericycle cell file is indicated by arrowheads in C, D and E. *pMtCLE13:GUS* is expressed in the cortex and at a low level in the pericycle, with the highest expression in the dividing inner cortical cells. F, A round, young nodule with GUS staining throughout the nodule tissue. G, GUS staining of a mature, elongated nodule. H, Longitudinal section through an elongated nodule. GUS staining is seen in the meristematic tissue and early infection zone. I, Longitudinal section through an elongated nodule, in which the expression is the highest in cells that presumably correspond to the provascular strands. Scale bars = 1 mm (A, B, D, F, and G) and 0.5 mm (C, E, H, and I). Abbreviations: m, meristem; i, infection zone; pvs, provascular strands.
Chapter 4

Sm2011-mRFP, carrying the monomeric red fluorescent protein (mRFP), revealed that pMtCLE13:GUS was expressed only in regions of bacterial infection. Careful comparison of the infection events with the GUS staining patterns indicated that the pMtCLE13:GUS expression could be followed down to nodulation events in which only curled colonized root hairs were visible. Sections of these infected regions revealed that these clusters corresponded to early nodulation stages without or only with a few cell divisions. Closest to the root tip, the pMtCLE13:GUS expression was mainly localized in inner cortical cells (Figure 4.4, B and C), scattered in outer cortical cells (Figure 4.4B), and absent in the pericycle and vascular tissues (Figure 4.4, B and C). At positions where cell division was more pronounced in the inner cortex, the GUS staining pattern was more intense in the dividing cells (Figure 4.4, C-E). A decreasing gradient of pMtCLE13:GUS expression radiated from the inner to the outer cortical cells and pericycle (Figure 4.4, C-E). Expression was the highest in the dividing cortical cells, but dividing pericycle cells displayed GUS staining as well. In round, young nodules, GUS staining was seen throughout the central tissue (Figure 4.4F). In elongated nodules, it was restricted to the apical region, corresponding to the meristematic and early infection zones (Figure 4.4, G and H). Although mostly all the meristematic cells were blue, in some nodules, the expression was the highest in cells that corresponded to the provascular system (Figure 4.4I).

In situ hybridizations revealed a similar expression pattern with low transcript levels in the meristem and cells of the early infection zone (Figure 4.5). For some nodules, MtCLE13 transcripts were more clearly detectable in cells of the provascular strands (Figure 4.5).

For pMtCLE12:GUS, no expression was detectable at the earliest stages of nodule development (Figure 4.6,A), but appeared in young round nodules (Figure 4.6,B). Later in nodule development, pMtCLE12:GUS was restricted to the apical zone of elongated nodules, similarly to pMtCLE13:GUS (Figure 4.6, C and D).

4.2.4 MtCLE12 and MtCLE13 expression in nodulation mutants

To investigate whether NF signaling is required for the induction of MtCLE12 and MtCLE13 expression, we analyzed the transcript levels by qRT-PCR before and after inoculation of nin, the ERNI mutant branching infection threads1-1 (bit1-1), nsp1, nsp2, dmi1, dmi2, or dmi3 mutants (Figure 4.7). The mutant lines did not develop nodules, except for bit1-1, which formed arrested primordia and infection foci (An-
MtCLE peptides control nodulation

Figure 4.5: MtCLE13 transcript accumulation in mature nodules by *in situ* hybridization. MtCLE13 mRNA was localized by *in situ* hybridization with a MtCLE13 antisense probe covering the complete open reading frame. Dark-field (A and C) and bright-field (B and D) microscopic images. Signal is seen as white and black dots in dark-field and bright-field micrographs, respectively. A and B, Detail of the meristematic zone of a mature nodule showing low signal in the meristem (m) and infection zone (i). C and D, Detail of a mature nodule in which the signal is localized in the provascular strands (pvs). Scale bars = 500 μm.

Figure 4.6: MtCLE12 promoter activity during nodulation. A, *pMtCLE12:GUS* transgenic root segment of the susceptible root zone I at 3 dpi. No GUS staining is observed. B, GUS analysis of a young round nodule. MtCLE12 is expressed throughout. C, GUS analysis of a mature elongated nodule. Blue staining is observed in the apical part. D, Longitudinal section through (C). Scale bars = 2 mm. Abbreviations: m, meristem; i, infection zone.
driankaja et al., 2007; Middleton et al., 2007). For MtCLE12, gene expression was induced upon inoculation in wild type *M. truncatula* roots (Figure 4.7A), but not in roots of the nodulation mutants, and likewise for MtCLE13 transcripts, except in bit1-1, albeit less abundantly than upon wild type inoculation (Figure 4.7B). The expression levels of MtCLE4 in the different mutants before and after inoculation were the same as those in inoculated wild type roots.

Figure 4.7: MtCLE12 and MtCLE13 expression in nodulation mutants. A and B, Expression analysis of MtCLE12 and MtCLE13 by qRT-PCR on cDNA samples of zone I root tissues of wild type plants (WT) and nsp1, nsp2, bit1-1, nin, dmi1, dmi2, or dmi3 mutants, before inoculation (control) and at 7 dpi. C, pMtCLE13:GUS activity at 5 dpi in the roots of a wild type plant and in a bit1-1 mutant. Data and error bars represent means ± SD. Scale bars = 1 mm.

As a confirmation of the qRT-PCR analysis, pMtCLE13:GUS transgenic roots were generated in each of the mutant backgrounds and analyzed at 5 dpi. Because nodulation events are not synchronised in *M. truncatula*, consecutive early nodulation stages, ranging from stages with only a few cell divisions until young nodule primordia, could be observed along the root at 5 dpi. GUS staining revealed the typical MtCLE13 cluster pattern in the wild type roots. The bit1-1 mutant was the only mutant in which blue stained cortical regions were seen corresponding to infection (Figure 4.7C). The other mutants displayed no GUS staining. These data are in agreement with the qPCR
data and reveal that MtCLE13 expression is linked with the NF induced cortical cell activation.

4.2.5 Induction of MtCLE12 and MtCLE13 transcription by auxin and cytokinin

A correct auxin/cytokinin balance is a prerequisite for nodule formation (Oldroyd and Downie, 2008; Ding and Oldroyd, 2009). To determine whether auxins and/or cytokinins affect MtCLE12 and MtCLE13 expression, 10⁻⁶ M indole-3-acetic acid (IAA) or 10⁻⁷ M 6-benzylaminopurine (BAP) was supplemented to the growth medium of 5-day-old seedlings. The roots of 18 seedlings were harvested under each condition after 0, 3, 6, 12, 24, and 96 h. Roots from plates without hormone addition were used as a negative control.

No significant differences in MtCLE12 expression were detected in treated versus control roots. Auxin addition had no influence on the expression of MtCLE13 (Figure 4.8), but in roots treated with 10⁻⁷ M BAP, MtCLE13 transcripts were up-regulated after a 3-h treatment and levels further increased with extended treatment times (up to 24 h) (Figure 4.8).

Figure 4.8: Influence of auxin and cytokinin on MtCLE13 expression. qRT-PCR analysis of MtCLE13 expression in cDNA samples of roots grown in the presence of 10⁻⁶ M auxin (IAA) or 10⁻⁷ M cytokinin (BAP). Growth medium without hormones was used for the control plants. Samples of 5-day-old plants were taken at 0 h, 3 h, 6 h, 12 h, and 24 h after hormone addition. Data and error bars represent means ± SD.
4.2.6 Effect of ectopic expression of 35S:MtCLE12 and 35S:MtCLE13 on nodulation

To analyze the function of MtCLE4, MtCLE12, and MtCLE13, composite plants were made that carried transgenic roots ectopically overexpressing one of the three MtCLE genes. Nodulation of these transgenic roots was assessed at 21 dpi. Nodulation of control transgenic roots (35S:GUS) resulted on average in 11 ± 4 nodules per root (Figure 4.9A). On the 35S:MtCLE4 transgenic roots, an average of 10 ± 4 nodules were counted. No nodules were detected on 35S:MtCLE12 and 35S:MtCLE13 transgenic roots (Figure 4.9A). qRT-PCR analysis confirmed the ectopic overexpression of the respective constructs. To determine at what stage these two CLE peptides affect nodulation, we investigated whether ectopic overexpression of MtCLE12 and MtCLE13 interferes with S. meliloti NF synthesis. For this purpose, the NF-overproducing strain Gmi6390:2011 (pMH682) (Roche et al., 1991) was inoculated on 35S:MtCLE12 and 35S:MtCLE13 transgenic roots (Figure 4.10). Similar to results obtained with the wild type strain, nodulation was totally abolished, but was unaffected on 35S:MtCLE4 and control 35S:GUS roots.

Figure 4.9: Inhibition of nodulation in 35S:MtCLE12 and 35S:MtCLE13 transgenic roots.
A, Average nodule number on roots expressing 35S:GUS, 35S:MtCLE4, 35S:MtCLE12, and 35S:MtCLE13 at 21 dpi (n = 28-66). Data and error bars represent means ± SD. B, pMtENOD11:GUS activity in roots expressing 35S:luciferase (LUC), 35S:GUS, 35S:MtCLE12, and 35S:MtCLE13 at 5 dpi. No staining is visible in the 35S:MtCLE12 and 35S:MtCLE13 samples.

To assess whether early NF signaling events still take place in roots ectopically
MtCLE peptides control nodulation

overexpressing these CLE genes, we analyzed the transcription of the early marker,
ENOD11, by using a GUS transcriptional reporter (pENOD11::GUS), in 35S:MtCLE12 and 35S:MtCLE13 transgenic roots (Journet et al., 2001) and compared it to transgenic roots ectopically overexpressing either firefly luciferase (LUC) or MtCLE4. The transgenic roots were inoculated and stained with GUS at 3 dpi. In the 35S:LUC and 35S:MtCLE4 transgenic roots, GUS staining was observed in the epidermal cells at sites of incipient infection (Figure 4.9B), but not in 35S:MtCLE12 and 35S:MtCLE13 transgenic roots (Figure 4.9B). These results suggest that ectopic expression of MtCLE12 and MtCLE13, but not of MtCLE4, inhibits nodulation at the very early stages of NF signal transduction, before the onset of ENOD11 expression.

Figure 4.10: Average nodule number on roots ectopically expressing GUS, MtCLE4, MtCLE12, or MtCLE13 at 11 dpi with a NF-overproducing Sinorhizobium meliloti strain. Average nodule number on plants with transgenic roots carrying the 35S:GUS, 35S:MtCLE4, 35S:MtCLE12 or 35S:MtCLE13 constructs at 11 dpi (n = 6 or 7). Inoculation was done with a NF-overproducing Sinorhizobium meliloti strain (GMI6390:2011(pMH682)). Data and error bars represent means ± SD.

4.2.7 Long-distance effect of 35S:MtCLE12 and 35S:MtCLE13 transgenic roots on wild type shoots

While analyzing the effect of 35S:MtCLE12 and 35S:MtCLE13 on the nodule number, we noticed that the petioles in these composite plants were longer than those in controls. To quantify this observation, we compared plants with 35S:MtCLE12, 35S:MtCLE13 and as control 35S:GUS and 35S:MtCLE4 transgenic roots. After growth in nitrogen-rich medium for 40 days after germination (DAG), the longest petiole on
each plant was measured (Figure 4.11A). For each construct, 60 plants were analyzed over three independent experiments. The average petiole length on control and 35S:MtCLE4 composite plants was 2.32 ± 0.36 cm and 2.21 ± 0.36 cm, respectively, whereas that on 35S:MtCLE12 and 35S:MtCLE13 composite plants was 3.06 ± 0.36 cm and 3.76 ± 0.36 cm, respectively (p < 0.05, Linear mixed models). To analyze whether ectopic expression of MtCLE12 and MtCLE13 would have a synergistic effect on the petioles of the wild type shoot, composite plants were made carrying transgenic roots containing both 35S:MtCLE12 and 35S:MtCLE13 constructs (35S:MtCLE12/13). The average petiole length was 3.44 ± 0.36 cm, which is not statistically different from the petiole length measured on composite plants with the 35S:MtCLE13 construct alone (p > 0.05, Linear mixed models) (Figure 4.11A). qRT-PCR was used to confirm the ectopic overexpression of each construct.

A longer petiole length could either indicate a specific effect of MtCLE12 and MtCLE13 on petiole growth or an overall faster development. To distinguish between

3Petiole elongation was not observed anymore on 35S:MtCLE12 and 35S:MtCLE13 stable transformants. For these results, see page 128
these two hypotheses, developmental stages were assigned to each composite plant according to the method described by Bucciarelli et al. (2006). Results revealed no clear differences in the rate of composite plant development (Figure 4.12). However, plants with roots expressing 35S:MtCLE13 were out of the range of the control plants and, therefore deemed to be a little faster in development (p < 0.05, Linear mixed models). Leaf sizes of 35S:MtCLE12 and 35S:MtCLE13 composite plants, calculated with ImageJ®, showed no statistically significant differences compared to controls.

Figure 4.12: Log10 of the developmental stage of composite plants carrying roots ectopically expressing GUS, MtCLE4, MtCLE12, MtCLE13, or MtCLE12 and MtCLE13. Developmental stage was measured according to Bucciarelli et al. (2006). Data and error bars represent means ± SE. Asterisk marks a group statistically different from the control (35S:GUS) (p < 0.05, Linear mixed models).

4.2.8 Long-distance effect of 35S:MtCLE12 and 35S:MtCLE13 transgenic roots on nodulation of wild type roots

In the Agrobacterium rhizogenes transgenic root assay, cotransformed transgenic roots were identified by screening for green fluorescent protein (GFP) roots (see Materials and Methods page 76). Often non-GFP-expressing roots grow on the same composite plant, suggesting that these roots are not cotransformed and contain only endogenous A. rhizogenes T-DNA(s). We repeatedly saw no nodules on these roots when the composite plants carried 35S:MtCLE12 and 35S:MtCLE13 transgenic roots. These observations indicated that the expression of 35S:MtCLE12 or 35S:MtCLE13 in roots,
might have a negative systemic effect on the nodulation of roots that do not express the constructs, but grow on the same plant. Therefore, genomic DNA was prepared from GFP-fluorescent and nonfluorescent roots and the presence of the GFP gene was analyzed by PCR. In some composite plants (Figure 4.13B), nonfluorescent roots still contained the GFP gene. Therefore, these observations did not unequivocally demonstrate a negative systemic influence of 35S: MtCLE12 or 35S: MtCLE13 on nodulation.

Figure 4.13: Detailed genotypic analysis of transgenic roots obtained by A. rhizogenes transformation. Jemalong J5 plants were transformed with either 35S: GUS (plants a and b) or 35S: MtCLE13 (plants c and d). Roots with (+) and without (-) GFP fluorescence were kept on the plants and harvested separately at 7 dpi. gDNA as well as cDNA were prepared from these samples. A, Gel electrophoresis of PCR products obtained with GFP-specific primers on the gDNA samples of these roots. B-D, Expression analysis of GFP, GUS, and MtCLE13 by qRT-PCR on the cDNA samples of the roots.

With a different procedure (see Materials and Methods page 76), composite plants were generated with small transgenic roots, while the wild type root was kept intact. At 7 dpi with Sm2011-GFP, a Nod− phenotype was observed on the primary wild type root of 35S: MtCLE12 and 35S: MtCLE13 composite plants (Figure 4.11B) and
MtCLE peptides control nodulation

on average nine nodules were counted on the primary wild type roots of 35S:MtCLE4 and 35S:GUS control plants. Given that plants were grown in an aeroponic system that confined the roots of all the plants in the same compartment, we can rule out that this phenotype is the result of peptide diffusion. These data show that ectopic overexpression of MtCLE12 and MtCLE13 not only abolishes nodulation locally in transgenic roots, but also systemically in nontransformed roots of the same plant.

4.2.9 Analysis of the long-distance responses in the sunn-1 mutant background

Nodulation is under the control of AON, a systemic response that involves shoot-controlled factors (Magori and Kawaguchi, 2009). Because of the long-distance responses observed when MtCLE12 and MtCLE13 are ectopically overexpressed, we investigated whether MtCLE12 and MtCLE13 are involved in AON and might be perceived by the SUNN receptor. Therefore, we tested whether the long-distance effects provoked by 35S:MtCLE13 expression on petiole length and on nodulation could be observed in the sunn-1 mutant background (Schnabel et al., 2005).

In contrast to the results in a wild type background, the petiole length did not elongate in composite sunn-1 mutant plants containing roots expressing 35S:MtCLE13 (Figure 4.14A). The average petiole length was 2.7 ± 0.7 cm, which is comparable to that of control plants (2.4 ± 0.7 cm) (Figure 4.14A).

![Figure 4.14](image.png)

Figure 4.14: Local and systemic responses in the sunn-1 mutant. A, Average length of the longest petiole of composite plants with roots ectopically expressing either 35S:GUS or 35S:MtCLE13 at 4 weeks post germination (n = 12). Data and error bars represent means ± SE. B, Ln (logarithmus naturalis) of the nodule number at 7 dpi on 35S:GUS or 35S:MtCLE13 transgenic roots (n = 10-12). C, Ln of the nodule number at 7 dpi on the wild type main roots of plants bearing 35S:GUS or 35S:MtCLE13 transgenic roots (n = 17-24). Data and error bars represent means ± SE.

On average, only 5.3 nodules occurred on sunn-1, 35S:MtCLE13-transformed roots.
versus 49.0 nodules on the *sunn-1,35S:GUS* roots (Figure 4.14B). The long-distance repression of nodulation was investigated in the *sunn-1* mutant background with the ‘hypocotyl stabbing method’ on plants growing under aeroponic conditions. Nodule numbers were counted at 7 dpi with *Sm2011-GFP*. Nontransformed primary roots of control plants had on average 74.0 nodules versus 17.6 nodules on the main root of *sunn-1* plants that expressed *35S:MtCLE13* in transgenic roots (Figure 4.14C). Together, these analyses in the *sunn-1* mutant background revealed that the petiole elongation was *SUNN* dependent, while the repression of nodulation was only partially dependent on *SUNN*.

4.3 Discussion

4.3.1 CLE family in *M. truncatula*

With specialized BLAST searches, 25 *MtCLE* genes were identified in the Mt2.0 release of the *M. truncatula* genome that represents approximately 60% of the genome and more genes are expected upon completion of the genome sequencing. A more accurate picture of the size of the CLE gene family derives from the analysis of *L. japonicus* and Arabidopsis. The genome of *L. japonicus* is comparable in size to that of *M. truncatula* (470 Mbp) and currently 91.3% of its genome has been sequenced. Thus far, 39 CLE genes have been identified in *L. japonicus* (Sato et al., 2008; Okamoto et al., 2009), which is equivalent to the 32 CLE genes in the completely sequenced Arabidopsis genome (157 Mbp) (Cock and McCormick, 2001; Oelkers et al., 2008).

qRT-PCR detection of 15 *MtCLE* transcripts revealed six to be expressed specifically in roots, three in shoots, one in nodules, and five across several tissues, hinting at a CLE peptide involvement in a multitude of developmental processes throughout the plant (Mitchum et al., 2008). For the remaining 10 *MtCLE* genes, no transcripts were detected because either they are very lowly expressed and/or respond to specific biotic or abiotic stimuli, or they have low abundant cell-type specific expression, or are pseudogenes.

As we were interested in CLE peptide function during nodulation, *MtCLE12* and *MtCLE13* were selected for further analysis because they were up-regulated in nodulated roots. The CLE domain sequences of MtCLE12 and MtCLE13 are very similar, which is indicative of redundant functions, but the gene expression patterns, although partially overlapping, are not identical. For instance, the *MtCLE13* expression is spe-
MtCLE peptides control nodulation

cific for nodulation, while MtCLE12 transcripts occur also at low levels in root tips, cotyledons, and first leaves. Moreover, upon inoculation, the MtCLE13 expression is up-regulated much earlier than that of MtCLE12. The promoter of MtCLE13 functions in the NF-activated cortical cells, its activity is later restricted to the nodule primordium, and is maintained through nodule maturity, in the apical meristematic zone. In contrast, the MtCLE12 promoter activity occurs first in young round nodules and, similarly to that of MtCLE13, is later restricted to the apical zone. Finally, the expression of MtCLE13 is induced rapidly by cytokinin, while that of MtCLE12 is unaffected.

In the genome of L. japonicus, three CLE genes have been identified to be up-regulated by rhizobial inoculation (Okamoto et al., 2009). LjCLE-RS1 and LjCLE-RS2 have a high degree of similarity with the CLE domain of MtCLE12 and MtCLE13, but no nodulation-related MtCLE gene was found with a CLE domain similar to that of LjCLE3. Interestingly, LjCLE-RS1 and LjCLE-RS2 are also up-regulated at early stages of nodulation. Based on sequence similarity and expression profiles, MtCLE13 and LjCLE-RS1/LjCLE-RS2 might exert a comparable function during indeterminate and determinate nodule development, respectively.

Studies on the putative CLE peptides of Arabidopsis (Ito et al., 2006; Strabala et al., 2006; Ni and Clark, 2006; Whitford et al., 2008) have shown a direct relationship between CLE domain sequence and induced phenotypes. MtCLE12 and MtCLE13 are most similar to a group less characterized Arabidopsis CLE peptides (AtCLE1 to AtCLE7), that are broadly produced with higher activity levels in the root (Sharma et al., 2003; Ito et al., 2006). Exogenous peptide addition did not suppress procambial to xylem cell transdifferentiation in a Zinnia cell culture while application of high, but not low, concentrations of peptides resulted in primary root meristem arrest (Ito et al., 2006; Strabala et al., 2006; Kinoshita et al., 2007; Whitford et al., 2008). Furthermore, ectopic overexpression of this group of peptides resulted in root elongation, mild wus loss-of-function phenotypes, mild distorted leaves, and dwarfing in later growth stages (Strabala et al., 2006). Upon exogenous peptide addition or ectopic overexpression in transgenic roots of MtCLE12 and MtCLE13, neither root growth arrest, nor enhanced root elongation were observed. Because root growth analysis of A. rhizogenes generated roots is technically difficult, phenotypic analysis of transgenic plants carrying heritable 35S:MtCLE12 or 35S:MtCLE13 constructs might help to decipher whether these CLE peptides do indeed induce root growth defects. The CLE domain sequence of MtCLE4 is most highly homologous to type-I Arabidopsis CLE peptides, to which CLV3 belongs. This class of CLE peptides causes root meristem arrest upon exogenous
application or ectopic overexpression. As expected, exogenous MtCLE4p application inhibited root growth by 24%.

4.3.2 Nodule-related MtCLE12 and MtCLE13 expression is linked with differentiation and dedifferentiation processes

If MtCLE13 were to be involved in nodulation, its transcription would depend on early nodulation signaling components. Quantitative detection of MtCLE13 transcripts, across different nodulation mutants revealed that functional DMI1, DMI2, DMI3, NSP-1, NSP2, and NIN, but not ERN1, proteins, are necessary for MtCLE13 expression. Interestingly, the ERN1 mutant, bit1-1, is the only mutant in which cell division is initiated and small arrested primordia are observed, indicative for active NF signaling toward the cortex and pericycle (Andriankaja et al., 2007; Middleton et al., 2007). MtCLE13 transcript expression was quickly induced by cytokinin, but not by auxin, the former being the most important hormone for primordium initiation (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007). These data show that MtCLE13 transcript expression is positioned downstream of early NF signaling components and suggest a role downstream to cytokinin perception in the control of organ development.

pMtCLE13:GUS analysis indicated that MtCLE13 transcripts are expressed at very early stages of infection within nodulation-susceptible zones of the root cortex. The expression pattern is reminiscent of the signal gradient hypothesis in which opposing signal gradients from the vasculature and from the NF signaling at the epidermis would delimit the cellular landscape to form a nodule (Smit et al., 1995a; Heidstra et al., 1997; van Spronsen et al., 2001). Because MtCLE13 is induced by cytokinin, its expression pattern presumably reflects an internal cytokinin gradient in the cortex. Consequently, MtCLE13 peptides might serve as subsequent intercellular signals to control downstream responses. Once cell division was initiated, the MtCLE13 expression was the strongest in the dividing cortical and pericycle cells. CLE peptides have been shown to regulate the balance between cell division and differentiation (Simon and Stahl, 2006; Kondo et al., 2006; Ito et al., 2006; Whitford et al., 2008). Therefore, the MtCLE13 peptide gradient might maintain cell division and/or cell identity during the course of nodule development. Analysis of downstream responses to MtCLE13 peptide overexpression via genome-wide expression analysis might provide further insight into MtCLE13 function.

The expression of MtCLE12 is also correlated with cell division and differentiation.
Expression of \textit{MtCLE12} during nodule development was first observed throughout the mature primordium, where also \textit{MtCLE13} expression was detected. The late expression pattern of \textit{MtCLE12} was confirmed by the absence of expression in the inoculated nodulation mutants, because none of the tested mutants developed nodule primordia of a stage corresponding with the \textit{MtCLE12} expression. By which trigger \textit{MtCLE12} expression is induced is thus far unknown, but application of neither cytokinin nor auxin could activate \textit{MtCLE12} expression. The transcription factor \textit{MtHAP2-1}, located in nodule meristematic tissues, is essential for meristem differentiation (Combier \textit{et al.}, 2006). It would be interesting to determine whether a functional \textit{MtHAP2-1} is necessary for \textit{MtCLE12} induction or whether \textit{MtCLE12} regulates \textit{MtHAP2-1} expression.

In mature nodules, both \textit{MtCLE12} and \textit{MtCLE13} are expressed apically, in a zone comprising meristematic cells and cells of the early infection zone. In some nodules, \textit{MtCLE13} expression was higher in the provascular strands of the nodule meristem than that in other meristematic cell types. Expression of \textit{MtCLE12} and \textit{MtCLE13} in the nodule apex again suggests a regulatory role for their encoded peptides in nodule meristem cell proliferation and/or differentiation.

\subsection*{4.3.3 \textit{MtCLE12}, \textit{MtCLE13}, or a peptide with a related sequence might control nodule number}

The lack of nodule development in transgenic roots ectopically overexpressing either \textit{MtCLE12} or \textit{MtCLE13} hints at a role for CLE signaling in controlling nodule number. Nodulation on \textit{35S:MtCLE12} and \textit{35S:MtCLE13}, but not on \textit{35S:MtCLE4}, roots was totally abolished at the level of NF perception: no \textit{MtENOD11} expression and no developing nodules were seen upon inoculation of transgenic roots. This suppressive effect on nodulation was not phenocopied by exogenous application of synthetic peptides. One possible reason could be related to a role for posttranslational hydroxyprolination and subsequent arabinosylation on CLE peptide bioactivity, as suggested for Arabidopsis CLE peptides \textit{AtCLE1} till \textit{AtCLE7} (Strabala \textit{et al.}, 2006; Ohyama \textit{et al.}, 2009). Moreover, CLV3 arabinosylation has been found to be critical for high-affinity binding to the CLV1 ectodomain (Ohyama \textit{et al.}, 2009).

Nodule number is controlled by different processes. Our results suggest that CLE peptides are specifically involved in AON because nodule development was inhibited systemically in wild type roots of composite plants containing roots ectopically over-expressing either \textit{MtCLE12} or \textit{MtCLE13}. Moreover, ectopic expression of \textit{MtCLE12}
and MtCLE13 in roots promoted petiole elongation in wild type shoots of these composite plants. Taken together, these results demonstrate that MtCLE12 and MtCLE13 peptides can activate physiological responses at significant distances from the site of transgene expression. In a sunn-1 mutant background, no petiole elongation was observed, but the nodule number was strongly suppressed instead of a complete nodule development inhibition, like that observed in wild type primary roots. The sunn-1 mutant might possess residual SUNN activity that could potentially allow MtCLE12 or MtCLE13 perception and downstream signaling at a level sufficient for only a mild suppression of nodulation, but insufficient for promotion of petiole elongation. The ectopic expression of LjCLE-RS1 or LjCLE-RS2 of L. japonicus strongly reduces nodulation locally and systemically (Okamoto et al., 2009). This inhibitive effect on nodulation was abolished in the hypernodulating1-4 (har1-4) mutant roots, HARI being an orthologous gene to SUNN (Okamoto et al., 2009). The phenotypic differences between mutants could potentially be attributed to differences in allele functionality, because har1-4 bears a missense mutation in the LRR ectodomain and sunn-1 is mutated in the kinase domain (Kawaguchi et al., 2002; Krusell et al., 2002; Nishimura et al., 2002a; Schnabel et al., 2005). Accordingly, a missense mutation in the LRR ectodomain of CLV1 has a stronger phenotype than a mutation in the kinase domain (Dievart et al., 2003). Moreover, the har1-4 mutant allele causes a more severe nodulation phenotype than the har1-5 allele, which is mutated in the intracellular kinase domain (Kawaguchi et al., 2002; Krusell et al., 2002; Nishimura et al., 2002a; Schnabel et al., 2005). Thus, the differences in phenotype might simply be due to residual activities of the mutant protein or to a potentially dominant negative effect on interacting receptors, as for mutant alleles of CLV1 (Dievart et al., 2003).

Because SUNN belongs to the class XI of LRR-RLKs to which a few CLE peptide receptors belong (PXY/TDR, CLV1), it is tempting to propose that SUNN might be part of the receptor complex for MtCLE12 or MtCLE13. However, grafting studies have shown that SUNN and its orthologs are active in the shoot to invoke AON via a shoot-localized mechanism (Nutman, 1952; Delves et al., 1986; Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005). Consequently, if the MtCLE12 and MtCLE13 peptides, which are produced upon nodulation in the root, could be perceived by SUNN, long-distance root-to-shoot translocation of the peptides would have to occur, which is in contradiction to the short-distance signaling activities proposed for many CLE peptides (Fukuda et al., 2007; Hirakawa et al., 2008; Whitford et al., 2008; Miwa et al., 2009; Stahl et al., 2009).
Alternatively, the various CLE peptide bioactivities observed upon ectopic overexpression of MtCLE12 or MtCLE13 in roots might mimic the signaling of structurally related CLE peptides that are produced in the shoot, the place of action of SUNN and its orthologs. Because the strong 35S promoter is expressed in the root vasculature, the ectopically produced CLE peptides might be systemically spread throughout the plant and be perceived by the SUNN protein in the shoot. As the SUNN proteins might also be produced in the root vasculature (Schnabel et al., 2005; Nontachaiyapoom et al., 2007), we cannot rule out that the misexpressed CLE proteins in the root vasculature are locally perceived by SUNN to provoke the observed long distance effects. The shoot-expressed CLE gene might be MtCLE12 itself, because expression analysis has revealed that MtCLE12 is also expressed in first leaves and cotyledons, the site of SUNN activity. In this scenario, MtCLE12 and MtCLE13 activity within the nodule would not be linked with AON, but rather with balancing proliferation and differentiation as supported by the observed expression patterns.

It is equally possible that MtCLE12 and MtCLE13 perception occurs locally in the root, resulting in secondary signals that travel to the shoot where they are recognized to provoke AON and petiole elongation. Interestingly, the expression of MtCLE12 and MtCLE13 coincide with the activation and progression of AON that is first initiated when the first nodule primordia are formed and is strengthened as more nodules develop (Nutman, 1952; Delves et al., 1986; Takats, 1990; Wopereis et al., 2000; Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005; Li et al., 2009). Besides the long-distance effect on nodulation, 35S:MtCLE12 and 35S:MtCLE13 transgenic roots induced elongation of the petioles of the composite plants. Insights into petiole growth might hint at downstream responses of MtCLE12 and MtCLE13 signaling. Petiole length elongation is influenced by auxin, ethylene, abscisic acid, and gibberellins (Cox et al., 2004; Millenaar et al., 2009; Pierik et al., 2009).

In conclusion, CLE peptides most probably play different roles in nodulation. Expression patterns hint at roles during cellular differentiation processes, both at the onset of nodulation and later during nodule meristem development and subsequent homeostasis. Moreover, intertwined or not, the functional analyses imply a role for MtCLE peptides in AON. In Arabidopsis, the CLE peptide signaling is intricate and mediated by different receptor complexes (Miwa et al., 2009; Stahl et al., 2009). In silico analysis of the M. truncatula genome has revealed additional genes that belong to the class XI of LRR-RLKs and expression profiling indicates that they are up-regulated in the...
nodule. Future studies will investigate the individual roles of each of these peptides and their corresponding receptors during the nodulation process and will provide a valuable insight into nodule development, into nodule cell-type determination, and regulation of nodule number.

4.4 Materials and methods

Biological material

M. truncatula Gaertn. cv. Jemalong A17 and J5 as well as *nin*, *bit1-1*, *nsp1*, *nsp2*, *dmi1*, *dmi2*, *dmi3*, and *sunn-1* mutants (Catoira et al., 2000; Oldroyd and Long, 2003; Marsh et al., 2007; Middleton et al., 2007) and *pENOD11:GUS* transgenic seeds (Journet et al., 2003) were grown and inoculated as described (Mergaert et al., 2003). *Sinorhizobium meliloti* 1021, *Sm1021 pH60-GFP* (Cheng and Walker, 1998), *Sm1021 pQE81-dsRedT3* (Bevis and Glick, 2002), *Sm2011 pBHR-mRFP* (Smit et al., 2005), *Sm2011 pH60-GFP* (Cheng and Walker, 1998), and *Sm2011 pMH682-Gmi6390* (Roche et al., 1991) were grown at 28°C in yeast extract broth medium (Vervliet et al., 1975), supplemented with 10 mg L\(^{-1}\) tetracycline for the *Sm1021 pH60-GFP*, *Sm1021 pQE81-dsRedT3*, *Sm2011 pBHR-mRFP*, *Sm2011 pH60-GFP*, and *Sm2011 pH682-Gmi6390* strains.

PCR fragments corresponding to the full-length open reading frames of *MtCLE4*, *MtCLE12*, and *MtCLE13* were amplified from *M. truncatula* cDNA and cloned in pB7WG2D driven by the CaMV 35S promoter (De Loose et al., 1995; Karimi et al., 2002). The vector pK7m34GW2-8m21GW3D was used for the simultaneous ectopic expression of *MtCLE12* and *MtCLE13* (Karimi et al., 2007). For promoter:GUS analysis, a 2-kb region upstream of *MtCLE12* and *MtCLE13* was isolated from genomic DNA based on the available genomic data\(^5\). The promoters were fused to the *uidA* gene in pKm43GWRolDC1 (Karimi et al., 2002). Primers used for amplification are presented in Table 4.2.

For the qRT-PCR analysis, *M. truncatula* J5 plants were grown in vitro in square Petri dishes (12 × 12 cm) on nitrogen-poor SOLi agar (Blondon, 1964). After 7 days, root tips, SAMs, cotyledons, and first leaves were harvested, mature leaves, stems, and roots from 1-month-old plants grown in perlite and watered with nitrogen-poor SOLi medium and nodulated roots after 1 month from plants inoculated with *Sm1021*

MtCLE peptides control nodulation

pHC60-GFP. For the analysis of temporal expression during nodulation, nodules were harvested 4 to 10 dpi from plants grown in pouches, watered with nitrogen-poor SOLi medium, and inoculated with Sm1021 pHC60-GFP. Infection threads were visible from 4 dpi on, nodule primordia at 6 dpi, and small nodules at 8 dpi. Two days later, at 10 dpi, slightly bigger nodules were observed. Tissue was collected by visualizing the green fluorescent bacteria under a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany) equipped with a blue-light source and a Leica GFP Plus filter set ($\lambda_{ex} = 480/40$; $\lambda_{em} = 510$ nm LP barrier filter). The zones I of uninoculated roots were isolated at the same developmental stage as the 4 dpi stage.

In silico identification of *M. truncatula* CLE genes

BLAST searches were done at The Institute for Genomic Research (TIGR\(^6\)) or at the National Center for Biotechnology Information\(^7\). The CLE family was identified by repetitive searches similar to those conducted by Cock and McCormick (2001) Repetitive searches were done at Medicago Gene Index (MGI) at the Dana-Farber Cancer Institute (Release 9.0) first with the tBLASTn PAM30 algorithm for the Arabidopsis CLE box consensus (RXXPXXPXPXH). The first identified sequence, MtCLE1 (Genbank EST AW586793), that was confirmed to encode a MtCLE-like peptide was based on the predicted peptide length (<150 amino acids), the presence of a C-terminally localized CLE box, and an N-terminal signal peptide as predicted by HMM signalP and neural networks (Bendtsen et al., 2004). This first sequence was used to repeat the same search, each time with an additional homologous CLE box sequence, until no unknown family members were found in the EST data. These CLE box sequences were used in the same iterative BLAST searches to identify additional putative CLE peptides from the partially completed genomic sequence (Mt2.0). Sequences were aligned with AlignX within the VectorNTI Advance v.10 suite of programs\(^8\).

RNA extraction, cDNA synthesis, and qRT-PCR analysis

Total RNA was isolated with the RNeasy Plant mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. After a DNAse treatment, the samples were purified through NH$_4$Ac (5 M) precipitation, quality controlled, and quantified.

\(^6\)http://www.tigr.org/tdb/tgi/

\(^7\)http://www.ncbi.nlm.nih.gov/BLAST/

\(^8\)http://www.invitrogen.com
with a Nanodrop spectrophotometer (Isogen, Hackensack, NJ). RNA (2 μg) was used for cDNA synthesis with the Superscript Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA). The samples were diluted 50 times and stored at -20°C until further use. The qRT-PCR experiments were done on a LightCycler 480 (Roche Diagnostics, Brussels, Belgium) and SYBR Green was used for detection. All reactions were done in triplicate and averaged. The total reaction volume was 5 μl (2.5 μl master mix, 0.25 μl of each primer [5 μM] and 2 μl cDNA). Cycle threshold (C_T) values were obtained with the accompanying software and data were analyzed with the 2^{−ΔΔC_T} method (Livak and Schmittgen, 2001). The relative expression was normalized against the constitutively expressed 40S ribosomal S8 protein (TC100533, MGI). Primers used (Table 4.2) were unique in the MGI version 9.0 and the Medicago EST Navigation System database (Journet et al., 2002). Each experiment was repeated at least three times with independent biological tissue.

Statistical analysis

To estimate the genotype effects on developmental stage, petiole length, and root length, the linear mixed model (random terms underlined) \(y = \mu + \text{Genotype} + \text{Experiment} + \epsilon, \) was fitted to the data, where \(y \) represents the variable, \(\mu \) is the overall mean, Genotype the fixed genotype effect, Experiment random experimental effects, and \(\epsilon \) the random error. Statistical significance of genotype effects was assessed by a Wald test. In the case of the nodule number in sunn-1 plants, a generalized linear mixed model (GLMM) of the form \(y = \mu + \text{Genotype} + \text{Experiment} + \epsilon \) with a Poisson distribution and a logarithmic link, was fitted to the data. Again, the statistical significance of genotype effects was assessed by a Wald test. All analyses were done with Genstat\(^9\).

In vitro application of MtCLE synthetic peptides, auxins, and cytokinins

Peptides (AGAMOUS, APNNHYSSAGRDQDQT; MtCLE4, KRGVpSGANPLHNR; MtCLE12, DRLSgpGpNHINH; and MtCLE13, DRLSpAGpDPQHNG; lowercase \(p \) indicate hydroxylated prolines), with a purity greater than 89% (ServiceXS, Leiden, The Netherlands), were dissolved in a filter-sterilized sodium phosphate buffer (pH

\(^9\)http://www.vsni.co.uk/software/genstat/
Table 4.2: Primers used in the analysis

<table>
<thead>
<tr>
<th>Gateway cloning</th>
<th>Sense primer</th>
<th>Antisense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORF-MtCLE4</td>
<td>AGTCTGAACTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>ORF-MtCLE12</td>
<td>AGTCTGAACTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>ORF-MtCLE13</td>
<td>AGTCTGAACTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>promoter-MtCLE12</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>promoter-MtCLE13</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qRT-PCR amplification</th>
<th>Sense primer</th>
<th>Antisense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtCLE1</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE2</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE3</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE4</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE5</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE6</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE7</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE8</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE9</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE10</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE11</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE12</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE13</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE14</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE15</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE16</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE17</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE18</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE19</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE20</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE21</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE22</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE23</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE24</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>MtCLE25</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>40S Ribos</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>GFP</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
<tr>
<td>GUS</td>
<td>CTGACTCAGTGAAGGACG</td>
<td>CTTACCAAGGGGACG</td>
</tr>
</tbody>
</table>

6, 50 mM [43.5 mM NaH2PO4 and 6.2 mM Na2HPO4]). Two-day-old Jemalong J5 seedlings were grown in vitro in square Petri dishes (12 × 12 cm) on agar HP 696-7470 (Kalys, Bernin, France) containing the SOLi medium supplemented with 1 mM NH4NO3 and 10 μM peptides (Fiers et al., 2005). The plants were cultured at 25°C, 16-h photoperiod, and 70 μE m−2·m−1 light intensity per day. The roots were covered with aluminum foil for light protection. After 8 days of growth, the root length of 16 plants under each condition was measured from the root tip of the primary root to the
base of the hypocotyls with the ImageJ 1.40b program. The experiment was repeated three times with comparable results.

Auxins (10^-6 M IAA) and cytokinins (10^-7 M BAP) were diluted in dimethyl-sulfoxide and supplemented to the medium of 5-day-old, in vitro-grown plants. As a control, plants were grown without supplemented hormones. The growth conditions of the seedlings were the same as above. After 0 h, 3 h, 6 h, 12 h, and 24 h of incubation, the roots of 18 plants under each condition were harvested and analyzed by qRT-PCR. The experiment was repeated twice with comparable results.

Agrobacterium rhizogenes-mediated transgenic root transformation

The protocol was adapted from Boisson-Dernier et al. (2001). Approximately 48 h after germination, the radicle was sectioned at 5 mm from the root tip with a sterile scalpel. Sectioned seedlings were infected by coating the freshly cut surface with the binary vector-containing *A. rhizogenes* Arqual strains. The *A. rhizogenes* strain was grown at 28°C for 2 days on solid yeast extract broth medium with the appropriate antibiotics (Quandt et al., 1993). The infected seedlings were placed on agar (Kalys) containing the SOLi medium, supplemented with 1 mM NH₄NO₃, in square Petri dishes (12 × 12 cm) placed vertically for 5 days at 20°C, 16-h photoperiod, and 70 μE m⁻²m⁻¹. Subsequently, plants were placed on the same medium between brown paper at 25°C and under identical light conditions. One and 2 weeks later, plants were screened for transgenic roots, characterized by GFP fluorescence with a stereomicroscope MZFLII (Leica Microsystems) equipped with a blue-light source and a Leica GFP plus filter set. One main transgenic root was retained per composite plant. Four weeks after infection, plants were transferred to an aeroponic system, pouches, or perlite-containing pots and incubated with SOLi medium. Three to 7 days after planting, composite plants were inoculated. The petiole lengths were measured on plants grown under the same conditions, but incubated with N-containing ISV medium. Forty days after germination, the longest petiole of each plant was scored by ImageJ.

In some experiments, the main root was kept on the juvenile plant and infected by stabbing the hypocotyls with a fine needle containing an *A. rhizogenes* culture and co-transformed as described above, after which the plants were grown for 2 weeks at 25°C, with a 16-h photoperiod and 70 μE m⁻²m⁻¹. After the plants had been transferred to

MtCLE peptides control nodulation

an aeroponic system for 7 days, nodulation was analyzed on the main, untransformed root of plants bearing GFP-positive hairy roots.

Histochemical localization of GUS activity

GUS activity in cotransformed roots and nodules was analyzed using 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid as substrate (Van den Eede et al., 1992). Roots and nodules were vacuum infiltrated during 20 min and subsequently incubated in GUS buffer at 37°C. Incubation lasted 3.5 h and 7 h for pMtCLE13-GUS and pMtCLE12-GUS, respectively. After staining, root nodules were fixed, dehydrated, embedded with the Technovit 7100 kit (Heraeus Kulzer, Wehrheim, Germany), according to the manufacturer’s instructions, and sectioned with a microtome (Reichert-Jung, Nussloch, Germany). The 3-μm thick sections were mounted on coated slides (Sigma-Aldrich, St. Louis, MO). For tissue-specific staining, sections were submerged in a 0.05% (w/v) ruthenium red solution (Sigma-Aldrich, St. Louis, MO), washed in distilled water, and dried. Finally, sections were mounted with Depex (BDH Chemicals, Poole, England). Photographs were taken with a Diaplan microscope equipped with bright- and dark-field optics (Leitz, Wetzlar, Germany). GUS activity of pENOD11:GUS roots was visualized after 7 h of incubation.

In situ hybridization

Ten-μm sections of paraffin-embedded nodules were hybridized as described (Goormachtig et al., 1997). Nodules were harvested, incubated in fixation buffer, and maintained for twice 15 min under vacuum. A 35S-labeled antisense probe against the complete open reading frame of MtCLE13 was produced according to standard procedures (Sambrook et al., 1989). The probe was cloned into pBlueScript KS+ (Stratagene, Madison, WI) and further digested with HindIII restriction enzyme to yield templates for radioactive antisense probe production with T3 RNA polymerase (Invitrogen).

Acknowledgements

We thank René Geurts (Wageningen University, The Netherlands), Pascal Gamas and Clare Gough (Institut de la Recherche Agronomique-Toulouse, France), Doug Cook (University of California, Davis, USA), and Giles Oldroyd (John Innes Institute, UK)
for *S. meliloti* strains and *M. truncatula* mutants, and our colleagues Annick De Keyser and Christa Verplancke for skillful technical assistance, Lorin Spruyt, Katja Katzer, Assia Saltykova, and Jorik Verbiest for their input during their Master projects and theses, Wilson Ardiles for sequence analysis, Marnik Vuylsteke for help with the statistical analysis, Giel Van Noorden for critical reading of the manuscript, and Martine De Cock and Karel Spruyt for help in preparing the paper and figures, respectively.

Authors Contributions

The main part of this work was done by V. Mortier. G. Den Herder was involved in the first expression analyses. The bioinformatic analysis was performed by S. Rombauts, W. Van de Velde and R. Whitford. K. D’haeseleer helped with cloning the open reading frames and promotors of the *MtCLE4, MtCLE12* and *MtCLE13* genes. S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.
Addendum Chapter 4

Search for nitrate-induced *MtCLE* genes

Virginie Mortier, Cindy Martens, Stéphane Rombauts, Marcelle Holsters and Sofie Goormachtig

In preparation
4.5 Introduction

Nodulation is, amongst others, controlled by environmental signals such as nitrate availability in the soil. High nitrate concentrations inhibit nodule formation at different levels and local, as well as systemic influences have been reported (Carroll and Gresshoff, 1983; Carroll and Mathews, 1990; Hinson, 1975; Day et al., 1989; Francisco and Akao, 1993; Ruffel et al., 2008; Jeudy et al., 2010; Streeter, 1981, 1985; Carroll and Gresshoff, 1983; Carroll et al., 1985a,b; Gibson and Harper, 1985). Nitrate regulation is suggested to be partially mediated via AON, as hypernodulation mutants exhibit a nitrate tolerant phenotype (Schnabel et al., 2005; Kinkema et al., 2006; Barbulova et al., 2007; Jeudy et al., 2010). In agreement, in both L. japonicus and soybean group-III CLE peptide genes were identified that are upregulated by nitrate and which reduce nodulation by ectopic expression in a NARK- or HAR1-dependent way (Okamoto et al., 2009; Gresshoff et al., 2009; Reid et al., 2011). Whether AON is involved in local and/or systemic nitrate effects is still under debate but in summary, nitrate regulation, AON and CLE peptide signaling seem to be intertwined and the interactions might be different in various legumes.

We analyzed the interaction between CLE peptides and nitrate control of nodule number but so far could not find a nitrate-induced MtCLE gene. In addition, we observed, in our set-up, that inhibition of nodulation by the addition of nitrate involves long distance mechanisms which are independent of SUNN, as sunn-4 was still very sensitive to 10 μM of nitrate. Finally, in our search for nitrate-upregulated genes, we identified six additional MtCLE genes in the latest available M. truncatula genome of which MtCLE26, MtCLE28 and MtCLE31 are induced upon nodulation, suggesting that nodulation is governed by many CLE peptides that act in a redundant way.

4.6 Results

4.6.1 Involvement of SUNN in nitrate control of nodulation

It was previously shown that the nitrate inhibition of nodulation might act via SUNN or its orthologs (Carroll et al., 1985a,b; Streeter and Wong, 1988; Barbulova et al., 2007; Jeudy et al., 2010). In agreement, in respectively L. japonicus and soybean, the expression of the CLE genes, LjCLE-RS2 and GmNIC1, was upregulated by exogenous addition of nitrate (Okamoto et al., 2009; Reid et al., 2011). We therefore investigated
whether *M. truncatula CLE* genes could be found from which the expression is induced by nitrate. To do so, we re-examined the effect of nitrate on nodulation in wild type and *sunn-4* plants and investigated whether there was an *MtCLE* gene for which the expression was regulated by the addition of nitrate.

First, we investigated the minimal nitrate concentration needed to inhibit nodulation. Therefore, 2-day-old seedlings were grown for five days on growth medium supplemented with 0, 1, 3, 5, 10 or 30 mM KNO₃ after which they were inoculated with Sm2011 pHC60-GFP. Nodule number was assessed at 12 dpi. The average nodule number on the plants grown in the presence of 1 or 3 mM KNO₃ was similar to the results obtained for the control plants (0 mM KNO₃) (Figure 4.15A). Addition of 5 mM KNO₃ resulted in a strong reduction in nodule number, as only 0.43 ± 0.20 nodules were counted on these plants, while 3.93 ± 0.77 nodules were observed on control plants (Figure 4.15A). A complete inhibition of nodulation was observed on plants grown in the presence of 10 or 30 mM KNO₃ (Figure 4.15A).

To analyze whether the inhibitory effect involves long distance signaling, a split-root-system was set up making use of square-shaped plates (12 x 12 cm) that were subdivided by an aluminium foil into two sections of which one compartment contained nitrogen poor growth medium, while the growth medium of the other half was supplemented with 10 mM KNO₃ (Figure 4.15B). Control plants were grown on plates containing nitrogen poor medium on both sides. *M. truncatula J5* seedlings were cut at the roottip to induce branching and 2 weeks later transferred to the split-root-system in a way that the roots were evenly distributed to both compartments of the plate. One week later, the plants were inoculated with Sm2011 pBHR-mRFP and the average nodule number on each side of the plates was counted at 7 dpi (Figure 4.15C). The control plants revealed an average nodule number of 6.77 ± 0.36 on either the left or the right section of the plate. In contrast, on plants from which half of the root system was grown in the presence of 10 mM KNO₃, nodule number was greatly reduced both on the roots grown in the presence and absence of nitrate (p < 0.001, Regression analysis). The average nodule number on the nitrate-free side was 0.72 ± 0.12 and on the nitrate-rich side 0.03 ± 0.02. These results clearly indicate that inhibition of nodulation by the addition of nitrate involves long distance mechanisms. This is in agreement with previously published data (Krusell *et al.*, 2002; Nishimura *et al.*, 2002a; Searle *et al.*, 2003; Schnabel *et al.*, 2005; Oka-Kira *et al.*, 2005; Sagan and Gresshoff, 1996; Jeudy *et al.*, 2010).

In order to control whether the systemic inhibition of nodulation by nitrogen is
Figure 4.15: Influence of nitrate on nodulation in *M. truncatula*. A, Average nodule number on plants grown in the presence of 0, 1, 3, 5, 10, or 30 mM KNO$_3$ at 12 dpi with Sm2011 pBHR-mRFP (n = 14). B, For split-root analyses plates were subdivided by aluminium foil into two sections of which one compartment contained nitrogen poor growth medium (0 mM KNO$_3$) and the other compartment growth medium supplemented with 10 mM KNO$_3$. C and D, Systemic inhibition of nodulation by nitrogen on wild type and *sunn-4* plants. Average nodule number on half of the roots of control plants grown in the absence of nitrogen (control) and of plants from which one root was grown in the absence of nitrogen (-KNO$_3$) and the other in the presence of 10 mM KNO$_3$ (+KNO$_3$) at 7 dpi. C, Experiment performed with J5 wild type plants (n = 30-39). D, Experiment performed with *sunn-4* mutant plants (n = 23-24). Asterisks indicate statistically significant differences in comparison to control roots (p < 0.001, Regression analysis). Data and error bars represent means ± SE. All experiments were repeated twice with comparable results. The total mean of both biological repeats is represented in the graph.

SUNN-dependent, we repeated the experiment in a *sunn-4* mutant background (Figure 4.15D). On the roots grown in the presence of 10 mM KNO$_3$, rather than a complete inhibition of nodulation a reduction in nodule number (7.25 ± 1.40) was observed as compared to the control plants (26.16 ± 2.72) (p < 0.001, Regression analysis).
Search for nitrate-induced \textit{MtCLE} genes

On average 10.12 ± 1.66 nodules were counted on the part of the root grown under nitrogen poor conditions when the other root part was growing under nitrogen rich conditions ($p < 0.001$, Regression analysis). Thus, a reduction in nodule number was observed locally as well as systemically by the addition of nitrate to \textit{sun4} plants. These results suggest that the long distance effect of nitrate on nodule number is only partially dependent on \textit{SUNN}.

\subsection*{4.6.2 Search for \textit{M. truncatula} CLE genes upregulated by nodulation or nitrate}

With the release of the Mt3.0 version of the \textit{M. truncatula} genomic sequence, which represents about 80\% of the genome, we searched for additional \textit{MtCLE} genes on top of the 25 \textit{MtCLE} genes previously identified (Okamoto \textit{et al.}, 2009; Reid \textit{et al.}, 2011). Using a PAM30 tBLASTn homology-based algorithm, six additional \textit{MtCLE} genes were identified, which were designated \textit{MtCLE26} till \textit{MtCLE31}. Their preproteins vary in length between 64 and 108 amino acids (Table 4.3) and show a high level of sequence divergence outside the CLE motif (Figure 4.16). For all proteins, an N-terminal signal peptide or signal anchor is predicted by HMM signalP and neural networks (Bendtsen \textit{et al.}, 2004). None of the genes contain an intron (Table 4.3).

\begin{itemize}
 \item Table 4.3: Overview of the \textit{MtCLE26} till \textit{MtCLE31} peptide genes and derived \textit{MtCLE} peptides.
\end{itemize}

<table>
<thead>
<tr>
<th>\textit{M. truncatula} nomenclature</th>
<th>CLE domain sequence</th>
<th>Signal peptide</th>
<th>Chromosome number</th>
<th>Length (amino acid)</th>
<th>Intron</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{MtCLE26}</td>
<td>RLSPGGPDPRHH</td>
<td>Yes</td>
<td>2</td>
<td>78</td>
<td>No</td>
</tr>
<tr>
<td>\textit{MtCLE27}</td>
<td>RLSPGGPDRHHH</td>
<td>Yes</td>
<td>7</td>
<td>108</td>
<td>No</td>
</tr>
<tr>
<td>\textit{MtCLE28}</td>
<td>RKVPSPCDPLHH</td>
<td>Yes</td>
<td>5</td>
<td>84</td>
<td>No</td>
</tr>
<tr>
<td>\textit{MtCLE29}</td>
<td>RKVPTGPDPPLHH</td>
<td>Yes</td>
<td>2</td>
<td>64</td>
<td>No</td>
</tr>
<tr>
<td>\textit{MtCLE30}</td>
<td>RLVPSGPNPPLHN</td>
<td>Yes</td>
<td>4</td>
<td>92</td>
<td>No</td>
</tr>
<tr>
<td>\textit{MtCLE31}</td>
<td>RVVPTGPNPPLHN</td>
<td>Yes</td>
<td>8</td>
<td>88</td>
<td>No</td>
</tr>
</tbody>
</table>

Next, a tree-based alignment was made with the CLE domains of all \textit{M. truncatula} and Arabidopsis CLE genes as well as the nodulation-specific CLE genes of \textit{L. japonicus} and soybean (Oelkers \textit{et al.}, 2008; Okamoto \textit{et al.}, 2009; Mortier \textit{et al.}, 2010, 2011). 24 \textit{MtCLE} genes encode CLE peptides that fall in one class, designated group-I, and exemplified by CLV3 (Figure 4.17). 2 \textit{MtCLE} genes encode peptides similar to TDIF/CLE41/CLE44 and are designated group-II. Two additional \textit{MtCLE} genes
(MtCLE26 and MtCLE27), encode peptides that are most homologous to the peptides of the genes MtCLE12, MtCLE13, MtCLE14, LjCLE-RS1, LjCLE-RS2, GmCLE14-GmCLE39/GmRIC1, GmCLE35-GmCLE37/GmRIC2 and GmNIC1 that are involved in AON and to Arabidopsis CLE1 to CLE7 (Okamoto et al., 2009; Mortier et al., 2010, 2011; Reid et al., 2011; Van de Velde et al., unpublished results). This group was named group-III (Mortier et al., 2011). To facilitate the comparison of the amino acids between CLE domains, they were numbered as described by Oelkers et al. (2008) with the zero position assigned to the conserved glycine (G) residue located at the center of the CLE motif and the positions of the other amino acids numbered relative to this G. The peptide sequences derived from MtCLE26 and MtCLE27 are very similar to that of the nodulation-related CLE peptides, LjCLE-RS1/LjCLE-RS2 and MtCLE13 (Figure 4.17). The sequences of the MtCLE26 and MtCLE27 peptides only differed at 3 or 4 amino acid positions with MtCLE12 and MtCLE13, and 2 amino acid positions with LjCLE-RS1/LjCLE-RS2 (Okamoto et al., 2009; Mortier et al., 2010). The conserved pattern of the residues in each group is shown in a WebLogo representation (Figure 4.17).

To study the temporal expression during nodule development, the relative transcript levels of the newly identified MtCLE genes was analyzed at 4, 6, 8, and 10 dpi. The elongation zone of uninoculated roots, the nodule initiation site, was used as the reference tissue. For MtCLE26, MtCLE28, and MtCLE31, expression was low at 4 dpi, started to rise at 6 dpi, and remained high until 10 dpi (Figure 4.18, A-C). For MtCLE27, MtCLE29 and MtCLE30 no expression could be measured in any of the tested samples (data not shown). In addition to the previously published MtCLE12 and MtCLE13 genes, three more CLE genes are induced upon inoculation (Mortier et al., 2010). From these five nodulation induced CLE genes, three belong to group-III (MtCLE12, MtCLE13 and MtCLE26), while another 2 (MtCLE28 and MtCLE31) are members of group-I.

To control whether nitrate addition has an influence on MtCLE expression, we performed a qRT-PCR analysis on cDNA of roots treated with different concentrations of nitrate.
Search for nitrate-induced *MtCLE* genes
Addendum Chapter 4

KNO₃. 0, 1, 5, 10 or 30 mM KNO₃ was supplemented to the growth medium of 7-d-old plants. The roots of 18 plants were harvested under each condition 7 days later and the relative expression level of all MtCLE genes was assessed. No significant differences were observed for any of the tested genes (Supplemental data, Table 4.5).

4.7 Discussion

The negative effect of nitrate is tightly connected to AON (Carroll et al., 1985a,b; Sagan and Gresshoff, 1996; Schnabel et al., 2005; Wopereis et al., 2000; Penmetsa et al., 2003; Oka-Kira et al., 2005; Magori and Kawaguchi, 2009). We re-analyzed the effect of nitrate on nodulation in wild type and sunn-4 mutants. A complete inhibition of nodulation on wild type plants was achieved by the addition of 10 mM KNO₃ and split-root experiments indicated that this effect involves systemic signals, in accordance to previously published data (Jeudy et al., 2010; Carroll et al., 1985a,b; Sodek and Moura Silva, 1996; Eskew et al., 1989). Nodulation was also more strongly inhibited in the nitrogen-rich roots, than in the nitrogen-deprived roots. Jeudy et al. (2010), explained this effect because a local inhibition acts on top of a systemic inhibition. However, it is equally possible that addition of nitrate activates a concentration gradient of a nodule-inhibiting compound, which is strongest at the place of nitrate addition. Interestingly, nitrate-induced inhibition of nodulation, locally as well as systemically, was reduced in the sunn-4 mutant. Many scientists have explained this partial tolerance by the fact that nitrate-mediated inhibition might involve the AON pathway. Sunn-4 mutants are very strong mutants and in our condition, there was still a clear inhibition of nodulation, locally as well as systemically after nitrate addition. Eskew et al. (1989) described already in 1991 that nodulation of AON mutants is only partially tolerant to nitrate, because very high concentrations of nitrate were able to severely reduce nodule numbers on AON mutants. Hence, it might equally be possible that the lower sensitivity is a consequence of changes in hormone balances in the sunn mutants, whereby auxin levels might be the central actor. If nitrate addition would inhibit nodule formation via reducing the auxin levels in the root, higher nitrate concentrations would be required.

Figure 4.17 (facing page): Tree-based alignment of the CLE domain encoded by all MtCLE genes and of the CLE domain of all Arabidopsis CLE genes as well as the nodulation-specific CLE genes of L. japonicus and soybean.
Search for nitrate-induced *MtCLE* genes
Figure 4.18: Expression analysis of MtCLE26 (A), MtCLE28 (B), and MtCLE31 (C), by qRT-PCR on cDNA samples of zone-I root tissues of uninoculated plants (NI) and at 4, 6, 8 and 10 dpi. Data and error bars represent means ± SD. The experiment was repeated twice with comparable results.

in *sunn* mutants to reduce the high auxin levels sufficiently to block nodule formation. In Arabidopsis, a link between nitrate and auxin transport has recently been resolved (Krouk et al., 2010; Beeckman and Friml, 2010).

The nitrate effect might act via CLE peptides because in *L. japonicus* as well as in soybean, nitrate-induced CLE peptide genes were identified, which inhibit nodulation in a HAR1/NARK-dependent way (Okamoto et al., 2009; Reid et al., 2011). In the recently released *M. truncatula* genomic data (Mt3.0 version) 6 more CLE genes (MtCLE26 to MtCLE31) were identified by specialized BLAST searches, besides the 25 (MtCLE1 to MtCLE25) identified before (Mortier et al., 2010). However, none of these MtCLE genes were nitrate-upregulated. As the Mt3.0 version represents about 80% of the genome, more CLE genes are expected to be found upon completion of the genome sequencing. In the genome of *L. japonicus*, which is comparable in size to that of *M. truncatula* (470 Mb) and which has currently been sequenced for 91.3%, 39 CLE genes were identified (Sato et al., 2008; Okamoto et al., 2009).

In Arabidopsis, gain-of-function analysis has shown that there is a correlation between the function of the CLE peptide and its sequence (Hobe et al., 2003; Ni and Clark, 2006). Based on the sequences of the CLE motif, CLE peptides have been divided in three groups (Ito et al., 2006; Mortier et al., 2011). 24 MtCLE peptides were found to belong to group-I, exemplified by CLV3 and which are promoters of cellular differentiation (Ito et al., 2006); 2 MtCLE peptides are related to group-II, exemplified by TDIF and which prevent cellular differentiation and control the rate and orientation
of vascular cell division (Ito et al., 2006; Etchells and Turner, 2010). Finally, 5 MtCLE peptides belong to group-III, to which the *M. truncatula*, *L. japonicus* and soybean CLE peptides belong, from which the expression is enhanced during nodulation and which affect nodulation after ectopic overexpression (Mortier et al., 2010, 2011; Okamoto et al., 2009; Reid et al., 2011). The newly identified group-III CLE peptide genes, MtCLE26 and MtCLE27, might possibly exert a nodulation-related function. Indeed, for MtCLE26, transcripts were detected by qRT-PCR analysis from 6 dpi on, similar to the group-III MtCLE12 and MtCLE13 genes (Mortier et al., 2010). In contrast, MtCLE27 transcripts were not detected during early nodulation (4 till 10 dpi). Still, an enhanced transcript level was found in whole root samples carrying 1-month-old nodules compared to uninoculated roots. Because this expression pattern was not detected in RNA derived from separate nodules of the same age (data not shown), these results might indicate that MtCLE27 is expressed in the nodulated root tissue rather than in the nodules. This would be a new expression pattern for nodulation-related CLE peptides, but promoter:GUS analysis has to be executed to confirm this result. Also, expression of the group-I type MtCLE28 and MtCLE31 genes was upregulated during nodulation. Group-I CLE peptides are known to cause consumption of the root meristem upon ectopic addition or overexpression (Okamoto et al., 2009; Mortier et al., 2010, 2011; Reid et al., 2011). Hence, it seems that a versatile group of CLE genes are activated during nodulation. Also in soybean nodulation, 6 GmCLE genes, from which 5 had a second copy in the genome, are induced during nodulation (Mortier et al., 2011). We have previously shown that MtCLE13 expression coincides with nodule primordium formation and that, together with MtCLE12, the gene is expressed in the apical meristematic part of the nodule (Mortier et al., 2010). It will be interesting to analyze the expression patterns of the newly identified nodulation-related CLE genes. Moreover, ectopic expression might shed a light on the exact role of MtCLE26, MtCLE27, MtCLE28, MtCLE29, MtCLE30 and MtCLE31 in nodulated roots.

4.8 Materials and methods

Biological material

M. truncatula Gaertn. cv. Jemalong A17 and J5 as well as *sunn-4* mutants (Schnabel et al., 2005) were grown and inoculated as described (Mergaert et al., 2003). *Sinorhizobium meliloti* 1021 pHC60-GFP (Cheng and Walker, 1998) and Sm2011 pBHR-mRFP
(Smit et al., 2005) were grown at 28°C in yeast extract broth medium (Vervliet et al., 1975), supplemented with 10 mg L\(^{-1}\) tetracycline.

For the analysis of temporal expression during nodulation, nodules were harvested 4 to 10 dpi from plants grown in pouches, watered with nitrogen-poor SOLi medium, and inoculated with Sm1021 pHC60-GFP. Infection threads were visible from 4 dpi on, nodule primordia at 6 dpi, and small nodules at 8 dpi. Two days later, at 10 dpi, slightly bigger nodules were observed. Tissue was collected by visualizing the green fluorescent bacteria under a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany) equipped with a blue-light source and a Leica GFP Plus filter set (\(\lambda_{ex} = 480/40; \lambda_{em} = 510\) nm LP barrier filter). The zones I of uninoculated roots were isolated at the same developmental stage as the 4 dpi stage.

In silico identification of additional M. truncatula CLE genes

The *in silico* identification of additional *M. truncatula* CLE genes (Mt3.0) was based on the previously identified *MtCLE* genes (MtCLE1 to MtCLE25) and performed as described by Mortier et al. (2010).

RNA extraction, cDNA synthesis, and qRT-PCR analysis

The RNA extraction, cDNA synthesis, and qRT-PCR analysis were performed as described by Mortier et al. (2010). Primers used (Table 4.4 and Mortier et al. (2010)) were unique in the MGI version 9.0 and the Medicago EST Navigation System database (Journet et al., 2002). Each experiment was repeated at least two times with independent biological tissue.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtCLE26</td>
<td>CTCGTCACCTTGGTACTCTC</td>
<td>TCAAGGGTGCCCTGGGAATCTG</td>
</tr>
<tr>
<td>MtCLE27</td>
<td>CACCAAGAAACGAAAGATAATC</td>
<td>GGCCTCGAGTTAAACC</td>
</tr>
<tr>
<td>MtCLE28</td>
<td>GCCATGTCTGATAAGAAAGGTAAAG</td>
<td>GGAGAGATCTGGACAACCTTG</td>
</tr>
<tr>
<td>MtCLE29</td>
<td>GACTGTTGGAGAGCATGAGT</td>
<td>AATTGAGTGGCCAAATGTATGTG</td>
</tr>
<tr>
<td>MtCLE30</td>
<td>TTCTTCTCTCTCTCCATCAG</td>
<td>GTCTTTGCTTACACCATATCCTTG</td>
</tr>
<tr>
<td>MtCLE31</td>
<td>CAGTAGCATGTTGGCAGTAC</td>
<td>CGTGTGGTTGAGCAAGAAAGAC</td>
</tr>
<tr>
<td>40S</td>
<td>GCCATTGTCCAATTTGAGTCTG</td>
<td>TTTCCTACCAACTTCAACCC</td>
</tr>
</tbody>
</table>
Search for nitrate-induced MtCLE genes

In vitro application of nitrogen

For the *in vitro* application of nitrogen 1, 5, 10 and 30 mM KNO₃ were supplemented to the SOLi medium of *in vitro*-grown plants. As a control, plants were grown without supplemented nitrogen. The plants were cultured at 25°C, 16-h photoperiod, and 70 μE m⁻² m⁻¹ light intensity per day. For qRT-PCR analysis, 7-day-old seedlings were treated with KNO₃ for 7 days, after which the roots of 18 plants under each condition were harvested. For nodule numbers, 2-day-old seedlings were treated with KNO₃ for 5 days, prior to inoculation with *Sm2011 pHC60-GFP*, as well as during nodulation. Nodulation was assessed 12 days later. The experiment was repeated twice with comparable results.

Statistical analysis

The following generalized linear model (GLM) \(Y_{ijk} = \mu + genotype_j + experiment_k + error_{ijk} \) (Regression analysis) was fitted to the nodule number, partitioning phenotypic variation into fixed genotype and experiment effects and random error effects. \(Y_{ijk} \) is the phenotype of the \(i \)-th plant from the genotype \(j \) analyzed in experiment \(k \); \(\mu \) is the overall mean of the phenotypes obtained for all lines considered. Because the data has a Poisson distribution, a logarithm base e link function was incorporated. All analyses were done by means of the GenStat software¹³.

¹³http://www.vsni.co.uk/software/genstat/
4.9 Supplemental data

Table 4.5: Influence of KNO₃ on the expression of MtCLE genes. qRT-PCR analysis was done on cDNA samples of roots grown for 7 days in the presence of 0, 1, 5, 10 or 30 mM KNO₃. The qRT-PCR analysis was done in triplicate. The average of the relative expression levels of each gene (AV) and the standard deviation (SD) were calculated. The relative expression levels were defined by the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001). For MtCLE13, MtCLE15, MtCLE20, MtCLE23, MtCLE27, MtCLE30 and MtCLE31 no expression was measured. For the remaining MtCLE genes, which are not listed in the table, no descent primers were designed (Mortier et al., 2010).

<table>
<thead>
<tr>
<th>Gene</th>
<th>0 mM AV</th>
<th>0 mM SD</th>
<th>1 mM AV</th>
<th>1 mM SD</th>
<th>5 mM AV</th>
<th>5 mM SD</th>
<th>10 mM AV</th>
<th>10 mM SD</th>
<th>30 mM AV</th>
<th>30 mM SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtCLE1</td>
<td>1.03</td>
<td>0.28</td>
<td>1.93</td>
<td>0.17</td>
<td>1.01</td>
<td>0.06</td>
<td>1.26</td>
<td>0.21</td>
<td>1.11</td>
<td>0.04</td>
</tr>
<tr>
<td>MtCLE2</td>
<td>1.01</td>
<td>0.21</td>
<td>0.93</td>
<td>0.05</td>
<td>0.57</td>
<td>0.09</td>
<td>0.51</td>
<td>0.14</td>
<td>0.91</td>
<td>0.09</td>
</tr>
<tr>
<td>MtCLE3</td>
<td>1.05</td>
<td>0.40</td>
<td>1.58</td>
<td>0.27</td>
<td>0.89</td>
<td>0.02</td>
<td>1.00</td>
<td>0.04</td>
<td>1.23</td>
<td>0.06</td>
</tr>
<tr>
<td>MtCLE4</td>
<td>1.03</td>
<td>0.30</td>
<td>0.89</td>
<td>0.05</td>
<td>0.55</td>
<td>0.01</td>
<td>0.51</td>
<td>0.06</td>
<td>0.63</td>
<td>0.01</td>
</tr>
<tr>
<td>MtCLE5</td>
<td>1.01</td>
<td>0.13</td>
<td>0.77</td>
<td>0.34</td>
<td>0.79</td>
<td>0.06</td>
<td>0.64</td>
<td>0.24</td>
<td>1.56</td>
<td>0.18</td>
</tr>
<tr>
<td>MtCLE6</td>
<td>1.05</td>
<td>0.41</td>
<td>1.16</td>
<td>0.14</td>
<td>0.70</td>
<td>0.03</td>
<td>0.77</td>
<td>0.07</td>
<td>0.93</td>
<td>0.05</td>
</tr>
<tr>
<td>MtCLE7</td>
<td>1.01</td>
<td>0.18</td>
<td>1.28</td>
<td>0.39</td>
<td>0.67</td>
<td>0.15</td>
<td>0.71</td>
<td>0.18</td>
<td>0.62</td>
<td>0.10</td>
</tr>
<tr>
<td>MtCLE8</td>
<td>1.12</td>
<td>0.68</td>
<td>0.91</td>
<td>0.07</td>
<td>0.55</td>
<td>0.09</td>
<td>0.87</td>
<td>0.99</td>
<td>0.94</td>
<td>0.07</td>
</tr>
<tr>
<td>MtCLE9</td>
<td>1.13</td>
<td>0.60</td>
<td>0.53</td>
<td>0.15</td>
<td>2.26</td>
<td>1.29</td>
<td>2.02</td>
<td>1.55</td>
<td>2.11</td>
<td>0.66</td>
</tr>
<tr>
<td>MtCLE10</td>
<td>1.03</td>
<td>0.34</td>
<td>1.35</td>
<td>0.19</td>
<td>1.01</td>
<td>0.11</td>
<td>0.92</td>
<td>0.09</td>
<td>1.02</td>
<td>0.09</td>
</tr>
<tr>
<td>MtCLE11</td>
<td>1.03</td>
<td>0.32</td>
<td>1.04</td>
<td>0.02</td>
<td>0.65</td>
<td>0.10</td>
<td>0.65</td>
<td>0.12</td>
<td>0.56</td>
<td>0.03</td>
</tr>
<tr>
<td>MtCLE12</td>
<td>1.21</td>
<td>0.95</td>
<td>0.36</td>
<td>0.63</td>
<td>2.41</td>
<td>2.10</td>
<td>0.30</td>
<td>0.51</td>
<td>1.16</td>
<td>0.69</td>
</tr>
<tr>
<td>MtCLE13</td>
<td>1.04</td>
<td>0.36</td>
<td>1.32</td>
<td>0.69</td>
<td>0.90</td>
<td>0.34</td>
<td>0.61</td>
<td>0.17</td>
<td>0.55</td>
<td>0.22</td>
</tr>
<tr>
<td>MtCLE14</td>
<td>1.13</td>
<td>0.66</td>
<td>0.75</td>
<td>0.71</td>
<td>1.97</td>
<td>1.13</td>
<td>1.10</td>
<td>1.01</td>
<td>0.32</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Acknowledgements

We thank Julia Frugoli (Clemson University, South Carolina) for the sunn4 mutants, and Katja Katzer and Assia Saltykova for their input during their Socrates and Masters project, respectively, Marnik Vuylsteke for help with the statistical analysis, Cindy Martens for performing the tree-based alignment and Stéphane Rombauts for help with bioinformatics.
Authors contributions

The main part of this work was performed by V. Mortier. The bioinformatic and phylogenetic analysis were performed by S. Rombauts and C. Martens, respectively. S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.
CLE peptides control nodule number and nodule meristem activity in *Medicago truncatula*

Virginie Mortier, Marcelle Holsters and Sofie Goormachtig

In preparation
Abstract

CLE genes encode small peptides involved in the balance between cell division and differentiation throughout plant development, including nodulation. Previously, we have reported that two CLE genes, MtCLE12 and MtCLE13, might be involved in nodule organogenesis and autoregulation of nodulation in Medicago truncatula. Here we confirm this observation via RNAi analysis and also show that, for autoregulation of nodulation, MtCLE12 and MtCLE13 might act in the same pathway as the leucine-rich-repeat receptor-like-kinase SUNN that is potentially involved in CLE peptide binding. Moreover, the essential nodulation hormone cytokinin induces an MtCLE13 expression pattern which is similar to that observed after nodulation and dependent on the nodulation components NIN and MtCRE1. These results suggest that several CLE peptides are involved in several aspects of nodulation.

5.1 Introduction

Legume plants escape nitrogen limitations of soils by entering a symbiosis with rhizobia. During this interaction, a controlled exchange of nitrogen compounds and dicarboxylic acids occurs between both symbiotic partners in newly formed root organs, the nodules. The legume-rhizobia symbiosis is initiated by an exchange of chemical signals of which the rhizobial lipo-chitooligosaccharides, the Nod Factors (NFs), are essential to activate two major developmental plant pathways (Jones et al., 2007; Ferguson et al., 2010). One pathway allows bacterial infection and is derived from the ancient arbuscular mycorrhizal symbiosis, while the other pathway reactivates cortical cell divisions to enable nodule primordium formation (Jones et al., 2007; Ferguson et al., 2010).

In most legumes studied so far, the bacteria enter via root hairs. After sensing the NFs, the root hairs respond with Ca$^{2+}$ influx at the tip, immediately followed by Cl$^{-}$ and K$^{+}$ effluxes. These ion fluxes induce curling of the root hair to entrap a bacterial colony. Inside the root hair, an infection thread is formed via inverted tip growth that involves targeted exocytosis of membrane and cell wall material. This infection thread guides the bacteria towards deeper cell layers. Meanwhile cortical cells re-initiate cell division and form the nodule primordium. The infection threads proceed through several cell layers to reach the cells of the nodule primordium, where the bacteria are released in membrane enclosed compartments, the symbiosomes, and differentiate into
MtCLE peptides control nodule number and nodule meristem activity

nitrogen fixing bacteroids. Eventually, nodules are subjected to natural senescence during which both symbiotic partners decay. This process involves massive protein degradation for nutrient remobilization (Van de Velde et al., 2006). In *Medicago truncatula*, natural nodule senescence is initiated in single infected cells located at the center of the nodule fixation zone and a conical shaped senescence front moves towards the apex (Perez Guerra et al., 2010). The phytohormones ethylene, gibberellins and abscissic acid (ABA) and reactive oxygen species (ROS) are believed to play a role in the process (Gonzalez et al., 2001; Ferguson and Mathesius, 2003; Van de Velde et al., 2006; Puppo et al., 2005; Loscos et al., 2008).

Several components of the early nodulation signaling pathway have been identified. In the model legume *M. truncatula*, NF recognition by the putative NF receptors (*MtNFP, MtLYK3/MtLYK4*) (Madsen et al., 2003; Radutoiu et al., 2003; Amor et al., 2003; Arrighi et al., 2006) located at the epidermis activate a signaling cascade, which is mediated by a leucine-rich-repeat receptor-like-kinase (LRR-RLK) DOESN’T MAKE INFECTIONS2 (*MtDMI2*) and a nuclear potassium channel (*MtDMI1*) and during which Ca$^{2+}$ spiking in and around the nucleus of the root hair is essential (Endre et al., 2002; Stracke et al., 2002; Oldroyd and Downie, 2004; Imaizumi-Anraku et al., 2005). Decoding of this Ca$^{2+}$ signature by a Ca$^{2+}$ calmodulin-binding protein (*MtDMI3*) and some accompanying proteins activates several transcription factors such as the NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, ETHYLENE-RESPONSIVE BINDING DOMAIN FACTOR REQUIRED FOR NODULATION1 (ERN1), and NODULE INCEPTION (NIN), leading to the initiation of the nodulation process (Schauser et al., 1999; Catoira et al., 2000; Borisov et al., 2003; Oldroyd and Long, 2003; Gleason et al., 2006; Andriankaja et al., 2007; Marsh et al., 2007; Middleton et al., 2007; Oldroyd and Downie, 2008).

Cytokinins play a central role in nodule organ formation and possibly also in the control of infection and the synchronization of the early responses (Murray et al., 2007; Tirichine et al., 2007; Gonzalez-Rizzo et al., 2006; Frugier et al., 2008). Nodule organogenesis might result amongst others from the activation of the *L. japonicus* LOTUS HISTIDINE KINASE (LjLHK1) or its *M. truncatula* ortholog CYTOKININ RESPONSE1 (MtCRE1), and subsequent signaling through cytokinin RESPONSE REGULATORS (RRs) (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Lohar et al., 2006). The central role of cytokinin during nodulation was suggested by numerous experiments. *L. japonicus* knock-out mutants for the cytokinin receptor gene, LHK1, *M. truncatula* transgenic plants with suppressed expression of CRE1, or Mtcre1 mu-
tant plants were defective in nodule primordia formation (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Plet et al., 2011). Similarly, the ectopic expression of a cytokinin degrading enzyme in L. japonicus resulted in reduced nodulation (Lohar et al., 2004). Additionally, a gain-of-function mutation of the LHK1 receptor provoked spontaneous nodules, indicating that cytokinin signaling is both necessary and sufficient for nodule formation (Tirichine et al., 2007). Also a proper auxin balance is a prerequisite for nodule formation (Oldroyd and Downie, 2008; Ding and Oldroyd, 2009). In white clover (Trifolium repens), the auxin flow within the root vasculature was transiently inhibited at the site of infection, leading to auxin accumulation in the cortical region where the nodule primordia form (Mathesius et al., 1998). A reduction in auxin flow has been confirmed by radioactive auxin tracer experiments for M. truncatula and vetch (Vicia faba), but not L. japonicus (Boot et al., 1999; Pacios-Bras et al., 2003; van Noorden et al., 2006; Wasson et al., 2006).

As nodule formation and nitrogen fixation are highly energy consuming processes, legumes restrict nodules to the minimal number required for optimal nitrogen supply. Several mechanisms have evolved to control nodulation at different levels and in function of diverse physiological and environmental parameters. One such mechanism, called autoregulation of nodulation (AON), involves a long-distance feedback mechanism (Kossak and Bohlool, 1984; Carroll et al., 1985a,b; Delves et al., 1986; Pierce and Bauer, 1983; Nutman, 1952). A current model for AON states that, an unknown signal Q, produced in the roots in response to rhizobial infection, is translocated to the shoot where it induces the formation/activation of an unknown ‘shoot derived inhibitor’ (SDI), which is transmitted to the roots to inhibit subsequent nodule initiation (Nishimura et al., 2002a). Although the molecular characteristics of the Q and SDI signal remain unknown, several AON-deficient mutants have been identified, amongst which super numeric nodules (sunn) in M. truncatula (Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005; Oka-Kira et al., 2005; Duc and Messager, 1989; Sagan and Gresshoff, 1996). Sunn is characterized by a hypernodulation (or supernodulation) phenotype, with numerous, rather small nodules developing over a wider range of the roots as compared to wild type plants. Molecular characterization indicated that a gene encoding a CLAVATA1 (CLV1)-like LRR-RLK was affected in sunn mutants and in its orthologs in pea, soybean and L. japonicus (Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005). Although transcripts of SUNN were detected throughout the plants (Nontachaiyapoom et al., 2007; Schnabel et al., 2005), reciprocal grafting experiments between sunn mutants
MtCLE peptides control nodule number and nodule meristem activity

and wild type plants have shown that the hypernodulation phenotype is determined by the shoot genotype (Schnabel et al., 2005).

Due to structural similarities between SUNN and CLV1, SUNN is suggested to bind CLV3/EMBRYO SURROUNDING REGION (CLE) peptides (Clark et al., 1997; Fletcher et al., 1999; Kondo et al., 2006; Ogawa et al., 2008). CLE genes are involved in shoot and root apical meristem (SAM and RAM, respectively) homeostasis, vascular differentiation and noduleulation (Fletcher et al., 1999; Fiers et al., 2005; Hirakawa et al., 2010a; Ito et al., 2006; Okamoto et al., 2009; Mortier et al., 2010, 2011; Reid et al., 2011). The CLE peptides are 12 to 13 amino acids long and are cleaved from a 14 amino acids long conserved CLE domain, located at or close to the carboxyl terminus of the CLE preproproteins (Kondo et al., 2006; Ito et al., 2006; Ni and Clark, 2006; Mitchum et al., 2008; Oelkers et al., 2008). A hydrophobic signal peptide at the N-terminal site of most CLE proteins suggests that the peptides are targeted to the secretory pathway and act as intercellular signals (Sawa et al., 2006; Oelkers et al., 2008). The region between the signal peptide and the CLE domain is highly variable and would have no specific function (Ni and Clark, 2006). CLE genes have been identified in the genome of monocotyledonous and dicotyledonous plants, in families that can consist of up to 40 members (Cock and McCormick, 2001; Oelkers et al., 2008; Mitchum et al., 2008). Expression analysis in Arabidopsis and M. truncatula indicated many redundant but also tissue specific expression patterns (Sharma et al., 2003; Mortier et al., 2010). In addition, a high level of redundancy is observed between members with related sequences in gain-of-function analyses (Strabala et al., 2006; Jun et al., 2008). Based on sequence comparison, at least three groups of CLE peptides can be distinguished (Strabala et al., 2006; Jun et al., 2008; Mortier et al., 2010, 2011). Group-I peptides, exemplified by CLV3, result in premature root and shoot meristem growth arrest when exogenously applied or ectopically expressed, indicating that they are promoters of cellular differentiation. Members of group-II, exemplified by TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF), prevent cellular differentiation, as evidenced by the suppression of procambium-to-xylem transdifferentiation in Zinnia (Zinnia elegans) cell cultures, and control the rate and orientation of vascular cell division (Ito et al., 2006; Etchells and Turner, 2010). Although these studies would suggest two groups with opposing functions, synergistic actions between these groups of peptides have been demonstrated (Whitford et al., 2008). No function was assigned yet to the group-III members of Arabidopsis, as functional analysis resulted in conflicting data (Ito et al., 2006; Meng et al., 2010). How-
ever, in *M. truncatula*, *L. japonicus* and soybean nodulation-related CLE peptides were identified, which belong to group-III (Mortier *et al.*, 2010, 2011; Okamoto *et al.*, 2009; Reid *et al.*, 2011). Gain-of-function analysis of the nodule-related *GmCLE* (*GmRIC1* and *GmRIC2*), *LjCLE* (*LjCLE-RS1* and *LjCLE-RS2*) and *MtCLE* (*MtCLE12* and *MtCLE13*) genes suggested these CLE peptides to be good candidates for activating AON (Okamoto *et al.*, 2009; Mortier *et al.*, 2010; Reid *et al.*, 2011). Ectopic expression of these *CLE* genes strongly reduced or abolished nodulation locally and systemically in a *HAR1*-*, NARK*- and partially *SUNN*-dependent way (Okamoto *et al.*, 2009; Reid *et al.*, 2011). So far, inhibition of nodulation was specific for group-III genes because overexpression of *CLE* genes with a structurally unrelated CLE domain (*MtCLE4* and *LjCLE3* of group-I) did not induce this effect (Okamoto *et al.*, 2009; Mortier *et al.*, 2010, 2011; Reid *et al.*, 2011). Interestingly, the expression of *MtCLE13* coincided with the activation and progression of AON (Caetano-Anolles *et al.*, 1991; Li *et al.*, 2009; Mortier *et al.*, 2010). So far, however, it is not proven that these group-III peptides might be the long-distance signals that travel from the developing nodules where they are expressed, to the shoot where SUNN and its orthologs are active for AON.

Because they are expressed at the onset of nodule primordium formation and in the nodule meristem, CLE peptides might also influence the balance between proliferation and differentiation during nodule organogenesis, in analogy to what was seen for other CLE peptides in the SAM and RAM homeostasis and during vascular development (Stahl *et al.*, 2009; Mortier *et al.*, 2010; Hirakawa *et al.*, 2010b; Guo *et al.*, 2010). In agreement, cytokinin could trigger *MtCLE13*, *GmCLE14-GmCLE39* and *GmCLE35-GmCLE37* expression in respectively *M. truncatula* and soybean, but a detailed connection between cytokinin and CLE peptides during nodulation is currently lacking. In the regulation of protoxylem formation, a cross-talk between *CLE* genes and cytokinin signaling pathways was suggested through negative regulation of type A RRs (Kondo *et al.*, 2011).

We unraveled the interaction between *MtCLE13* expression and cytokinin signaling and show that the cytokinin induction of *MtCLE13* is dependent on *NIN* and *MtCRE1* and that the expression pattern overlaps with the expression pattern reported for *MtCLE13* during nodulation (Mortier *et al.*, 2010). In addition, we show that the effect of *MtCLE13* ectopic expression on nodulation is dependent on *SUNN*, but that differences in allele functionality exist between the different *sunn* mutants. Finally, we observed that simultaneous knock-down of *MtCLE12* and *MtCLE13* results in an elevated nodule number and premature nodule senescence of infected cells of mature nodules.
5.2 Results

5.2.1 MtCLE13 induction by cytokinin

Promoter:GUS analysis has previously shown that MtCLE13 is activated during early nodulation in the cortex as a gradient, with the highest expression in the inner cortex, where cell division is taking place (Mortier et al., 2010). To see whether cytokinin signaling is involved in this expression pattern, the 6-benzylaminopurine (BAP)-induced MtCLE13 expression pattern was studied at a microscopic level (Figure 5.1, A-C). As shown in Figure 5.1A, before BAP supplementation, no GUS staining is seen. Twenty-four hours after BAP supplementation a gradient of pMtCLE13:GUS expression was observed, with the highest expression in the inner cortical cells and a lower expression in the outer cortical cells (Figure 5.1B). Also expression in the pericycle and endodermis was observed (Figure 5.1C). This expression pattern more or less matches the expression pattern reported for MtCLE13 during early nodulation (Mortier et al., 2010).

In addition, BAP also induced pMtCLE13:GUS expression in the vascular tissue (Figure 5.1C).

Next, we analyzed if the components of the early NF signaling pathway are required for the induction of MtCLE13 expression by cytokinin. The transcript level of MtCLE13 before and after addition of 10^{-7} M BAP in nfp, dmi3, bit1-1, nsp1, nsp2, cre1-1 and nin-1 mutants was analyzed by qRT-PCR. As shown in Figure 5.1D, MtCLE13 expression was induced after addition of cytokinin in all nodulation mutants, except in the cre1-1 and nin-1 mutant. This indicates that not only the cytokinin receptor MtCRE1 but also the transcription factor NIN are essential for MtCLE13 induction by cytokinin.

To confirm this result, pMtCLE13:GUS transgenic roots were generated in wild type (A17), cre1-1 and nin-1 plants and analyzed 24 hours after supplementation of 10^{-7} M BAP. In wild type plants treated with BAP, MtCLE13 expression was seen in the elongation zone of the root, just above the root tip (Figure 5.1E). This expression pattern was not seen in the cre1-1 and nin-1 mutants treated with cytokinin (Figure 5.1E). Consequently, these results corroborate the result of the qRT-PCR analysis, and confirm that the induction of MtCLE13 expression by BAP is dependent on MtCRE1 and NIN.
Figure 5.1: *MtCLE13* expression in nodulation mutants treated with 10^{-7} M cytokinin (BAP). A, Transverse sections through a root segment of A17 plants transformed with *pMtCLE13:GUS* before supplementation of BAP. No GUS staining is seen. B and C, Twenty-four hours after BAP supplementation a gradient of *pMtCLE13:GUS* expression is observed, with the highest expression in the inner cortical cells (arrow) and a lower expression in the outer cortical cells (arrowhead). Also in the pericycle (cross), endodermis (asterisk) and vascular tissue (hash), a faint blue color is seen. C is a magnification of the microscopic image represented in B. The section comes from the most mature part (laying distally from the root tip) of the blue stained region depicted in E. D, *MtCLE13* expression in wild type (A17), *nfp, dmi3, bit1-1, nsp1, nsp2, cre1-1* or *nin-1* plants as measured by qRT-PCR analysis on cDNA samples of untreated roots (control) and roots treated for 24 h with BAP. A cutoff was set at Ct value \geq 35. Data and error bars represent means \pm SD. The experiment was repeated twice with comparable results. E, *pMtCLE13:GUS* activity in roots of wild type (A17), *cre1-1* and *nin-1* plants treated for 24 h with BAP (n = 15-20). *MtCLE13* expression is visualized just above the root tip of treated wild type plants. No staining is visible in the roots of *cre1-1* and *nin-1* plants. Bars = 0.25 mm (A-C) and 1 mm (E).

5.2.2 **SUNN** dependence of 35S:*MtCLE13*-induced inhibition of nodulation

Previous results have shown that ectopic expression of the group-III peptide genes, *MtCLE12* and *MtCLE13*, resulted in an inhibition of nodulation in a systemic and partially
MtCLE peptides control nodule number and nodule meristem activity

SUNN-dependent manner (Mortier et al., 2010). These data were in disagreement with the results obtained for *L. japonicus* and soybean (Okamoto et al., 2009; Reid et al., 2011). Because *sunn-1*, the *SUNN* mutant allele used in the experiment, was shown to be a weak allele (Schnabel et al., 2010), we repeated the experiments using the other 3 mutant alleles available for *SUNN* (*sunn-2* to *sunn-4*) (Schnabel et al., 2005). In contrast to *sunn-1* and *sunn-2*, carrying a missense mutation, *sunn-3* and *sunn-4* contain a nonsense mutation (Schnabel et al., 2005). In a first set-up to control whether differences in allele functionality can be observed between these different *sunn* mutants, we analyzed whether differences in nodule number could be seen between the different *sunn* mutants. Several plants of each *sunn* mutant were grown in an aeroponics system, inoculated with *Sm2011*-GFP, and nodulation was assessed 14 days later. Nodulation of control roots (wild type A17) resulted on average in 6.65 ± 0.90 nodules, which is statistically different from the nodule number counted on *sunn-1* (21.00 ± 1.62), *sunn-2* (27.88 ± 1.86), *sunn-3* (33.43 ± 1.98), and *sunn-4* (31.54 ± 1.96) mutant plants (p < 0.001, Regression analysis) (Figure 5.2A). The variations in nodule number observed between the four *sunn* mutants were not consistently seen in different repeats (compare for instance Figure 5.2A with Figure 5.2B).

Figure 5.2: Nodule number on *sunn* mutant plants. A, The average nodule number counted at 14 dpi on wild type (A17), *sunn-1*, *sunn-2*, *sunn-3*, and *sunn-4* plants (n between 41 and 46). B, The average nodule number at 14 dpi on the wild type main roots of *sunn-1*, *sunn-2*, *sunn-3*, and *sunn-4* mutant plants carrying additional 35S:*GUS* or 35S:*MtCLE13* transgenic roots (n between 19 and 37). Asterisks indicate statistically significant differences between the 35S:*GUS* and 35S:*MtCLE13* lines (p < 0.001, Regression analysis). Data and error bars represent means ± SE. Both experiments were repeated twice with comparable results. The total mean of both biological repeats is represented in the graph.
Next, we controlled the effect of ectopic expression of \textit{MtCLE13} on nodule number of non transformed wild type roots. In wild type plants, the ectopic expression of \textit{MtCLE13} results in an inhibition of nodulation (Mortier et al., 2010). For \textit{sunn-1} and \textit{sunn-2}, nodule numbers on wild type roots of plants carrying \textit{35S:MtCLE13} transgenic roots were reduced, as compared to control roots (\textit{35S:GUS}) (Figure 5.2B). For \textit{sunn-1}, nodule number decreased on average, from 55.80 ± 2.33 to 13.03 ± 4.14 nodules and for \textit{sunn-2} from 66.72 ± 6.01 to 43.14 ± 3.77 nodules (Figure 5.2B). The reduction in nodule number in a \textit{sunn-1} mutant background has been described previously (Mortier et al., 2010). No statistically significant differences in nodule number could be observed for \textit{sunn-3} (\textit{35S:GUS}: 25.84 ± 3.99; \textit{35S:MtCLE13}: 24.01 ± 3.39) and \textit{sunn-4} mutants (\textit{35S:GUS}: 35.15 ± 4.25; \textit{35S:MtCLE13}: 39.34 ± 3.40) (Figure 5.2B). Together, these data demonstrate that the inhibition of nodulation by \textit{MtCLE13} overexpression is indeed dependent on \textit{SUNN} and that differences in allele functionality exist between the different \textit{sunn} mutants.

5.2.3 Effect of knock-down of \textit{MtCLE12} and \textit{MtCLE13} expression on nodulation

To investigate the effect of knock-down of \textit{MtCLE12} and \textit{MtCLE13} on the nodulation process, we created RNAi hairpin constructs and generated composite plants using \textit{Agrobacterium rhizogenes} transformation.

For \textit{MtCLE12} we made use of the complete open reading frame (ORF) (246 bp), but mutated the start codon from ATG to ATA to avoid the production of MtCLE12 from the hairpin construct. Next, the expression level of \textit{MtCLE12} was measured by qRT-PCR analysis on cDNA samples of transgenic roots expressing either \textit{35S:GUS} (control) or a hairpin construct to induce knock-down of \textit{MtCLE12} (RNAi \textit{MtCLE12}) and from the same lines nodule numbers were counted at 21 days post inoculation (dpi). Of the 12 knock-down lines analyzed, 6 had a lower level of \textit{MtCLE12} expression than any of the control lines (Figure 5.3A). However, the lines with the lowest expression of \textit{MtCLE12} carried a nodule number comparable to the nodule numbers found on the control plants (Figure 5.3B).

Next, we investigated whether knock-down of \textit{MtCLE12} resulted in differences in nodule development. Therefore, the nodules of the lines which had the lowest level of \textit{MtCLE12} expression (RNAi \textit{MtCLE12} 2, 4 and 8) were sectioned and subjected to microscopic analysis. No differences in nodule development were observed between
MtCLE peptides control nodule number and nodule meristem activity

Figure 5.3: Effect of MtCLE12 knock-down on nodule number. A, qRT-PCR analysis of MtCLE12 expression in cDNA samples of transgenic roots expressing either 35S:GUS (control) or a MtCLE12 hairpin construct (RNAi MtCLE12). B, Nodule number at 21 dpi of the same lines as shown in A. Arrows indicate lines with lowest level of MtCLE12 expression. Data and error bars represent means ± SD.

nodules of control lines (Figure 5.4, A-C) and of RNAi MtCLE12 lines (Figure 5.4, D-F).

The experiments were repeated to analyze the effect of MtCLE13 knock-down on nodulation. To perform the experiment, a 188 bp long fragment was selected, which is located in the MtCLE13 ORF, but which neither includes the start codon nor the CLE domain sequence. The experiment was carried out in an identical way to what is described for the knock-down of MtCLE12. To check the expression levels, RNA was prepared from inoculated control and RNAi roots. These results show that there was no knock-down of MtCLE13.

As a high level of redundancy has previously been observed between CLE peptides with similar sequences, a hairpin construct was designed which should downregulate MtCLE12 as well as MtCLE13 (Strabala et al., 2006; Jun et al., 2008). To do so, the sequences used for the knock-down of MtCLE12 and MtCLE13 separately, were fused and subsequently cloned in one hairpin construct. Next, composite plants were inoculated with Sm2011 pBHR-mRFP and nodule number was assessed at 9 dpi. An average of 6.46 ± 0.77 nodules were counted on 35S:GUS control roots, while RNAi MtCLE12/13 plants bared on average 21.18 ± 1.56 nodules (p < 0.001, Regression analysis) (Figure 5.5).

To confirm the nodulation phenotype, the MtCLE12 and/or MtCLE13 expression
levels were measured and correlated with nodule number. Because MtCLE13 is specifically expressed during nodulation, a pool of 10 nodules of 35S:GUS (control) or MtCLE12/13 knock-down lines were taken. For MtCLE13, a lower level of expression was measured in all RNAi MtCLE12/13 lines as compared to the 35S:GUS lines (Figure 5.6A). The same result was obtained for the expression of MtCLE12, except in one sample (RNAi MtCLE12/13 2), in which an expression level was measured similar to the expression level in the control plants (Figure 5.6A). Comparing the expression levels with nodule numbers revealed that the only plant without downregulation of MtCLE12 (RNAi MtCLE12/13 2) has a nodule number (nn = 6) comparable to the nodule number on control plants (nn = 6 or 7), while the other RNAi MtCLE12/13 roots carried more nodules (nn = 18.8 ± 2.4 on average) (Figure 5.6B).
Next, we investigated whether the simultaneous knock-down of *MtCLE12* and *MtCLE13* resulted in a phenotype at the level of nodule development. Fourteen day-old nodules of RNAi lines which had a low level of *MtCLE12* and *MtCLE13* expression were sectioned and analyzed by light microscopy. Upon toluidine blue staining, senescing cells are more purple and non-senescing cells more blue (Van de Velde et al., 2006). In the nodules of RNAi *MtCLE12/13* lines senescence was observed in half of the infected cells (Figure 5.7, D and F), while almost no senescence was observed in control nodules (*35S:GUS*) of the same age (Figure 5.7, A and C). Via qRT-PCR analysis we measured the expression level of *MtHAP2-1* in the different cDNA samples. *MtHAP2-1* transcripts are most abundant in the nodule meristematic zone, and RNAi and *in situ* hybridization indicated a role during nodule organogenesis, probably via the control of the nodule meristem function (Combier et al., 2006). A lower level of *MtHAP2-1* was measured in most cDNA samples of RNAi *MtCLE12/13* lines (RNAi *MtCLE12/13* 1, 3, 4 and 5), indicative of a smaller meristem and thus of an abnormal nodule developmental process (Figure 5.6C).

In conclusion, the simultaneous knock-down of *MtCLE12* and *MtCLE13* results in an elevation of nodule number and a higher level of nodule senescence in infected cells of mature nodules.

Figure 5.5: Nodule number on transgenic roots carrying an RNAi hairpin construct knocking-down *MtCLE12* as well as *MtCLE13* (RNAi *MtCLE12/13*). Average nodule number on roots expressing either *35S:GUS* (control) or RNAi *MtCLE12/13* at 9 dpi (n between 35 and 41). Data and error bars represent means ± SE. Asterisk indicates a statistically significant difference in comparison to control roots (p < 0.001, Regression analysis). The experiment was repeated twice with comparable results. The total mean of both biological repeats is represented in the graph.
5.2.4 Analysis of the knock-down of \textit{MtCLE12} and \textit{MtCLE13} in a \textit{sunn-4} mutant background

Previous experiments have shown that the ectopic expression of \textit{MtCLE13} results in an inhibition of nodule formation and that this phenotype is dependent on \textit{SUNN} (Mortier et al., 2010). To check whether the hypernodulation phenotype observed during simultaneous knock-down of \textit{MtCLE12} and \textit{MtCLE13} interacts with that of \textit{sunn} mutants, the RNAi experiment was repeated in a \textit{sunn-4} mutant background. None of the analyzed knock-down lines had a nodule number that was more elevated than the nodule number of any of the control lines (\textit{35S:GUS}) (Figure 5.8B). More specifically, although downregulation of \textit{MtCLE12} and \textit{MtCLE13} was measured in some samples (RNAi \textit{MtCLE12/13} 4, 7, and 11) (Figure 5.8A), these low levels of expression could not be correlated with higher nodule numbers compared to nodule numbers found in control lines (Figure 5.8B). These results indicate that no enhancement of the hypernodulation phenotype is obtained by the simultaneous downregulation of \textit{MtCLE12} and \textit{MtCLE13} indicating that \textit{MtCLE12}, \textit{MtCLE13} and \textit{SUNN} act in the same pathway.
MtCLE12/MtCLE13 RNAi lines at 14 dpi. A, Longitudinal section through a nodule ectopically expressing 35S:GUS (control). B, Detail of meristem and infection zone of the nodule represented in A. C, Detail of the fixation zone of the nodule represented in A. Large infected cells that are totally filled with symbiosomes are observed (asterisks). D, Longitudinal section through a nodule ectopically expressing RNAi MtCLE12/MtCLE13. E, Detail of meristem and infection zone of the nodule represented in D. F, Detail of the fixation zone of the nodule represented in D. Senescence is observed in infected cells located proximal to the root (hashes). The sections were stained with toluidine blue. m, meristem; i, infection zone; f, fixation zone. Bars = 0.5 mm (A and D), 0.2 mm (B and E) and 50 μm (C and F).

5.3 Discussion

So far, CLE peptide signaling is related to the balance between cell proliferation and differentiation. During nodulation, cytokinin signaling is essential for the re-initiation of cortical cell division (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007). A role for MtCLE13 downstream of cytokinin in the control of nodule organ development has been suggested because MtCLE13 transcript expression is quickly induced by cytokinin and because MtCLE13 expression was dependent on the early NF signaling components (Mortier et al., 2010). In addition, by making use of promoter:GUS fusion, MtCLE13 was localized in the cortex, at the onset or even before visible cell divisions were observed, in a gradient with the highest expression in the inner cortex and a lower expression in the outer cortex (Mortier et al., 2010). Mi-
Figure 5.8: Analysis of the effect of knock-down of MtCLE12 and MtCLE13 on nodule number in a sunn-4 mutant background. A, qRT-PCR analysis of MtCLE12 and MtCLE13 expression in cDNA samples of transgenic roots expressing either 35S:GUS (control) or a hairpin construct to induce knock-down of both MtCLE12 and MtCLE13 (RNAi MtCLE12/13). Data and error bars represent means ± SD. B, Nodule number at 7 dpi on the roots of the plants mentioned in A. Arrows indicate lines with lowest level of both MtCLE12 and MtCLE13 expression.

cytokinin landscape of the root after rhizobial inoculation. The MtCLE13 expression pattern might also reflect the responsiveness of the M. truncatula root cells towards cytokinin. Expression was only observed in the cortical region of the elongation zone of the root, which is the only region of the root which is susceptible for nodulation. Hence, susceptibility to cytokinin might be one of the ways that controls the responsiveness of the root to nodule formation. To further link cytokinin signaling with MtCLE13 expression during nodulation, we investigated whether components of the early NF signaling pathway are essential for BAP-induced MtCLE13 expression. Interestingly, the expression was not dependent on NFP, DMI3, ERN1, NSP1 and NSP2, but was dependent on the putative transcriptional regulator NIN and the cytokinin receptor MtCRE1, for which a role during cytokinin signaling and nodulation has previously been described (Frugier et al., 2008). NIN was also shown to be essential downstream of cytokinin for primordium activation (Plet et al., 2011). Hence, the expression of MtCLE13 during nodulation is positioned in the corti-
MtCLE peptides control nodule number and nodule meristem activity

cal signaling cascade.

Previous results suggested the involvement of MtCLE13 in nodule organogenesis and in the control of nodule numbers, possibly via the AON mechanism. Accordingly, ectopic expression of group-III nodulation-related CLE peptides abolished nodulation by a long distance mechanism and this inhibition was dependent on the LRR-RLKs HAR1 and NARK in respectively, L. japonicus and soybean (Okamoto et al., 2009; Reid et al., 2011). However, for M. truncatula, the effect was only partially dependent on the orthologous LRR-RLK SUNN (Mortier et al., 2010). Because the mutant allele sunn-1, used in the experiments, was shown to be a weak allele, the experiments were repeated with three other available alleles, sunn-2, sunn-3 and sunn-4 (Schnabel et al., 2005, 2010). An initial experiment revealed that all four sunn mutants exhibit a supernodulation phenotype. Ectopic overexpression of MtCLE13 resulted in an inhibition of nodulation on the main, untransformed roots of sunn-1 and sunn-2 mutants, but not of sunn-3 and sunn-4 mutants. Sunn-1 and sunn-2 are caused by missense mutations, while sunn-3 and sunn-4 are nonsense mutations, suggesting that especially the sunn-4 allele, that is truncated between the signal peptide and the LRR domain, might be real a knock-out mutant (Schnabel et al., 2005). Phenotypic differences between different alleles of mutants in CLV1-like LRR-RLKs have been reported previously (Kawaguchi et al., 2002; Krusell et al., 2002; Nishimura et al., 2002a; Schnabel et al., 2005). Interestingly, our observations are opposite to the observations for CLV, from which nonsense mutations are much weaker than missense mutations (Dievart et al., 2003). Since SUNN probably belongs to a large receptor complex just like CLV1 and HAR1, these differences might illustrate differences in the relative contribution of orthologous components in different plant species. Together, these experiments indicate in accordance to the HAR1- and NARK-dependence for nodule inhibition by overexpression of LjCLE-RS1/LjCLE-RS2 and GmRIC1/GmRIC2, that MtCLE13 acts upstream of SUNN to inhibit nodulation and that, sunn-3 and sunn-4 are much more stronger alleles compared to sunn-1 and sunn-2. This is in agreement with Schnabel et al. (2010) who reported stronger nodulation-related phenotypes for sunn-4 than for sunn-1.

CLE peptides are acting redundantly and this hampers knock-out analysis. So far in Arabidopsis, only mutants in CLV3 and CLE40 resulted in phenotypic differences (Clark et al., 1995; Hobe et al., 2003). MtCLE12 and MtCLE13 might also act redundantly because they have overlapping expression patterns from the primordium stage on (Mortier et al., 2010). In agreement, knock-down of MtCLE12 did not result in
any phenotype, neither at the level of nodule number nor at the level of nodule development. On the other hand, simultaneous knock-down of \textit{MtCLE12} and \textit{MtCLE13} resulted in an increase in nodule number and the nodules underwent premature nodule senescence. In the results shown here, one line was found in which the expression of \textit{MtCLE13}, but not of \textit{MtCLE12}, was down-regulated. This line carried a normal number of nodules and hence might be preliminary evidence that the peptides act in a redundant way. RNAi of \textit{MtCLE13} will be repeated with new constructs in order to fully address this question.

\textbf{Figure 5.9:} Cytokinin activation of \textit{MtCLE13} was shown to be \textit{CRE1}- and \textit{NIN}-dependent, but \textit{NSP2}-independent, suggesting that two parallel pathways are activated in the root cortex by cytokinins. One pathway is required for the activation of \textit{NSP2} and \textit{ERN1}, resulting in cortical cell divisions, while the other pathway involves \textit{MtCLE13}, which is suggested to inhibit nodulation.

The enhanced number of nodules observed in the simultaneous knock-down of \textit{MtCLE12} and \textit{MtCLE13} expression confirms that they negatively regulate nodule number (Mortier \textit{et al.}, 2010). In addition, the phenotype was not observed in the \textit{sunm-4} supernodulation mutant, indicative that \textit{MtCLE12}, \textit{MtCLE13} and \textit{SUNN} might act in the same pathway. Although \textit{SUNN} is expressed in the vascular tissue of both roots and
shoots, grafting experiments have shown that SUNN acts in the shoot for AON. This has raised the hypothesis that the group-III CLE peptides from the incipient nodules, might travel to the shoot, to be bound by SUNN to induce AON. Currently, CLE peptides are known to act as short-distance molecules and although the long-distance hypothesis is appealing, it raises many questions as to how the CLE peptides might reach the vasculature to be transported. In wild type plants, nodule inhibition is associated with a reduction in polar auxin flow from the shoot to the root, and this is not observed anymore in sunn-1 mutants (van Noorden et al., 2006). In addition, sunn-1 mutants have a higher auxin flow from the shoot to the root before inoculation (van Noorden et al., 2006). This high auxin landscape might be the underlying cause of the high nodule number (van Noorden et al., 2006). In Arabidopsis, application of CLE peptides was shown to reduce auxin signaling in the vascular system (Whitford et al., 2008). Hence, it is possible that the nodulation-related CLE peptides act by suppressing the auxin levels in the root to inhibit nodulation and that the phenotype is absent in the sunn mutants because their effect is not strong enough to overrule the high auxin levels of the sunn mutants. Strikingly, the number of nodules observed on the MtCLE12/MtCLE13 RNAi lines was 10 times lower than the number observed on the sunn-4 mutants. These differences might be explained because other nodulation-induced CLE peptides influence AON or because knock-down does not completely abolish expression. It might also indicate that the nodulation-related CLE peptides are perceived locally in the root and act separately from the SUNN pathway in the shoot on the same process, e.g. auxin transport in the vasculature, to control nodule number. What the receptors are in the root is unknown, but root-located SUNN is a possible candidate.

Besides the higher nodule number, RNAi MtCLE12/MtCLE13 nodules also underwent premature senescence. This is an intriguing phenotype because the CLE peptides were shown to be expressed at the apical part of the nodule. However, this phenotype might be a consequence of an imbalance between cell division and differentiation leading to aberrant differentiation of the infected cells resulting in senescence. Indeed, expression analysis of the nodule meristem marker gene MtHAP2-1 in the nodules of RNAi MtCLE12/MtCLE13 lines, indicated consumption of the nodule meristem, confirming an imbalance between cell proliferation and differentiation. Interestingly, also in ENOD40 RNAi lines, nodule senescence was observed (Wan et al., 2007). Hence these results might indicate that in addition to being involved in AON, the CLE peptides might control the meristem of the nodule in agreement with their function during vascular development and in the meristematic tissues of shoots and roots.
Together, we have shown that during nodulation *MtCLE13* requires cytokinin signaling in the root. Cytokinin activation of *MtCLE13* was shown to be CRE1- and NIN-dependent, but NSP2- and ERN1-independent, suggesting that two parallel pathways are activated in the root cortex by cytokinins (Figure 5.9). One pathway is required for the activation of NSP2 and ERN1, resulting in the activation of cortical cell divisions (Plet et al., 2011), while the other pathway involves *MtCLE13*, which is suggested to inhibit nodulation. Indeed, RNAi analysis confirmed that at least the group-III peptides, MtCLE12 and MtCLE13, act to control nodule number and that the mechanism used, interacts with the pathway activated by the shoot-localized SUNN. In addition, RNAi analysis gave the first evidence that the nodulation-related CLE peptides might control the nodule meristem. Whether SUNN is required for this process is currently not known, but an interesting hypothesis to test.

5.4 Materials and methods

Biological material

M. truncatula Gaertn. cv. Jemalong A17 and J5 as well as nin-1, bit1-1, nsp1, nsp2, dmi3, nfp, cre1-1, sunn-1, sunn-2, sunn-3 and sunn-4 mutants (Catoira et al., 2000; Oldroyd and Long, 2003; Marsh et al., 2007; Middleton et al., 2007; Schnabel et al., 2005; Gonzalez-Rizzo et al., 2006) were grown and inoculated as described (Mergaert et al., 2003). *Sinorhizobium meliloti* 1021 pHC60-GFP (Cheng and Walker, 1998) and Sm2011 pBHR-mRFP (Smit et al., 2005) were grown at 28°C in yeast extract broth medium (Vervliet et al., 1975), supplemented with 10 mg L⁻¹ tetracycline.

For promoter:GUS analysis, a 2-kb region upstream of *MtCLE13* was isolated from genomic DNA based on the available genomic data. The promoter was fused to the *uidA* gene in pKm43GWRoIDC1 (Karimi et al., 2002). Primers used for amplification are presented in Table 5.1. For RNAi analysis, the selected sequences were obtained via PCR on nodule cDNA and cloned into the Gateway vector pDONR221. LR reaction of the latter vectors with pK7GWiWG2D (Karimi et al., 2002) resulted in the RNAi hairpin constructs. For the hairpin construct which should downregulate *MtCLE12* as well as *MtCLE13*, both individual sequences were fused by use of the USER enzyme (New England Biolabs, Ipswich, MA) prior to Gateway cloning.

MtCLE peptides control nodule number and nodule meristem activity

Table 5.1: Primers used in the analyses.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>qRT-PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MtCLE4</td>
<td>AA TTTCACAAGTTCTGCTTCA</td>
<td>TCGC TGGCACACCTCTCTTGTCTTCC</td>
</tr>
<tr>
<td>MtCLE12</td>
<td>CAACGTCTCTTGCA TGAGTTAA</td>
<td>TGG ACCTGGTGAAAGCCTA TCTCCTG</td>
</tr>
<tr>
<td>MtCLE13</td>
<td>CCGAAGCCTCTCTACAGAAACTACG</td>
<td>TCTTGGTGTTGATCTTCCATTATGC</td>
</tr>
<tr>
<td>RNAi MtCLE12</td>
<td>AAACTCACACA TCTTGTTTCG</td>
<td>CGAGGA TTTTGGGGTGA TTTTGTTATGG</td>
</tr>
<tr>
<td>RNAi MtCLE13</td>
<td>TTTTGGGGTGA TTTTGTTA</td>
<td>TGG GGAGAAGGAA TTAAA TACCACTAC</td>
</tr>
<tr>
<td>40S</td>
<td>GCCATTTGTTCCAAGTTTGTATGCTG</td>
<td>TTTCTTACCAACTTCAAAAAACCCG</td>
</tr>
<tr>
<td>Gateway cloning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>promoter-MtCLE13</td>
<td>TCA TTTGCTAGTTGAGAACGGCG</td>
<td>GGGGATGGTTGATTTTAATC</td>
</tr>
<tr>
<td>RNAi MtCLE12</td>
<td>ATAGAGAATTTCAAAATAAGTGCC</td>
<td>TTATGTATATATGGTTGGTGCC</td>
</tr>
<tr>
<td>RNAi MtCLE13</td>
<td>TCCTGAGATATCCTAACTTGTGTTT</td>
<td>GGGGTATACAAACGATCA</td>
</tr>
</tbody>
</table>

For the analysis of temporal expression during nodulation, nodules were harvested 4 to 10 dpi from plants grown in pouches, watered with nitrogen-poor SOLi medium, and inoculated with Sm1021 pHc60-GFP. Infection threads were visible from 4 dpi on, nodule primordia at 6 dpi, and small nodules at 8 dpi. Two days later, at 10 dpi, slightly bigger nodules were observed. Tissue was collected by visualizing the green fluorescent bacteria under a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany) equipped with a blue-light source and a Leica GFP Plus filter set (λex = 480/40; λem = 510 nm LP barrier filter). The zones I of uninoculated roots were isolated at the same developmental stage as the 4 dpi stage.

RNA extraction, cDNA synthesis, and qRT-PCR analysis

Total RNA was isolated with the RNeasy Plant mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. After a DNase treatment, the samples were purified through NH4Ac (5 M) precipitation, quality controlled, and quantified with a Nanodrop spectrophotometer (Isogen, Hackensack, NJ). RNA (2 μg) was used for cDNA synthesis with the SuperScript Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA). The samples were diluted 50 times and stored at -20°C until further use. The qRT-PCR experiments were done on a LightCycler 480 (Roche Diagnostics, Brussels, Belgium) and SYBR Green was used for detection. All reactions were done in triplicate and averaged. The total reaction volume was 5 μl (2.5 μl master mix, 0.25 μl of each primer [5 μM] and 2 μl cDNA). Cycle threshold (C_T) values were obtained with the accompanying software and data were analyzed with the 2−ΔΔC_T method (Livak
and Schmittgen, 2001). The relative expression was normalized against the constitutively expressed 40S ribosomal S8 protein (TC100533, MGI). Primers used (Table 5.1 were unique in the MGI version 9.0 and the Medicago EST Navigation System database (Journet et al., 2002). Each experiment was repeated at least two times with independent biological tissue.

In vitro application of cytokinin

For analysis of GUS activity, cytokinins \(10^{-7} \text{ M BAP}\) were diluted in dimethylsulfoxide and supplemented to the medium of 1-month-old, \(pMtCLE13\cdot\text{GUS}\) transformed and in vitro-grown plants. As a control, plants were grown without supplemented hormones. The plants were cultured at 25°C, 16-h photoperiod, and 70 μE m\(^{-2}\)m\(^{-1}\) light intensity per day. After 24 h of incubation, the roots of approximately 18 plants were harvested and GUS activity was analysed. The experiment was repeated twice with comparable results. For qRT-PCR analysis, cytokinins \(10^{-7} \text{ BAP}\) were diluted in dimethylsulfoxide and supplemented to the medium of 7-day-old, in vitro-grown plants. As a control, plants were grown without supplemented hormones. The growth conditions of the seedlings were the same as above. After 24 h of incubation, the roots of approximately 18 plants were harvested and analyzed by qRT-PCR analysis. The experiment was repeated twice with comparable results.

Agrobacterium rhizogenes-mediated transgenic root transformation

The protocol was adapted from Boisson-Dernier et al. (2001) and performed as described by Mortier et al. (2010).

Histochemical localization of GUS activity and Technovit embedding

GUS activity in cotransformed roots of \(pMtCLE13\cdot\text{GUS}\) plants was analyzed using 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid as substrate (Van den Eede et al., 1992). Roots were vacuum infiltrated during 20 min and subsequently incubated in GUS buffer at 37°C. Incubation lasted 4 h. After staining, roots and root nodule primordia were fixed, dehydrated, embedded with the Technovit 7100 kit (Herqueus Kulzer, Wehrheim, Germany), according to the manufacturer’s instructions, and sectioning with a microtome (Reichert-Jung, Nussloch, Germany). The 3-μm thick sections were
MtCLE peptides control nodule number and nodule meristem activity

mounted on coated slides (Sigma-Aldrich, St. Louis, MO). For tissue-specific staining, sections were submerged in a 0.05 % (w/v) ruthenium red solution (Sigma-Aldrich, St. Louis, MO), washed in distilled water, and dried. Finally, sections were mounted with Depex (BDH Chemicals, Poole, England). Photographs were taken with a Diaplan microscope equipped with bright- and dark-field optics (Leitz, Wetzlar, Germany). The sections made during knock-down analysis were submerged in a 0.5 % toluidine blue solution.

Statistical analysis

The following generalized linear model (GLM) \(Y_{ijk} = \mu \ + \ \text{genotype}_j \ + \ \text{experiment}_k \ + \ \text{error}_{ijk} \) (Regression analysis) was fitted to the nodule number, partitioning phenotypic variation into fixed genotype and experiment effects and random error effects. \(Y_{ijk} \) is the phenotype of the \(i \)-th plant from the genotype \(j \) analyzed in experiment \(k \); \(\mu \) is the overall mean of the phenotypes obtained for all lines considered. Because the data has a Poisson distribution, a logarithm base e link function was incorporated. All analyses were done by means of the GenStat software\(^{15}\).

Acknowledgements

We thank Florian Frugier (ISV CNRS, Gif-sur-Yvette) and Julia Frugoli (Clemson University, South Carolina) for the \textit{Mtcre1-1} mutant and \textit{sunn} mutants, respectively, and our colleagues Annick De Keyser and Christa Verplancke for skillful technical assistance and Marnik Vuylsteke for help with the statistical analysis. S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.

Authors contributions

The main part of this work was performed by V. Mortier. S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.

\(^{15}\)http://www.vsni.co.uk/software/genstat/
Insight in gain-of-function of two nodulation-related CLE genes in *M. truncatula*

Virginie Mortier, Christa Verplancke, Marcelle Holsters and Sofie Goormachtig

In preparation
Chapter 6

Abstract

CLE peptides are known to be involved in determinate and indeterminate nodulation. Ectopic overexpression of certain members of the CLE family, amongst which Mt-CLE12 and MtCLE13 of Medicago truncatula, results in a local and systemic inhibition of nodulation. Until now, little was known about the molecular pathways and hormonal/physiological processes activated by the nodulation-related CLE genes. Via qRT-PCR analysis and micro-array analysis of the roots of chimeric M. truncatula plants, we attempted to elucidate the effect of ectopic expression of MtCLE13 on the transcriptome. Moreover, to have a more complete view of the gain-of-function phenotypes of 35S:MtCLE12/13, morphological changes were assessed on stable transformed plants. Here, we report that ectopic expression of MtCLE12 and Mt-CLE13 results in inhibition of nodulation and in a slight reduction of root length. In addition, we provide preliminary evidence that the MtCLE13 might act locally and systemically via the downregulation of the Nod factor receptor gene NFP. Finally, we observed that MtCLE13 mRNAs can spread systemically in the root system.

6.1 Introduction

Many plants are dependent on symbiotic interactions with bacteria or fungi for their survival on nutrient poor soils. The majority of land plants establish an intracellular root symbiosis with arbuscular mycorrhizal fungi, resulting in an improved water and phosphate uptake (Harrison et al., 1999; Kistner and Parniske, 2002; Hata et al., 2010). In nitrogen-limited conditions, many leguminous plants interact with rhizobia, resulting in the formation of nodules, small, root-based organs in which the bacteria fix nitrogen for the plant (Geurts and Bisseling, 2002; Ferguson et al., 2010). In return, the legumes provide the rhizobia with carbon and a protective niche. During both arbuscular mycorrhization and nodulation, the microsymbionts secrete lipochito-oligosaccharides that are perceived by the host and activate a common signaling cascade involving, amongst others, the ‘common SYMBIOSIS (SYM) genes’ DOESN’T MAKE INFECTIONS1 (DMI1), DMI2 and DMI3 and Ca²⁺ spiking (Limpens et al., 2003; Ferguson et al., 2010; Maillet et al., 2011). For a detailed overview of the Nod Factor (NF) signaling pathway we refer to Chapter 3. A difference in calcium spike frequency is observed during nodulation and arbuscular mycorrhization and is suggested to provide enough flexibility to activate either process (Kosuta et al., 2008).
Insight in the gain-of-function of MtCLE12 and MtCLE13

As for most plant developmental processes, nodulation is governed by phytohormone signals, which may act antagonistically or synergistically in a concentration-dependent manner. The phytohormones auxin, cytokinin, gibberellin, abscissic acid (ABA), ethylene and jasmonic acid (JA) are suggested to be involved in the initiation and coordination of the nodulation process (Ferguson and Mathesius, 2003; Hirsch and Fang, 1994). Downstream of NF perception, cytokinin signaling is activated in the cortex for nodule organogenesis (Frugier et al., 2008; Crespi and Frugier, 2008; Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007; Lortet et al., 2001; Dehio and de Bruijn, 1992; Bauer et al., 1996; Hirsch and LaRue, 1997). There, cytokinin is perceived by the histidine kinase cytokinin receptor CYTOKININ RESPONSE1 (CRE1) (Gonzalez-Rizzo et al., 2006; Eckardt, 2006). Signaling via the type-A RESPONSE REGULATOR4 (RR4) and the type-B RR1 results in the activation of the transcription factors NODULATION SIGNALING PATHWAY2 (NSP2), ETHYLENE-RESPONSIVE BINDING DOMAIN FACTOR REQUIRED FOR NODULATION1 (ERN1), and NODULE INCEPTION (NIN) (Tirichine et al., 2007; Frugier et al., 2008; Plet et al., 2011). These transcription factors are involved in the activation of early nodulation (ENOD) genes to induce cortical cell divisions (Gonzalez-Rizzo et al., 2006). Cytokinin signaling through the CRE1 pathway also regulates the expression and accumulation of the auxin efflux carrier PIN proteins, leading to an inhibition of polar auxin transport (PAT), which is suggested to be crucial for nodule primordium formation in indeterminate nodules (Plet et al., 2011; van Noorden et al., 2006; Mathesius et al., 1998; Boot et al., 1999; Ferguson and Mathesius, 2003; Wasson et al., 2006).

PAT is a highly regulated cell-to-cell transport and involves asymmetrically positioned, cell membrane-localized auxin influx carrier proteins (AUXs) and PIN auxin efflux proteins (Huo et al., 2006; Grunewald and Friml, 2010). Presumably as a result of PAT inhibition, nodulation on M. truncatula is associated with auxin accumulation in the root cortex at the infection site (Mathesius et al., 1998; Boot et al., 1999; Ferguson and Mathesius, 2003; van Noorden et al., 2006; Wasson et al., 2006).

The role of gibberellins, abscissic acid (ABA) and jasmonates during nodulation is not so clear yet. Gibberellins would play a positive role during nodulation because a mutation in a gibberellin biosynthetic gene results in a reduction in nodule number, while the exogenous application of gibberellins rescues the phenotype by restoring the nodule number (Kawaguchi et al., 1996; Ferguson et al., 2005). Abscisic acid (ABA) is proposed to act negatively on nodulation because it interferes with NF signaling and at the same time, might suppress cytokinin signaling (Phillips, 1971; Bano and Harper,
Also ethylene inhibits nodulation, by suppressing the NF signaling pathway, by restricting infection thread formation and by inhibiting nodule primordium formation along the protophloem poles (Penmetsa and Cook, 1997; Heidstra et al., 1997). Although the exogenous application of JA or methyl-JA (MeJA) has been shown to affect *M. truncatula* nodulation (Miwa et al., 2006; Sun et al., 2006), JAs probably do not to act locally in the root, but might be involved in autoregulation of nodulation (AON) (Zdyb et al., 2011). AON involves a long-distance feedback mechanism, whereby early infection events act to suppress excessive nodule development. Central in this response is a shoot-acting leucine-rich-repeat receptor-like-kinase (LRR-RLK), called SUPER NUMERIC NODULES (MtSUNN), HYPERNODULATION ABERRANT ROOT FORMATION1 (LjHAR1), NODULE AUTOREGULATION RECEPTOR KINASE (GmNARK) or SYMBIOSIS29 (PsSYM29) (Kossak and Bohlool, 1984; Carroll et al., 1985a,b; Delves et al., 1986; Pierce and Bauer, 1983; Nutman, 1952). Transcript profiling analysis of leaf material from either inoculated or uninoculated wild type and *nark* soybean plants revealed a differential expression for JA biosynthesis and response genes in a systemic, *NARK*-reliant and rhizobia-dependent manner (Kinkema and Gresshoff, 2008; Hause and Schaarschmidt, 2009). Hence, a shoot-specific downregulation of JA response genes by rhizobial inoculation is suggested to mediate AON, at least in legumes developing determinate nodules (Kinkema and Gresshoff, 2008; Hause and Schaarschmidt, 2009). The high level of JA measured in the AON mutants, *har1* and *nark*, further supports this hypothesis, as well as the fact that MeJA application to the shoots of *L. japonicus* plants diminishes nodulation (Nakagawa and Kawaguchi, 2006; Seo et al., 2007; Kinkema and Gresshoff, 2008). In addition, AON would also involve an inhibition of long-distance PAT from the shoots to the roots in *M. trunculata*, limiting auxin accumulation at infection sites and likewise reducing additional nodule formation (Thimann, 1937; Morris and Thomas, 1978; Mathesius et al., 1998; van Noorden et al., 2006; Prayitno et al., 2006).

To make the nodule organ, the NF signaling pathway activates the cell cycle in the cortical cells, resulting in both nodule primordia development and pre-infection thread formation, cytoplasmic bridges through which the infection threads grow, that guide the bacteria towards the recipient cells (Yang et al., 1994; van Spronsen et al., 2001; Jones et al., 2007). Mature indeterminate nodules, such as occurring on *M. truncatula*, are characterized by a persistent meristem, which continuously provides new cells for bacterial internalization (Ferguson et al., 2010). Several peptide hormones, amongst
Insight in the gain-of-function of \textit{MtCLE12} and \textit{MtCLE13}

which CLAVATA3/embryo surrounding region related peptides (CLV3/ESR or CLE), are involved during nodulation (Okamoto \textit{et al}., 2009; Mortier \textit{et al}., 2010, 2011; Reid \textit{et al}., 2011). CLE peptides are short distance signaling peptides, which are 12 to 13 amino acids long and derived from the C-terminal region of pre-proproteins (Mitchum \textit{et al}., 2008; Oelkers \textit{et al}., 2008). Their function is mostly associated with balancing cell proliferation and differentiation during plant development, more specifically during shoot apical meristem (SAM) and root apical meristem (RAM) homeostasis and tracheary element differentiation (Fletcher \textit{et al}., 1999; Rojo \textit{et al}., 2002; Hobe \textit{et al}., 2003; Kondo \textit{et al}., 2006; Mortier \textit{et al}., 2010). Functional redundancy between CLE ligands has been suggested, as ectopic expression of CLE genes or exogenous application of CLE peptides, indicated that structurally related CLE peptides often cause similar and pleiotropic phenotypes, such as increased rosette growth, root growth inhibition or stimulation, dwarfing, SAM arrest, lack of apical dominance and asymmetric leaf development (Fiers \textit{et al}., 2005; Strabala \textit{et al}., 2006; Ni and Clark, 2006; Kinoshita \textit{et al}., 2007; Jun \textit{et al}., 2008). CLE peptides were also proposed to control the cell division and differentiation processes during nodule formation (Mortier \textit{et al}., 2010). In addition, a group of structurally related CLE peptides, here designated the AON peptides, might control nodule number and activate the AON process (Okamoto \textit{et al}., 2009; Mortier \textit{et al}., 2010, 2011; Reid \textit{et al}., 2011). Because SUNN and its orthologs in other legumes are highly similar to the CLV3 peptide receptor CLV1, it was suggested that the root-expressed AON CLE peptides are the ligands for SUNN in the shoot to activate AON (Shiu and Bleecker, 2001; Okamoto \textit{et al}., 2009; Krusell \textit{et al}., 2002; Nishimura \textit{et al}., 2002a; Searle \textit{et al}., 2003; Schnabel \textit{et al}., 2005). In \textit{M. truncatula}, two CLE genes, \textit{MtCLE12} and \textit{MtCLE13}, were investigated in more detail (Mortier \textit{et al}., 2010). Tissue specific expression analysis revealed that the expression of both genes is linked to proliferation and differentiation during nodulation (Mortier \textit{et al}., 2010). Ectopic expression of \textit{MtCLE12} and/or \textit{MtCLE13}, via \textit{Agrobacterium rhizogenes} mediated hairy root transformation, resulted in a SUNN-dependent inhibition of nodulation, that involved long distance signaling (Mortier \textit{et al}., 2010) (Chapter 4 and 5). The inhibition was suggested to occur at the level of the NF signal transduction pathway, as the early nodulation gene ENOD11 was no longer activated upon rhizobial inoculation. In addition, elongated petioles were observed on composite plants with roots ectopically expressing \textit{MtCLE12} and/or \textit{MtCLE13}, suggesting long-distance communication between root and shoot.

To further analyze the local and systemic molecular pathways or hormonal/physi-
ological processes that are activated by MtCLE12 or MtCLE13, the effect on the transcriptome of ectopic MtCLE13 expression was investigated by qRT-PCR analysis and micro-arrays. Moreover, morphological changes were assessed in stable transformed gain-of-function plants, as these are more suitable for the analysis of effects on root hair deformations, than the previously used A. rhizogenes-mediated transformants (Mortier et al., 2010). Here, we report that ectopic expression of MtCLE12 and MtCLE13 results in inhibition of nodulation and in a slight reduction of root length. In addition, we provide preliminary evidence that the AON peptides might act via the downregulation of genes involved in nodule formation among which the gene encoding the NF receptor NFP.

6.2 Results

6.2.1 Effect of ectopic expression of MtCLE12 and MtCLE13 on nodule development in stable transgenic lines

Composite plants carrying transgenic roots ectopically expressing MtCLE12 or MtCLE13 were made previously by A. rhizogenes transformation (Mortier et al., 2010). These plants showed an elongation of the wild type petioles and an inhibition of nodulation on the transgenic roots as well as on the wild type roots (Mortier et al., 2010). However, it was impossible to determine whether the inhibition of nodulation was caused by aberrant root hair morphology, because root hair deformations are difficult to assess on A. rhizogenes-transformed plants. As an alternative, stable transgenic plants were made by A. tumefaciens transformation (see Materials and Methods page 148). After Southern hybridization and in vitro culture, seeds of two independent 35S:MtCLE12 lines (MtCLE12-1 and MtCLE12-14) and one 35S:MtCLE13 line (MtCLE13-13) were selected for further analysis. 35S:LUCIFERASE-1 (35S:LUC-1) was used as a control. QRT-PCR analysis confirmed the ectopic expression of the respective constructs (Figure 6.1).

To control the effectiveness of the constructs and the transformation event, the nodulation phenotype of these transgenic lines was first investigated and compared to the results of the A. rhizogenes-transformed plants (Mortier et al., 2010). Roots of 35S:LUC-1, 35S:MtCLE12-1, 35S:MtCLE12-14 and 35S:MtCLE13-13 stable transformants were infected with Sm2011 pBHR-mRFP and nodule number was assessed at 7 days post inoculation (dpi). Nodulation of control plants (35S:LUC-1) resulted on aver-
Figure 6.1: MtCLE expression in the roots of MtCLE transgenic lines. A, Relative expression of MtCLE12. Ectopic expression is observed in the 35S:MtCLE12-1 and 35S:MtCLE12-14 lines. B, Relative expression of MtCLE13. Ectopic expression is observed in the 35S:MtCLE13-13 line. 35S:LUC-1 is included as a control line. Data and error bars represent means ± SD.

age in 4.18 ± 0.18 nodules per root, while no nodules were detected on 35S:MtCLE12-1, 35S:MtCLE12-14 and 35S:MtCLE13-13 plants, similar to what was reported for chimeric plants (p < 0.001, Regression analysis) (Figure 6.2A) (Mortier et al., 2010). Previous experiments have indicated that the ectopic expression of MtCLE13 inhibits epidermal responses during nodulation (Mortier et al., 2010). In agreement, no root hair deformations were observed after inoculation. Fluorescence microscopy revealed neither infection threads, nor microcolony formation. Because changes in root hair structure might cause nodulation defects (reviewed by Gage (2004)), we analyzed the structure of the root hairs. Root hairs of 15 plants of each line, grown on plates, were analyzed. No differences in root hair formation were observed (Figure 6.2B). We next analyzed whether cortical nodulation markers might be activated upon inoculation of 35S:MtCLE12 or 35S:MtCLE13 plants. The expression level of NIN and MtRR4 was measured at 6 dpi in wild type roots and roots of the stabile transformant 35S:MtCLE13-13. The expression level in non-inoculated wild type roots was taken as a reference. In wild type plants, an upregulation during nodulation was observed for both genes, but this upregulation was not observed in 35S:MtCLE13-13 plants (Figure 6.2, C-D). Hence, ectopic expression of MtCLE13 interferes with activation of the cortical marker genes. Both epidermal and cortical signaling is inhibited by ectopic overexpression of MtCLE13.
Figure 6.2: Inhibition of nodulation in 35S:MtCLE12-1, 35S:MtCLE12-14 and 35S:MtCLE13-13 stable transformants. A. Average nodule number on the roots of stable transformants expressing 35S:LUC-1, 35S:MtCLE12-1, 35S:MtCLE12-14 or 35S:MtCLE13-13 at 7 dpi (n = 18-73). Asterisks indicate statistically significant differences in comparison to 35S:LUC-1 stable transformants (p < 0.001, Regression analysis). Data and error bars represent means ± SE. The total mean of two biological repeats is represented in the graph. B. Root hairs located close to the root tip of stable transformants expressing 35S:LUC-1, 35S:MtCLE12-1, 35S:MtCLE12-14 or 35S:MtCLE13-13. C and D. Relative expression of the cortical marker genes NIN (C) and MtRR4 (D) in 35S:MtCLE13-13 stable transformants during nodulation. Expression analysis by qRT-PCR on cDNA samples of zone I root tissues of wild type plants (A17) and 35S:MtCLE13-13 transgenic plants before inoculation (NI) and at 6 days post inoculation (6 dpi). Data and error bars represent means ± SD.

6.2.2 Effect of ectopic expression of MtCLE12 and MtCLE13 on root development, petiole length and leaf area

To investigate the effect of ectopic expression of MtCLE12 and MtCLE13 on root growth, the root length of 7-day-old plants was calculated with ImageJ\(^\text{16}\). The root

\(^{16}\)http://rsb.info.nih.gov/ij/
length of control plants (35S:LUC-1) was on average 11.84 ± 0.83 cm, while the roots of 35S:MtCLE12-1, 35S:MtCLE12-14 and 35S:MtCLE13-13 plants were respectively 9.77 ± 0.99 cm, 9.54 ± 0.77 cm and 7.01 ± 0.73 cm (Figure 6.3A). Hence, the roots of the 35S:MtCLE12 and 35S:MtCLE13 plants are statistically shorter than those of the control plants (p < 0.05, ANOVA). Next, we analyzed whether the reduction in root length is accompanied by a difference in root diameter or root structure. Therefore, root material was harvested for sectioning 1 to 2 cm above the root tips of these stable transformed plants. No differences were observed between the root sections of 35S:MtCLE12 or 35S:MtCLE13 plants, as compared to root sections of control plants (35S:LUC-1) (Figure 6.3D).

Composite plants with transgenic roots ectopically overexpressing either MtCLE12 and/or MtCLE13 have elongated petioles as compared to control plants (35S:GUS) (Mortier et al., 2010). To analyze whether this phenotype is observed on stable transgenic plants, the average petiole length of the 4th leaflet of 35S:LUC-1, 35S:MtCLE12-1, 35S:MtCLE12-14 and 35S:MtCLE13-13 stable transformants was assessed after 1 month of growth. The average petiole length of control plants (35S:LUC-1) was on average 5.06 ± 0.20 cm long (Figure 6.3B). No statistically significant different values were measured for 35S:MtCLE12-1 (5.10 ± 0.20 cm), 35S:MtCLE12-14 (4.65 ± 0.19 cm) or 35S:MtCLE13-13 (4.78 ± 0.21 cm) (Figure 6.3B).

During the same experiment, the total leaf area of all leaflets present on 1-month-old plants was measured. Again, no statistically relevant differences were seen between control plants and MtCLE overexpressing lines (Figure 6.3C). The total leaf area calculated for 35S:LUC-1 plants is 9.71 ± 0.48 cm², for 35S:MtCLE12-1 plants 8.45 ± 0.48 cm², for 35S:MtCLE12-14 plants 8.18 ± 0.46 cm² and for 35S:MtCLE13-13 plants 8.56 ± 0.50 cm² (Figure 6.3C).

To conclude, the ectopic expression of MtCLE12 or MtCLE13 in stable transformed lines affected nodulation and root growth, but had no effect on leaf and petiole growth.

6.2.3 Effect of ectopic expression of MtCLE12 and MtCLE13 on mycorrhization

Next, the effect of ectopic expression of MtCLE12 and/or MtCLE13 on mycorrhization was investigated (in collaboration with Bettina Hause, Germany). Therefore, 6 plants of each line (35S:LUC-1, 35S:MtCLE12-1, 35S:MtCLE12-14 and 35S:MtCLE13-13) were inoculated with Glomus intraradices and analyzed 3 weeks later. All plants
Figure 6.3: Root and shoot analysis of 35S:LUC-1, 35S:MtCLE12-1, 35S:MtCLE12-14, and 35S:MtCLE13-13 stable transformed *M. truncatula* plants. A, Average root length. The plants were grown for 7 days in pouches, after which the average root lengths were calculated with ImageJ (n = 20-54). Asterisks indicate statistically significant differences in comparison to 35S:LUC-1 stable transformants (p < 0.05, ANOVA). B, Average petiole length of the 4th leaflet. C, Total leaf area. For the analyses represented in B and C, plants were grown for 1 month in perlite, after which the average petiole length and the total leaf area were calculated with ImageJ (n = 13). The small differences observed in the graphs are not statistically relevant (p > 0.05, ANOVA). A-C, Data and error bars represent means ± SE. All experiments were repeated at least twice with comparable results. The total mean of the different repeats are represented in the graphs. D, Transversal root sections of 35S:LUC-1, 35S:MtCLE12-1, 35S:MtCLE12-14 and 35S:MtCLE13-13 stable transformed *M. truncatula* plants. Sections were made of root material harvested 1 to 2 cm above the root tip and were stained with toluidine blue. Bars = 0.5 mm.
showed mycorrhization with a similar degree of colonization between the different lines (Figure 6.4). Large differences were observed between individual plants of 35S: MtCLE12-14 and 35S: MtCLE13-13 resulting in large error bars.

![Figure 6.4](image)

Figure 6.4: Effect of the ectopic expression of MtCLE12 or MtCLE13 on mycorrhization. The mycorrhization rate was measured on 35S:LUC-1 (control), 35S: MtCLE12-1, 35S: MtCLE12-14 and 35S: MtCLE13-13 stable transformants, 3 weeks after inoculation (n = 6; 1 biological repeat). Data and error bars represent means ± SD.

6.2.4 A gene-specific approach to study effects of 35S: MtCLE13

So far, no molecular mechanisms are known that are controlled by MtCLE12 or MtCLE13. As initial analysis, a gene specific approach was taken and the expression level of a selection of marker genes, which were shown in literature to be involved in nodulation, in AON or in different hormone treatments, was measured by qRT-PCR analysis. Roots of approximately 15 chimeric plants with 35S: GUS (control) or 35S: MtCLE13 transgenic roots were pooled for cDNA preparation. The experiment was repeated 4 times on biologically independent material, and only those genes which are at least 2 fold up- or downregulated in the four experiments were taken as relevant. The list of all markers tested is indicated in Table 6.1.

First, we controlled whether the expression of the early signaling components MtLYR3, NFP, NSP1, NSP2, ERN1, DMI1, DMI2, DMI3, NIN and ENOD11 was changed upon ectopic expression of MtCLE13. For NIN, ENOD11, DMI1 and DMI2, no expression was measured in any of the tested samples. The remaining genes were not differentially regulated by the ectopic expression of MtCLE13 as compared to the con-
Table 6.1: List of all marker genes that were measured in 35S:MtCLE13 overexpression lines by qRT-PCR analysis.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Annotation</th>
<th>Hormonal responses</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early signaling components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYR3</td>
<td>MdD20757</td>
<td>AUX-responsive protein IAA14</td>
<td>TC125759</td>
</tr>
<tr>
<td>NFP</td>
<td>DQ496250</td>
<td>Auxin response factor 3</td>
<td>TC125184</td>
</tr>
<tr>
<td>NSP1</td>
<td>AJ972478</td>
<td>PIN1</td>
<td>AY115836</td>
</tr>
<tr>
<td>NSP2</td>
<td>AJ832138</td>
<td>PIN2</td>
<td>AY115837</td>
</tr>
<tr>
<td>ERN</td>
<td>EF396330</td>
<td>LAX1</td>
<td>AY115841</td>
</tr>
<tr>
<td>DMI1</td>
<td>AY497771</td>
<td>LAX2</td>
<td>AY115843</td>
</tr>
<tr>
<td>DMI2</td>
<td>TC112575</td>
<td>LAX3</td>
<td>AY115842</td>
</tr>
<tr>
<td>DMI3</td>
<td>AY496049</td>
<td>Isoflavone reductase homolog 1</td>
<td>TC118130</td>
</tr>
<tr>
<td>NIN</td>
<td>AM774003</td>
<td>Naringenin-CHS 2</td>
<td>TC119414</td>
</tr>
<tr>
<td>ENOD11</td>
<td>AJ297721</td>
<td>CRE1</td>
<td>TC109250</td>
</tr>
<tr>
<td></td>
<td>MtRR4</td>
<td></td>
<td>TC103991</td>
</tr>
<tr>
<td>Cell cycle regulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MtcycB1</td>
<td>AC169076</td>
<td>Cytokinin-specific binding protein</td>
<td>TC124213</td>
</tr>
<tr>
<td>MtcycD3</td>
<td>TC122361</td>
<td>MiPT</td>
<td>TC123012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cytokinin synthase</td>
<td>TC112199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gibberellin-regulated protein</td>
<td>TC138046</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABA-activated protein kinase</td>
<td>TC108117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylene-responsive element-binding factor 3</td>
<td>TC136350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myc2-like protein</td>
<td>TC126060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Putative cytochrome P450</td>
<td>TC114056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zym containing protein</td>
<td>TC114737</td>
</tr>
</tbody>
</table>

trol plants (35S:GUS) (data not shown), except for NFP, for which a downregulation was observed (Figure 6.5).

In a next step, we analyzed whether hormonal responses were affected by ectopic expression of 35S:MtCLE13. There is ample evidence that the classical hormones auxin, cytokinin, abscissic acid, gibberelin, ethylene, and jasmonic acid are involved in the initiation and coordination of the nodulation process (Ferguson and Mathesius, 2003; Hirsch and Fang, 1994). We therefore looked for markers of the different hormones available in literature and controlled their expression in our analysis. The expression levels of two auxin responsive genes, AUX responsive protein indole-3-acetic acid inducible14 (IAA14) and auxin response factor 3 were measured (Fei and Vessey, 2009), as well as two PIN (PIN1 and PIN2) and three LAX (LAX1, LAX2 and LAX3) genes, which were shown to be involved in nodulation, were included (de Billy et al., 2001; Schnabel and Frugoli, 2004). None of these markers showed a differential regulation upon MtCLE13 overexpression. In addition, two genes were selected which might be involved in the synthesis of flavonoids that possibly influence auxin transport, an isoflavone reductase homolog 1 and a naringenin-chalcone synthase (CHS) (Wasson et al., 2006, 2009). Also no change in expression of those
Insight in the gain-of-function of *MtCLE12* and *MtCLE13* genes was caused by ectopic overexpression of *MtCLE13*. Next, we analyzed the expression levels of five cytokinin-responsive genes: the cytokinin signaling genes: *CRE1*, *MtRR4* and a cytokinin-specific binding protein; and the cytokinin biosynthesis genes: isopentenyltransferase (*MtIPT*) and a cytokinin synthase (Fei and Vessey, 2009). No change in expression of those genes was seen after overexpression. We also analyzed different markers for the other hormones: gibberellins, abscissic acid, ethylene and jasmonic acid. Here again, no changes in expression level were observed. Finally, since CLE peptides interfere with cell division and differentiation, we controlled whether there was an influence on cell cycle markers. The closest *M. truncatula* homologs of *cyclinB1* (*cycB1*) and *cycD3* were retrieved by tBLASTx analysis (*Mt-cycB1*: AC169076.2, NCBI; *Mt-cycD3*: TC122361, TIGR) and included in the qRT-PCR analysis. The expression level of both markers was similar in the 35S:*GUS* and 35S:*MtCLE13* lines.

![Figure 6.5: NFP expression in 35S:*GUS* (control) and 35S:*MtCLE13* transgenic roots. Expression analysis of NFP by qRT-PCR on cDNA samples of zone I root tissues of uninoculated 35S:*GUS* (control) or 35S:*MtCLE13* transgenic roots, harvested at 40 days post germination. Data and error bars represent means ± SD.](image)

To conclude, based on our qRT-PCR analysis, of all the markers tested, only the NF receptor *NFP* was downregulated by the ectopic expression of *MtCLE13*.

6.2.5 A micro-array analysis to study effects of 35S:*MtCLE13*

To identify *MtCLE13* target genes, a micro-array analysis was performed. The transcriptome of transgenic roots from non inoculated 35S:*GUS* (control) and 35S:*MtCLE13* chimeric plants was compared by hybridization with the *Medicago* genome
Chapter 6

Affymetrix chips, containing over 61200 probe sets (of which 32167 from *M. truncatula*) (Barnett et al., 2004). Three biological repeats were performed. This analysis resulted in the identification of 17 *M. truncatula* genes that are differentially expressed (minimum 2 fold up or down regulated, p < 0.05) between control and 35S:*MtCLE13* roots (Table 6.2).

Table 6.2: List of genes which were minimum 2 fold up or downregulated in 35S:*MtCLE13* roots compared to 35S:*GUS* (control) roots, as determined by the *Medicago* genome Affymetrix chip (p < 0.05).

<table>
<thead>
<tr>
<th>Probe set ID</th>
<th>x fold up/down regulated</th>
<th>Target description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtr.19174.1.S1_at</td>
<td>888.7 up</td>
<td>MtCLE13</td>
<td>AC144893.10.1(11)</td>
</tr>
<tr>
<td>Mtr.28373.1.S1_at</td>
<td>11.5 up</td>
<td>Kelch-repeat containing F-box protein (B)</td>
<td>BG644495</td>
</tr>
<tr>
<td>Mtr.9802.1.S1_at</td>
<td>5.4 up</td>
<td>Kelch-repeat containing F-box protein (A2)</td>
<td>TC104433</td>
</tr>
<tr>
<td>Mtr.13058.1.S1_at</td>
<td>4.7 up</td>
<td>Kelch-repeat containing F-box protein (A1)</td>
<td>TC96809</td>
</tr>
<tr>
<td>Mtr.35456.1.S1_at</td>
<td>2.8 up</td>
<td>High affinity nitrate transporter</td>
<td>TC103501</td>
</tr>
<tr>
<td>Mtr.35815.1.S1_at</td>
<td>2.7 up</td>
<td>Germin-like protein</td>
<td>TC95760</td>
</tr>
<tr>
<td>Mtr.3265.1.S1_at</td>
<td>2.5 up</td>
<td>Hypothetical protein (A)</td>
<td>TC112497</td>
</tr>
<tr>
<td>Mtr.6317.1.S1_at</td>
<td>2.5 up</td>
<td>Hypothetical protein (E)</td>
<td>BQ138801</td>
</tr>
<tr>
<td>Mtr.26826.1.S1_at</td>
<td>2.3 up</td>
<td>Hypothetical protein (B)</td>
<td>AJ501727</td>
</tr>
<tr>
<td>Mtr.14816.1.S1_at</td>
<td>2.2 up</td>
<td>Copper binding protein</td>
<td>AC119415.13.1(11)</td>
</tr>
<tr>
<td>Mtr.37565.1.S1_at</td>
<td>2.1 down</td>
<td>2-oxoglutarate-dependent dioxygenase (ODD)</td>
<td>TC100930</td>
</tr>
<tr>
<td>Mtr.46917.1.S1_at</td>
<td>3.2 down</td>
<td>Nicotianamine syntase</td>
<td>AC149744.1.1(11)</td>
</tr>
<tr>
<td>Mtr.15789.1.S1_at</td>
<td>3.3 down</td>
<td>NFP</td>
<td>AC126779.3.2(11)</td>
</tr>
<tr>
<td>Mtr.25025.1.S1_at</td>
<td>3.5 down</td>
<td>LYK4</td>
<td>AY372407(11)</td>
</tr>
<tr>
<td>Mtr.15758.1.S1_at</td>
<td>3.7 down</td>
<td>Close homolog of LYK5</td>
<td>AC123570.22.1(11)</td>
</tr>
<tr>
<td>Mtr.11343.1.S1_at</td>
<td>3.7 down</td>
<td>Hypothetical protein (C)</td>
<td>TC108649</td>
</tr>
<tr>
<td>Mtr.10837.1.S1_at</td>
<td>4.7 down</td>
<td>Hypothetical protein (D)</td>
<td>TC108074</td>
</tr>
</tbody>
</table>

The first hit retrieved corresponds with a 888.7 fold upregulation of *MtCLE13*, validating the proper set-up of our experiment. In order to confirm the results of the microarray analysis, a qRT-PCR analysis was performed on cDNA samples of 35S:*GUS* and 35S:*MtCLE13* transgenic roots grown and harvested under the same conditions as the plant material used for the micro-array analysis (Figure 6.6). The differential regulation of all potential *MtCLE13* target genes could be confirmed, with the exception of one gene encoding a hypothetical protein (B), which was upregulated by the ectopic expression of *MtCLE13* according to the micro-array data, but downregulated according to the results of the qRT-PCR analysis (Figure 6.6). For hypothetical protein (A) no qRT-PCR primers could be designed using the program “Beacon designer”\(^\text{17}\).

A down-regulation was measured for *NFP*, as well as for *LYK4* and a gene, similar to *LYK5* (Arrighi et al., 2006; Limpens et al., 2003; Oldroyd and Downie, 2008). Other

\(^{17}\)http://www.premierbiosoft.com
downregulated genes encoded a nicotianamine synthase (NAS), and a 2-oxoglutarate-dependent dioxygenase (ODD). Also two kelch-repeat containing F-box proteins belong to the potential MtCLE13 targets, as their genes were upregulated by the ectopic expression of MtCLE13. Initially, three hits were retrieved corresponding to kelch-repeat containing F-box proteins (A1, A2 and B), but further sequence analysis revealed that two of them belong to the same gene (Mtr13058.1.S1 at (A1) and Mtr. 9802.1.S1 at (A2)). An upregulation was also measured for a high affinity nitrate transporter, a copper binding protein and a germin-like protein. The remaining 5 genes with a differential expression pattern in 35S:MtCLE13 transgenic roots as compared to 35S:GUS transgenic roots, encoded hypothetical proteins (A to E).

Figure 6.6: Left: heatmap of the expression of MtCLE13 target genes by qRT-PCR and (micro)-array analysis on cDNA samples of root tissues of chimeric plants expressing 35S:MtCLE13. cDNA of roots expressing 35S:GUS was used as the reference tissue (not represented in heatmap). Right: heatmap of relative expression of MtCLE13 target genes by qRT-PCR on cDNA samples of zone I root tissues of uninoculated plants (NI) and at 4, 6, 8 and 10 dpi. NI was used as the reference tissue.

In a next step, the temporal expression of the MtCLE13 target genes during nodule development was studied by analyzing the relative transcript levels at 4, 6, 8, and 10 days postinoculation (dpi). The elongation zone of uninoculated roots, the nodule initi-
ation site, was used as the reference tissue. As shown in Figure 6.6, the genes encoding the kelch-repeat containing F-box proteins are upregulated during early nodulation, as well as the high affinity nitrate transporter, hypothetical protein (C) and the nicotianamine synthase. All other genes were downregulated, and for hypothetical protein (D) a transient expression pattern was observed, with a lower expression level than the reference tissue in the cDNA samples of 4 till 8 dpi, and a higher level of expression at 10 dpi (Figure 6.6).

6.2.6 NFP promoter activity in 35S:MtCLE13 transgenic roots

The results of the qRT-PCR analysis and the micro-array analysis indicate that the ectopic expression of MtCLE13 results in the downregulation of NFP. To corroborate these observations, stable pNFP:GUS plants were transformed with the 35S:MtCLE13 construct by use of A. rhizogenes, resulting in chimeric plants expressing both pNFP:-GUS and 35S:MtCLE13 in their roots. As a control, pNFP:GUS plants were transformed with 35S:LUCIFERASE (35S:LUC). In uninoculated control roots a constitutive GUS activity was observed, as described by Arrighi et al. (2006) (Figure 6.7). The level of NFP expression seemed to be slightly lower in 35S:MtCLE13 roots than in 35S:LUC roots. In addition, the pNFP:GUS expression seemed to have shifted to cells closer to the roottips in the 35S:MtCLE13 samples (Figure 6.7). pNFP:GUS activity was also analyzed during nodulation. As the ectopic expression of MtCLE13 results in an inhibition of nodulation, we focused the experiment on the earliest stages of nodulation (Mortier et al., 2010). The plants were inoculated with Sm2011 pBHR-mRFP and at 5 dpi, those zones of 35S:LUC roots harboring infection threads, as visualized by mRFP fluorescence, were harvested and subjected to GUS analysis. As no infection threads are observed on 35S:MtCLE13 transgenic roots, root zones susceptible to rhizobial infection were harvested on these plants (Mortier et al., 2010). In 35S:LUC roots, GUS activity was visualized in the cortex as broad stained regions corresponding with early nodulation stages (Figure 6.7). No GUS staining was seen in 35S:MtCLE13 roots (Figure 6.7).

These results support the observation that ectopic expression of MtCLE13 results in a downregulation of NFP under uninoculated conditions and that the typical NFP expression pattern observed after inoculation is absent in inoculated MtCLE13 roots.
Insight in the gain-of-function of MtCLE12 and MtCLE13

6.2.7 Long distance effect of 35S:MtCLE13 transgenic roots on the expression of potential MtCLE13 target genes in wild type roots

Ectopic overexpression of MtCLE13 results in an inhibition of nodulation by long-distance signaling (Mortier et al., 2010). To elucidate whether the differential expression of potential MtCLE13 target genes is also regulated over a long distance, composite plants were generated that contained small 35S:MtCLE13 transgenic roots besides the wild type root (see Materials and Methods page 147). Control plants carried wild type roots and transgenic roots carrying the 35S:GUS construct. Because MtCLE13 expression is induced upon nodulation, only those genes from which the expression was either up- or down regulated by both 35S:MtCLE13 expression and nodulation were retained for further analysis. The expression of the genes encoding the kelch-repeat containing F-box proteins, the high affinity nitrate transporter, the hypothetical protein D, NFP, LYK4, the LYK5 homolog and the ODD was measured. So far only one biological repeat of this analysis was performed. NFP and the ODD gene were slightly downregulated, while the expression level of the gene encoding the kelch-repeat containing F-box protein B was higher in the main root of composite plants carrying additional 35S:MtCLE13 roots, compared to the level found when the composite plants carried additional control roots (35S:GUS) (Figure 6.8, A-C). The expression of the

Figure 6.7: NFP expression in roots ectopically expressing MtCLE13 before and at 5 dpi. pNFP:GUS activity in roots ectopically expressing either LUC (control) or MtCLE13 (n = 15-20). Before inoculation, the level of NFP expression detected in lateral roots is slightly higher in 35S:LUC roots than in 35S:MtCLE13 roots. Moreover, the expression of NFP is shifted towards the root tip in 35S:MtCLE13 transgenic roots. At 5 dpi, no NFP expression is detected in the nodule susceptible zone of 35S:MtCLE13 transgenic roots, while on 35S:LUC roots, GUS activity is visualized in the cortex as broad stained regions corresponding with early nodulation stages. Bars = 2 mm.

6.2.7 Long distance effect of 35S:MtCLE13 transgenic roots on the expression of potential MtCLE13 target genes in wild type roots

Ectopic overexpression of MtCLE13 results in an inhibition of nodulation by long-distance signaling (Mortier et al., 2010). To elucidate whether the differential expression of potential MtCLE13 target genes is also regulated over a long distance, composite plants were generated that contained small 35S:MtCLE13 transgenic roots besides the wild type root (see Materials and Methods page 147). Control plants carried wild type roots and transgenic roots carrying the 35S:GUS construct. Because MtCLE13 expression is induced upon nodulation, only those genes from which the expression was either up- or down regulated by both 35S:MtCLE13 expression and nodulation were retained for further analysis. The expression of the genes encoding the kelch-repeat containing F-box proteins, the high affinity nitrate transporter, the hypothetical protein D, NFP, LYK4, the LYK5 homolog and the ODD was measured. So far only one biological repeat of this analysis was performed. NFP and the ODD gene were slightly downregulated, while the expression level of the gene encoding the kelch-repeat containing F-box protein B was higher in the main root of composite plants carrying additional 35S:MtCLE13 roots, compared to the level found when the composite plants carried additional control roots (35S:GUS) (Figure 6.8, A-C). The expression of the
high affinity nitrate transporter, the kelch-repeat containing F-box protein A, the hypothetical protein D, \textit{LYK4} and the \textit{LYK5} homolog was not changed in the main root when the composite plants carried additional 35S:\textit{MtCLE13} roots.

The long distance inhibition of nodulation, observed during ectopic expression of \textit{MtCLE13}, is \textit{SUNN}-dependent (see chapter 5). To analyze whether the long distance effect of 35S:\textit{MtCLE13} on the differential regulation of its target genes is also \textit{SUNN}-dependent, we repeated the qRT-PCR experiment on material harvested from chimeric \textit{sunn-4} mutants. The long distance differential expression of \textit{NFP} and the genes encoding the ODD and the kelch-repeat containing F-box protein B caused by the ectopic expression of \textit{MtCLE13} was not observed anymore in chimeric \textit{sunn-4} mutants (Figure 6.8, A-C).

As a control, the expression of \textit{MtCLE13} was also tested in these tissues and surprisingly, a higher level of \textit{MtCLE13} transcripts was measured in the wild type main root of plants bearing additional 35S:\textit{MtCLE13} transgenic roots (Figure 6.8D). We next tested whether these transcripts were derived from the transgene construct or from the endogene using primers that specifically recognized the transgene transcripts. QRT-PCR analysis indicated that the \textit{MtCLE13} transcripts detected were derived from the transgenic construct (Figure 6.8E). However, the amount of \textit{MtCLE13} transcripts detected by qRT-PCR analysis in these wild type main roots is low (Ct value 30), compared to the amount detected in 35S:\textit{MtCLE13} transformed roots (Ct value 20). To control whether this effect was specific for 35S:\textit{MtCLE13}, the expression of \textit{GUS} was measured in non-transgenic roots and shoots of composite plants carrying additional 35S:\textit{GUS} roots, but no expression was detected. Similarly, because the transgenic roots also contain the \textit{pRolD:GFP} construct, the expression of \textit{GFP} was tested in the different samples. \textit{GFP} transcripts could only be detected in the transgenic roots itself, but not in the wild type roots or shoots. These results indicate that harvesting of the wild type main root has been done properly and that mRNA of \textit{MtCLE13} might move across root tissues. Next, we analyzed whether \textit{MtCLE13} transcripts could be detected in the shoot. As shown in Figure 6.8E, 35S:\textit{MtCLE13} transcripts were not detected in the shoot tissues.

Next, to analyze whether the upregulation of \textit{MtCLE13} is \textit{SUNN}-dependent, we repeated the qRT-PCR experiment on material harvested from plants with a \textit{sunn-4} mutant background. An upregulation of \textit{MtCLE13} was still observed in the wild type main roots of chimeric plants bearing additional 35S:\textit{MtCLE13} transgenic roots (Figure 6.8D). qRT-PCR analysis with transgene specific primers indicated that the \textit{MtCLE13}
Insight in the gain-of-function of *MtCLE12* and *MtCLE13*

Figure 6.8: Long-distance effect of 35S:*MtCLE13* transgenic roots. A-D, NFP (A), ODD (B), Kelch-repeat containing F-box protein B (C) and *MtCLE13* (D) expression analysis by qRT-PCR on cDNA samples of uninoculated wild type main roots of chimeric plants bearing additional 35S:*GUS* (control) or 35S:*MtCLE13* transgenic roots in a wild type (J5) or *sunn-4* mutant background at 40 days post germination. E-F, Expression analysis of the transcript of 35S:*MtCLE13* by qRT-PCR on cDNA samples of uninoculated wild type main roots and wild type shoots of chimeric plants bearing additional 35S:*GUS* (control) or 35S:*MtCLE13* transgenic roots at 40 days post germination. E, In wild type plants (J5). F, In a *sunn-4* mutant background. Data and error bars represent means ± SD. All experiments were performed once.
transcripts derived from the transgenic roots can be detected in the wild type roots of
sunn-4 mutants, but not in shoots, indicating that the movement of *MtCLE13* transcripts
across roots is independent of *SUNN* (Figure 6.8F).

Together, ectopic expression of *MtCLE13* seems to result in a systemic and *SUNN-
dependent differential regulation of the genes encoding NFP, the kelch-repeat contain-
ing F-box protein (B) and the ODD, but not of the genes encoding the high affinity
nitrate transporter, the kelch-repeat containing F-box protein A, the hypothetical pro-
tein D, LYK4 and the LYK5 homolog. Moreover, we noticed a systemic, root-specific
and *SUNN*-independent spreading of *MtCLE13* transcripts.

6.3 Discussion

Two structurally related *CLE* genes, *MtCLE12* and *MtCLE13*, upregulated during no-
dulation, were shown to negatively regulate nodulation because ectopic expression
abolished nodulation and a combined RNAi resulted in the development of more nod-
ules (Mortier *et al.*, 2010) (see chapter 4 and 5). The peptides interfered at an early
stage of nodulation because expression of *ENOD11*, an early epidermal nodulation
marker, was not observed upon rhizobial inoculation of plants ectopically expressing
either CLE peptide gene (Mortier *et al.*, 2010).

To enable careful analysis of the early nodulation events, stably transformed 35S:*
MtCLE12* and 35S:*MtCLE13* plants were made. In agreement with the results obtained
for the composite plants, also these stable transgenic lines were devoid of nodules.
Microscopic analysis revealed no differences in root hair morphology between control
and 35S:*MtCLE* transgenic lines. After inoculation, neither micro-colony nor infection
thread formation was detected, and the marker genes for cortical nodulation responses,
MtRR4 and *NIN*, were not switched on in 35S:*MtCLE12* or 35S:*MtCLE13* roots. These
results confirm that ectopic expression of *MtCLE12* or *MtCLE13* inhibits nodulation at
the level of the NF signaling pathway from a very early stage on, before the appearance
of any epidermal or cortical responses.

To analyze how this inhibition works, both a gene-specific and a micro-array based
transcription analysis was done. Interestingly, the approaches revealed that ectopic ex-
pression of *MtCLE13* resulted in a downregulation of the NF receptor *NFP* and two
homologous genes, *LYK4* and a close homolog of *LYK5*, but not of other NF signal-
ing genes like *LYR3, NSP1, NSP2, ERN1, DMI1, DMI2, DMI3, NIN* and *ENOD11*. Analysis of *pNFP:GUS* expression revealed that, before inoculation, the gene is ex-
Insight in the gain-of-function of \textit{MtCLE12} and \textit{MtCLE13}

pressed in the epidermal cells of the root zone which is susceptible for nodulation (Arrighi \textit{et al.}, 2006). Histochemical localization of GUS activity in uninoculated, \textit{35S:MtCLE13} transformed roots of \textit{pNFP:GUS} plants revealed a slight downregulation of \textit{NFP} expression in epidermal cells compared to the level observed in control roots. In addition, a shift of \textit{NFP} expression was seen from the cells of the root susceptible zone towards the cells of the roottip. The lack of \textit{NFP} expression in the susceptible zone might explain the absence of nodulation observed in \textit{35S:MtCLE13} lines. Hence, in the cells susceptible for nodulation, \textit{NFP} expression is repressed by the action of \textit{MtCLE13}. Because structurally related CLE peptides act in a redundant way in gain-of-function analyses, the same might be true for \textit{MtCLE12} overexpressing lines.

At the onset of cortical cell division during nodulation, \textit{MtCLE13} expression is observed as a gradient with the highest expression in the inner cortex and the lowest expression in the outer cortical cells (Mortier \textit{et al.}, 2010). Based on the results obtained by the gain-of-function analysis, this \textit{MtCLE13} expression pattern might lead to a subsequent downregulation of \textit{NFP} to limit additional nodule formation in adjacent root zones. In agreement, qRT-PCR analysis revealed that \textit{NFP} expression is down-regulated early after nodule initiation. At first sight, this is in contradiction to the results obtained by Arrighi \textit{et al.} (2006), who reported a local induction of \textit{NFP} expression in cells of the infection track, in nodule primordium cells and later on in the apical region of developing nodules. In our qRT-PCR analysis however the complete root susceptible zone was harvested. Hence, the tissue analyzed by qRT-PCR also contained epidermal tissue and the observed downregulation of \textit{NFP} might be due to the fact that the reduction of \textit{NFP} expression in the epidermis may overrule the upregulation observed in infection thread containing cells and cells of the nodule primordium. To further confirm these results, \textit{NFP} expression in epidermal cells of inoculated roots should be carefully analyzed by \textit{pNFP:GUS} or \textit{pNFP:GFP} analysis. These experiments might be very difficult to perform as the high expression seen in infected cells might hinder analysis of expression levels in epidermal cells. Moreover, it might be interesting to analyze \textit{NFP} protein levels.

Previously it has been shown via gain-of-function analysis that the inhibitory effect of AON peptides on nodulation involves long-distance signaling and is mediated by the AON LRR-RLK SUNN and its orthologs in other legumes (Krusell \textit{et al.}, 2002; Nishimura \textit{et al.}, 2002a; Searle \textit{et al.}, 2003; Schnabel \textit{et al.}, 2005; Oka-Kira \textit{et al.}, 2005). A preliminary qRT-PCR analysis using a split-root approach indicated that the downregulation of \textit{NFP} expression but not of two other \textit{LYK} genes by \textit{35S:MtCLE13}
would also be systemic and SUNN-dependent (Mortier et al., 2010). The effect of \textit{MtCLE13} seems to be stronger in the roots ectopically expressing \textit{MtCLE13} than in the non expressing roots. Indeed, in contrast to \textit{NFP}, the expression of the other \textit{LYK} genes was not modulated in the distant roots by \textit{35S:MtCLE13} expression. Together, these preliminary data indicate that AON might affect the expression of the NF receptor \textit{NFP} to control nodule number. To further support this hypothesis, split-root experiments with \textit{pNFP:GUS} plants will be performed to analyze the effect of nodulation on one side of the roots on the expression of \textit{NFP} on the other side of the root.

In addition to the genes encoding the LysM-type receptors, other possible target genes for \textit{MtCLE13} signaling were detected. QRT-PCR analysis revealed that several marker genes, involved in cell division, hormonal responses or nodulation, were not differentially regulated by the ectopic expression of \textit{MtCLE13}. However, array hybridization revealed that besides the three \textit{LYK} genes, the expression of 11 other genes was differentially modulated by \textit{35S:MtCLE13} expression. A gene, encoding a kelch-repeat containing F-box protein and an ODD, were respectively up- and downregulated by the ectopic expression of \textit{MtCLE13} in a putatively systemic and SUNN-dependent way, suggesting that they might be involved in the same pathway as \textit{NFP} to inhibit nodulation. In agreement with their \textit{35S:MtCLE13} expression pattern, these genes were respectively up- and downregulated during nodulation. Kelch-repeat containing F-box proteins are subunits of E3 ubiquitin ligase complexes, which specify protein substrates for degradation by the 26S proteasome (Pickart, 2001; Koepp et al., 2001; Adams et al., 2000; Sun et al., 2007b). Ubiquitination is also involved in receptor internalization, leading either to endocytosis of the receptor or to receptor recycling (Accconcia et al., 2009; Yee and Goring, 2009). The kelch-repeat containing F-box proteins activated by \textit{MtCLE13} could therefore control NFP internalization, hence diminishing NFP activation and nodule initiation. Only a few Arabidopsis kelch-repeat containing F-box proteins have been analyzed in more detail, and all of them were involved in circadian control (Adams et al., 2000; Yasuhara et al., 2004). Until now, nothing has been reported about kelch-repeat containing F-box proteins acting specifically during nodulation. It will therefore be interesting to further study the role of this gene. The proteins of the ODD superfamily are involved in many aspects of plant metabolism, including the biosynthesis of gibberellins, flavonoids and flavonoid derivatives (Prescott and John, 1996; Hedden and Phillips, 2000). It will be interesting to unravel the function of this ODD protein in CLE signaling. Related genes of the ODD superfamily were identified in soybean and were proposed to play a role in nodule senescence (Webb
Insight in the gain-of-function of MtCLE12 and MtCLE13

et al., 2008).

In addition, a gene encoding a high affinity nitrate transporter and a second kelch-repeat containing F-box protein were upregulated in 35S: MtCLE13 roots compared to control roots. Moreover, the expression of both genes was upregulated during nodulation, indicating that they might be targets for MtCLE13 signaling. Like for MtLYK4 and MtLYK5, we found no indications for a long distance control of the expression of these genes, suggesting only a local regulation by MtCLE13. Again, the absence of changes in expression at long distances might reflect the possibility that the effect of 35S: MtCLE13 is stronger in the local root compared to the systemic roots. Alternatively, RNAi has shown that the CLE peptides also control the differentiation of the central tissue cells. Hence, functional analysis should reveal whether the MtCLE13 target genes play a role in the latter process.

One of the members of the nitrate transporter (NRT) family is the LATERAL ROOT DEFECTIVE/NUMEROUS INFECTION THREADS, POLYPHENOLICS (LATD/NIP) gene encoded by M. truncatula (Yendrek et al., 2010; Harris and Dickstein, 2010). LATD/NIP regulates root architecture and symbiotic nodule formation (Yendrek et al., 2010; Harris and Dickstein, 2010). The nodulation-specific functions of LATD/NIP are related to rhizobium infection and nodule meristem function (Yendrek et al., 2010; Harris and Dickstein, 2010). Also for MtCLE13, a function during nodule meristem formation/maintenance has been suggested (Mortier et al., 2010). The expression of LATD/NIP in root tips is upregulated by cytokinin and downregulated by auxin and ABA (Yendrek et al., 2010; Harris and Dickstein, 2010). The upregulation of LATD/NIP expression by cytokinin suggests that it might act in the cortical pathway leading to cell divisions for primordium formation, similar to what was suggested for MtCLE13 (see chapter 4 and 5). Whether the high affinity nitrate transporter upregulated by MtCLE13 exerts a similar function as LATD/NIP is currently not known but is an interesting hypothesis to test.

Genes encoding a copper binding protein and a germin-like protein were upregulated by the ectopic expression of MtCLE13, but downregulated during early nodulation. In addition, nicotianamine synthase was downregulated by ectopic expression of MtCLE13, but upregulated during nodulation. It is difficult to envisage the relation between MtCLE13 signaling and the expression of these genes. The effect might be secondary and might possibly involve cell-non-autonomous effects. Functional analysis by overexpression or RNAi might reveal how the interactions work. Although it is very precocious to speculate about the function of the encoded proteins during nodu-
lation, nicotianamine synthase might be involved in the intercellular transport of iron (Fe) in dicotyledonous plants (Ling et al., 1999; Pich et al., 2001; Takahashi et al., 2003). Fe mobilization is essential in nodules as it is a component of leghemoglobin and the nitrogenase complex, both involved in nitrogen fixation (Ragland and Theil, 1993). Nodule specific expression of nicotianamine synthase has been observed in *Lotus japonicus* (Hakoyama et al., 2009). Hence, *MtCLE13*, which is expressed in developing nodules and in the apical part of mature nodules, might possibly restrict the expression of nicotianamine synthase to the fixation zone of mature nodules, the place where the nitrogenase enzyme is active.

At last, the expression of three more hypothetical proteins was modulated by 35:*MtCLE13*. One of these, encoding hypothetical protein D, is downregulated by the ectopic expression of *MtCLE13* and also transiently downregulated during nodulation. This gene might be a specific target of *MtCLE13* at the early stages of nodulation, during primordium development. Functional analysis should reveal its function.

Finally, in the experiments to control long distance effects, a low expression level of *MtCLE13* transcripts was found back in the non-transgenic roots. The transcripts were derived from the transgenic construct and the effect was specific for *MtCLE13*, as no transcripts of the GUS and GFP marker were detected. Hence, it seems that in the gain-of-function analysis a small portion of the *MtCLE13* transcripts spread systemically in the roots but not towards the shoot in a SUNN-independent way. This is a very preliminary indication but sheds new light on how the AON peptides might control nodulation. Long distance movement of mRNAs is an intriguing and largely unexplored field. In the phloem saps, many mRNAs, especially small RNAs, have been found back that might control whole plant homeostasis (Yoo et al., 2004; Chitwood and Timmermans, 2010; Kalantidis et al., 2008). In-depth analysis to check whether this *MtCLE13* movement also occurs during nodulation is very tempting, as CLE peptides are mostly regarded as short-distance signals (Fukuda et al., 2007; Hirakawa et al., 2008; Whitford et al., 2008; Miwa et al., 2009). However, via movement of mRNA molecules, the peptides might act at long distances.

The preliminary experiments also showed that the *MtCLE13* mRNA did not move towards the shoot. Analysis of the stable 35S:*MtCLE12* and 35S:*MtCLE13* lines also indicates that ectopic expression did not result in any shoot phenotype. No differences in leaf sizes were observed between control and 35S:*MtCLE12* or 35S:*MtCLE13* plants. In addition, in contradiction to the elongated petioles that were observed on *A. rhizogenes*-mediated composite plants ectopically expressing *MtCLE12* or *MtCLE13* in
the roots (Mortier et al., 2010), the petiole length of 35S:MtCLE12 and 35S:MtCLE13 stable transgenic plants did not differ from control plants. This discrepancy might be explained in different ways. It is well-known that A. rhizogenes-induced transgenic roots have an altered hormone balance. This change in balance might add up with the effect of ectopic MtCLE12 or MtCLE13 expression to cause the elongation of the petioles. However, this hypothesis was not reflected by the results of the transcriptome analysis, as no changes in expression of hormone-specific genes were observed. Alternatively, the petiole elongation might be a cell-non-autonomous effect that is abolished when the CLE peptides are also expressed in the cells of the shoot.

In contrast to the shoot, an effect of 35S:MtCLE13 expression was seen on the root length. The MtCLE12 and MtCLE13 peptides are most homologous to the CLE1 till CLE7 peptides of Arabidopsis (Mortier et al., 2010). Functional analysis of this group of CLE peptides resulted in conflicting data concerning the effect on root length. According to Kinoshita et al. (2007) and Meng et al. (2010) exogenous addition of CLE1 to CLE7 peptides to the growth medium of A. thaliana seedlings did not result in any root phenotype, however, at high peptide concentrations Ito et al. (2006) observed an inhibition of root growth. In case of ectopic expression of the CLE1 till CLE7 genes, root elongation was reported by Strabala et al. (2006), while Whitford et al. (2008) reported root meristem consumption specifically for CLE6. Exogenous addition of MtCLE12 and MtCLE13 peptides did not result in any root-related phenotype (Mortier et al., 2010). However, stable ectopic expression caused a reduction in root length. These opposite results might be explained by the high level of redundancy that is observed between CLE peptides (Fiers et al., 2005; Strabala et al., 2006; Ni and Clark, 2006; Kinoshita et al., 2007; Jun et al., 2008). Possibly, MtCLE12 and MtCLE13 might bind with very low efficiency to receptors of unrelated CLE peptides which are putatively involved in root development. As a result, only high levels of MtCLE12 and MtCLE13 peptides, such as observed during ectopic expression would be able to activate the receptor sufficiently to trigger downstream responses. At the microscopical level, no phenotypical changes were observed in 35S:MtCLE12 or 35S:MtCLE13 roots, which is in accordance to the absence of a root developmental phenotype reported for the ectopic expression of the homologous CLE6 gene in A. thaliana (Whitford et al., 2008). Together, these results suggest that very high levels of MtCLE12 and MtCLE13 expression might have an effect on root length, similar to what was described by Whitford et al. (2008).

Legumes also establish a symbiosis with arbuscular mycorrhizal fungi and both
symbioses are initiated by a similar signaling pathway. Moreover, the SUNN-mediated AON pathway was suggested to be also involved in restricting arbuscule formation (Amiour et al., 2006). Because the negative effect of AON peptides on nodulation also involves SUNN, we analyzed whether ectopic expression of MtCLE12 and MtCLE13 affected mycorrhization. No differences in mycorrhization rate were observed, suggesting these CLE peptides not to be involved in the mycorrhization pathway. Accordingly, mycorrhization did not induce the expression of the soybean GmNIC1, GmRIC1 and GmRIC2 CLE genes, which have a CLE domain highly homologous to that of MtCLE12 and MtCLE13 (Reid et al., 2011).

Together, this study revealed the first molecular insights in how peptides might control nodulation. The interaction with NFP is very intriguing and indicates that the repression of the NF receptor transcription might be one of the targets used to control nodule number. Functional analysis of the other identified MtCLE13 target genes might further reveal more aspects of the repression mechanism. Also the observation that the MtCLE13 mRNAs are traveling systemically in the root system is an intriguing piece of the puzzle to be solved.

6.4 Materials and methods

Biological material

M. truncatula Gaertn. cv. Jemalong A17 and J5, as well as pNFP:GUS (Arrighi et al., 2006) and sunn-4 (Schnabel et al., 2005) were grown and inoculated as described (Mergaert et al., 1993). Sm2011 pH60-GFP (Cheng and Walker, 1998), and Sm2011 pBHR-mRFP (Smit et al., 2005) were grown at 28°C in yeast extract broth medium (Vervliet et al., 1975), supplemented with 10 mg L\(^{-1}\) tetracycline.

For the qRT-PCR analysis, M. truncatula J5 plants were grown in vitro in square Petri dishes (12 x 12 cm) on nitrogen-poor SOLi agar (Blondon, 1964). For the analysis of temporal expression during nodulation, nodules were harvested 4 to 10 dpi from plants grown in pouches, watered with nitrogen-poor SOLi medium, and inoculated with Sm1021 pH60-GFP. Infection threads were visible from 4 dpi on, nodule primordia at 6 dpi, and small nodules at 8 dpi. Two days later, at 10 dpi, slightly bigger nodules were observed. Tissue was collected by visualizing the green fluorescent bacteria under a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany) equipped with a blue-light source and a Leica GFP Plus filter set (\(\lambda_{ex} = 480/40; \lambda_{em} = \))
510 nm LP barrier filter). The zones I of uninoculated roots were isolated at the same developmental stage as the 4 dpi stage.

RNA extraction, cDNA synthesis, and qRT-PCR analysis

Total RNA was isolated with the RNeasy Plant mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. After a DNase treatment, the samples were purified through NH₄Ac (5 M) precipitation, quality controlled, and quantified with a Nanodrop spectrophotometer (Isogen, Hackensack, NJ). RNA (2 μg) was used for cDNA synthesis with the Superscript Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA). The samples were diluted 50 times and stored at -20°C until further use. The qRT-PCR experiments were done on a LightCycler 480 (Roche Diagnostics, Brussels, Belgium) and SYBR Green was used for detection. All reactions were done in triplicate and averaged. The total reaction volume was 5 μl (2.5 μl master mix, 0.25 μl of each primer [5 μM] and 2 μl cDNA). Cycle threshold (C_T) values were obtained with the accompanying software and data were analyzed with the 2^−ΔΔCt method (Livak and Schmittgen, 2001). The relative expression was normalized against the constitutively expressed 40S ribosomal S8 protein (TC100533, MGI). Primers used (Table 6.3) were unique in the MGI version 9.0 and the Medicago EST Navigation System database (Journet et al., 2002). The qRT-PCR primers ‘transcript of 35S: MtCLE13’ specifically detect the transcript of 35S: MtCLE13, while discriminating the endogenous expression of MtCLE13, as the forward primer binds in the open reading frame (ORF) of MtCLE13, while the reverse primer is complementary to the 35S terminator, which is the terminator of the 35S: MtCLE13 construct.

Agrobacterium rhizogenes-mediated transgenic root transformation

The protocol was adapted from Boisson-Dernier et al. (2001). Approximately 48 h after germination, the radicle was sectioned at 5 mm from the roottip with a sterile scalpel. Sectioned seedlings were infected by coating the freshly cut surface with the binary vector-containing A. rhizogenes ArquaI strains. The A. rhizogenes strain was grown at 28°C for 2 days on solid yeast extract broth medium with the appropriate antibiotics (Quandt et al., 1993). The infected seedlings were placed on agar (Kalys) containing the SOLi medium, supplemented with 1 mM NH₄NO₃, in square Petri dishes (12 x 12 cm) placed vertically for 5 days at 20°C, 16-h photoperiod, and 70 μE m⁻²m⁻¹. Subsequently, plants were placed on the same medium between brown paper at 25°C
and under identical light conditions. One and 2 weeks later, plants were screened for
transgenic roots, characterized by GFP fluorescence with a stereomicroscope MZFLII
(Leica Microsystems) equipped with a blue-light source and a Leica GFP plus filter set.
One main transgenic root was retained per composite plant. Four weeks after infection,
plants were transferred to an aeroponic system, pouches, or perlite-containing pots and
incubated with SOLi medium. Three to 7 days after planting, composite plants were
inoculated.

To check the long distance effect of *MtCLE13*, the main root was kept on the juve-
nile plant and infected by stabbing the hypocotyls with a fine needle containing an *A.
rhizogenes* culture and cotransformed as described above, after which the plants were
grown for 2 weeks at 25°C with a 16-h photoperiod and light at 70 μE m$^{-2}$m$^{-1}$. Next,
the plants were grown in an aeroponic system, supplemented with the nitrogen minimal
medium Soli (Blondon, 1964). At the age of 40 days post germination, the wild type
roots of approximately 20 plants were harvested and pooled for RNA isolation, which
was subsequently used for cDNA synthesis. qRT-PCR analysis was performed twice
on biologically independent material.

Agrobacterium tumefaciens stable transformation and shoot regeneration

M. truncatula Jemalong 5 young leaves from 4 week-old *in vitro* grown plants were
used for *A. tumefaciens*-mediated transformation which was performed as described by
Primard Brisset *et al.* (2005). Binary vectors pB7WG2D-35S:*MtCLE4*, pB7WG2D-
35S:*MtCLE12*, pB7WG2D-35S:*MtCLE13* and pB7WG2D-35S:*Luciferase* was elec-
troporated in *A. tumefaciens* AGLO and a single colony was isolated after selection
on YEB supplemented with 100 mg/L rifampicin and 100 mg/L spectinomycin. After
plant transformation and cocultivation, transgenic tissue was selected on subsequently
SHb3a (incubation), AgCIM (calllogenesis), AgEIM (pro-embryogenesis), AgEMB (em-
bryogenesis) and plant medium (plant development and rooting). All media, except the
plant medium, contained between 200 to 800 mg/L augmentine during calllogenesis
and (pro) embryogenesis stages and 3 mg/L basta (Trinh *et al.*, 1998; Chabaud *et al*.,
2003). *In vitro* regenerated transgenic shoots were further grown on plates for 1 month
and then planted in earth and sand (3:1) in the growth chamber or shoot regenerated on
PDM medium. Shoot regeneration was performed by cutting the shoot tip at the fourth
Internode from the shoot apex and transferring the sectioned shoot on PDM medium18. The root length, petiole length and total leaf area was scored by ImageJ19. Root hairs were analyzed using a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany).

Histochemical localization of GUS activity

GUS activity in cotransformed roots and nodule primordia of \textit{pNFP:GUS} plants was analyzed using 5-bromo-4-chloro-3-indolyl-\(\beta\)-D-glucuronic acid as substrate (Van den Eede \textit{et al.}, 1992). Roots and nodule primordia were vacuum infiltrated during 20 min and subsequently incubated in GUS buffer at 37\(^\circ\)C. Incubation lasted 4 h. After staining, roots and root nodule primordia were fixed and dehydrated in 70 % ethanol. Photographs were taken with a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany).

Technovit sectioning

Transgenic roots were fixed and dehydrated before embedding with the Technovit 7100 kit (Heraeus Kulzer, Wehrheim, Germany), according to the manufacturer’s instructions, and sectioning with a microtome (Reichert-Jung, Nussloch, Germany). The 3-\(\mu\)m thick sections were mounted on coated slides (Sigma-Aldrich, St. Louis, MO), and submerged in a 0.5 % toluidine blue solution, washed in distilled water, and dried. Finally, sections were mounted with Depex (BDH Chemicals, Poole, England). Photographs were taken with a Diaplan microscope equipped with bright- and dark-field optics (Leitz, Wetzlar, Germany).

Gene-specific approach

Roots of approximately 15 chimeric plants with \textit{35S:GUS} (control) or \textit{35S:MtCLE13} transgenic roots were made by \textit{A. rhizogenes} transformation and grown in an aeroponic system, supplemented with the nitrogen minimal medium Soli (Blondon, 1964). At the age of 40 days post germination, the transgenic roots of approximately 15 plants were harvested and pooled for RNA and cDNA preparation.

18\url{http://www.isv.cnrsgif.fr/embo01/manuels/pdf/module2.pdf} 19\url{http://rsb.info.nih.gov/ij/}
Micro-array analysis

Chimeric plants with 35S:GUS or 35S:MtCLE13 transgenic roots were made by A. rhizogenes transformation and grown in an aeroponic system, supplemented with the nitrogen minimal medium Soli (Blondon, 1964). At the age of 40 days post germination, the transgenic roots of approximately 15 plants were harvested and pooled for RNA isolation and probe preparation. Samples were hybridized to the Gene Chip Medicago genome arrays (Affymetrix, www.affymetrix.com). RNA processing, hybridization, washing and scanning of the arrays were carried out at the MicroArray Facility (Leuven, VIB). Medicago Affymetrix genome array data were preprocessed using the robust multiarray averaging (RMA) algorithm (Irizarry et al., 2003), which involves three steps: background adjustment of RMA convolution, quantile normalization and summarization, using the median polish algorithm - where the median values per probe set, adjusted for slide differences, are calculated. On the basis of an empirical Bayes moderated t-statistic for the contrasts (Smyth, 2004), as implemented in the Bioconductor package LIMMA, p-values were calculated to measure differential expression between 35S:GUS (control) transgenic roots and 35S:MtCLE13 transgenic roots. P-values were then corrected for multiple testing problems using Benjamini and Hochberg to control false discovery rate. Threshold values for differential expression were set at 1.93 (log scale 0.95) and minimal p-values was set at 0.05.

Southern analysis

M. truncatula genomic DNA was extracted from young leaves using the DNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s protocol. 10 μg was digested with the restriction enzyme HindIII according to standard protocols (Sambrook et al., 1989) and were separated on a 1 % agarose gel. The DNA was denatured and transferred to positively charged nylon membranes (Amersham Hybond-N+, GE Healthcare). The probes were synthesized via PCR using Taq recombinant polymerase (Invitrogen) and Dig labelled by use of the PCR Dig probe synthesis kit (Roche Diagnostics GmbH). After cross-linking the gDNA via UV light, the filter was hybridized with the Dig labelled probe at 42°C, overnight in Dig easy hyb hybridization buffer (Roche). After washing the filter (2x SSC, 0.1 % SDS and 1x SSC, 0.1 % SDS, 65C, 15’, the hybridized membrane was analyzed by chemiluminiscent detection (Antidigoxigenin-AP binding and CDP-star substrate (Roche)) on a light sensitive film.
Insight in the gain-of-function of MtCLE12 and MtCLE13

Statistical analysis

The following generalized linear model (GLM) \(Y_{ijk} = \mu + \text{genotype}_j + \text{experiment}_k + \text{error}_{ijk} \) (Regression analysis) was fitted to the nodule number, partitioning phenotypic variation into fixed genotype and experiment effects and random error effects. \(Y_{ijk} \) is the phenotype of the \(i \)-th plant from the genotype \(j \) analyzed in experiment \(k \); \(\mu \) is the overall mean of the phenotypes obtained for all lines considered. Because the data has a Poisson distribution, a logarithm base \(e \) link function was incorporated. In the case of root length, petiole length and total leaf area, an analysis of variance (ANOVA) was performed. All analyses were done by means of the GenStat software\(^{20}\).

Mycorrhization assay

\textit{M. truncatula} cv. Jemalong A 17 seeds were scarified by incubation in concentrated \(\text{H}_2\text{SO}_4 \) for 10 min, washed with water and surface-sterilized in 1:6-diluted sodium hypochlorite solution (12 % Cl) (Roth, Karlsruhe, Germany) for 5 min. After washing, the seeds were placed on wet filter paper and germinated at 4\(^\circ \text{C} \) in the dark for two days, at RT in the dark for one day and at RT in the light for one day. Seedlings were transferred into in pots filled with expanded clay of 2 to 5 mm particle size (Original Lamstedt Ton; Fibo ExClay, Lamsted, Germany). Plants were cultivated in a phytocambr at a 16 h/8 h cycle (22\(^\circ \text{C}/18\ ^\circ \text{C} \)) at 375 \(\mu \text{M} \) light intensity and watered with distilled water and fertilized once per week with 10 ml 10x Long Ashton (20 % phosphate).

At time of transfer into expanded clay, seedlings were inoculated with the AM fungus \textit{Glomus intraradices} Schenk & Smith isolate 49 (Maier et al., 1995) by transfer to clay substrate containing 15 % (v/v) inoculum. The inoculum was enriched in propagules by cultivation with mycorrhizal leek (\textit{Allium porrum} cv. Elefant).

The mycorrhizal structures in the root pieces were stained according to (Vierheilig et al., 1998) using 5 % (v/v) ink (Sheaffer Skrip jet black, Sheaffer Manufacturing, Madison, USA) in 2 % (v/v) acetic acid and analyzed using a stereomicroscope. The degree of mycorrhization was determined from five plants percent colonization of root length.

\(^{20}\)http://www.vsni.co.uk/software/genstat/
Table 6.3: Primers used in the analyses.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtCLE1</td>
<td>CCGAAGCCTCCTACAGAAACTACG</td>
<td>TCTGTTGCGACCTCCATATAGCC</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>CREI</td>
<td>TATGGACCTTTCCGTGACCGCCA</td>
<td>TATGGACCTTTCCGTGACCGCCA</td>
<td>Fei and Vessely, 2009</td>
</tr>
<tr>
<td>NSP1</td>
<td>GCAAGACCTGCAAGAAGTAC</td>
<td>AAGGCGCTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>NSP2</td>
<td>GACACACCTGCTCTCTCTACG</td>
<td>CTCGACCTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ENG1D1</td>
<td>ACCCAGCATTCCCTGCTA</td>
<td>AGGAGCTGCTGACCGCCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>NIN</td>
<td>GGAGAATGAGAAGGAGGAGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>EBN</td>
<td>TATTGGAATGAGAAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>NFP (qRT-PCR)</td>
<td>GCAGCTGCTGACCGCCA</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>LK1</td>
<td>GTCGCTGCTGCTGCTGCTGCTG</td>
<td>GCTGCTGCTGCTGCTGCTGCTG</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>DM1</td>
<td>CCACTGAGGACATCTGCTGCTG</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>DM2</td>
<td>GCACTGAGGACATCTGCTGCTG</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>PIN1</td>
<td>GACATGAGGACATCTGCTGCTG</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>PIN2</td>
<td>GACATGAGGACATCTGCTGCTG</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>LAX1</td>
<td>TAACTCAAAACTCAAAACTCAAA</td>
<td>ACTGCTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Nf-receptor</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>ACTGCTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>MtIPT</td>
<td>TCTCTGAGGAGAGGAGGAGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>MBR4</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ARE-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>Ethyrene-responsive element-binding factor 3</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
<tr>
<td>ABA-activated protein</td>
<td>ATAGGCTGAGGAGGAGGAGACT</td>
<td>CTCAGTTGAGGCAACAGCA</td>
<td>Gonzales-Rizzo et al., 2006</td>
</tr>
</tbody>
</table>
6.5 Supplemental data

Table 6.4: Numeric data of heatmap represented left in Figure 6.6.

<table>
<thead>
<tr>
<th>Gene</th>
<th>qRT-PCR</th>
<th>array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelch-repeat containing F-box protein (B)</td>
<td>69.4</td>
<td>11.5</td>
</tr>
<tr>
<td>Copper binding protein</td>
<td>4.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Kelch-repeat containing F-box protein (A1)</td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Kelch-repeat containing F-box protein (A2)</td>
<td>2.5</td>
<td>5.4</td>
</tr>
<tr>
<td>High affinity nitrate transporter</td>
<td>2.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Germin-like protein</td>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Hypothetical protein (E)</td>
<td>1.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Hypothetical protein (C)</td>
<td>-1.2</td>
<td>-3.7</td>
</tr>
<tr>
<td>Close homolog of L YK5</td>
<td>-1.4</td>
<td>-3.7</td>
</tr>
<tr>
<td>ODD</td>
<td>-1.8</td>
<td>-2.1</td>
</tr>
<tr>
<td>Nicotianamine syntase</td>
<td>-2.1</td>
<td>-3.2</td>
</tr>
<tr>
<td>L YK4</td>
<td>-2.4</td>
<td>-3.5</td>
</tr>
<tr>
<td>Hypothetical protein (B)</td>
<td>-4.2</td>
<td>2.3</td>
</tr>
<tr>
<td>NFP</td>
<td>-5.9</td>
<td>-3.3</td>
</tr>
<tr>
<td>Hypothetical protein (D)</td>
<td>-12.3</td>
<td>-4.7</td>
</tr>
</tbody>
</table>

Table 6.5: Numeric data of heatmap represented right in Figure 6.6.

<table>
<thead>
<tr>
<th>Gene</th>
<th>NI</th>
<th>4 dpi</th>
<th>6 dpi</th>
<th>8 dpi</th>
<th>10 dpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>High affinity nitrate transporter</td>
<td>1.09</td>
<td>8.76</td>
<td>13.04</td>
<td>10.97</td>
<td>137.69</td>
</tr>
<tr>
<td>Kelch-repeat containing F-box protein (B)</td>
<td>1.00</td>
<td>7.27</td>
<td>16.45</td>
<td>9.49</td>
<td>24.08</td>
</tr>
<tr>
<td>Hypothetical protein (C)</td>
<td>1.02</td>
<td>3.63</td>
<td>8.20</td>
<td>5.64</td>
<td>15.14</td>
</tr>
<tr>
<td>Kelch-repeat containing F-box protein (A1)</td>
<td>1.00</td>
<td>1.53</td>
<td>2.43</td>
<td>3.80</td>
<td>8.17</td>
</tr>
<tr>
<td>Kelch-repeat containing F-box protein (A2)</td>
<td>1.01</td>
<td>1.36</td>
<td>3.32</td>
<td>5.44</td>
<td>8.11</td>
</tr>
<tr>
<td>Nicotianamine syntase</td>
<td>1.02</td>
<td>1.21</td>
<td>2.51</td>
<td>2.95</td>
<td>9.07</td>
</tr>
<tr>
<td>Hypothetical protein (D)</td>
<td>1.00</td>
<td>-4.89</td>
<td>-2.36</td>
<td>-2.17</td>
<td>1.13</td>
</tr>
<tr>
<td>Germin-like protein</td>
<td>1.01</td>
<td>-1.35</td>
<td>-1.75</td>
<td>-2.20</td>
<td>-2.53</td>
</tr>
<tr>
<td>Copper binding protein</td>
<td>1.06</td>
<td>-1.81</td>
<td>-1.84</td>
<td>-5.07</td>
<td>-2.63</td>
</tr>
<tr>
<td>Hypothetical protein (E)</td>
<td>1.03</td>
<td>-2.00</td>
<td>-2.28</td>
<td>-3.87</td>
<td>-2.00</td>
</tr>
<tr>
<td>NFP</td>
<td>1.01</td>
<td>-2.63</td>
<td>-2.80</td>
<td>-3.92</td>
<td>-1.69</td>
</tr>
<tr>
<td>ODD</td>
<td>1.01</td>
<td>-1.62</td>
<td>-6.08</td>
<td>-4.32</td>
<td>-5.81</td>
</tr>
<tr>
<td>Close homolog of L YK5</td>
<td>1.01</td>
<td>-2.85</td>
<td>-3.71</td>
<td>-5.15</td>
<td>-3.19</td>
</tr>
<tr>
<td>Hypothetical protein (B)</td>
<td>1.00</td>
<td>-11.45</td>
<td>-12.93</td>
<td>-11.69</td>
<td>-3.46</td>
</tr>
<tr>
<td>L YK4</td>
<td>1.01</td>
<td>-4.54</td>
<td>-7.15</td>
<td>-12.64</td>
<td>-9.92</td>
</tr>
</tbody>
</table>
Chapter 6

Acknowledgements

We thank René Geurts (Wageningen University, The Netherlands), Clare Gough (Institut de la Recherche Agronomique-Toulouse, France) and Julia Frugoli (Clemson University, South Carolina), for *S. meliloti* strains and *M. truncatula* mutants, Bettina Hause for the mycorrhizal experiments and our colleagues Annick De Keyser and Christa Verplancke for skillful technical assistance, Wilson Ardiles for sequence analysis and Marnik Vuylsteke for help with the statistical analysis and for assistance with micro-array data processing.

Authors contributions

The main part of this work was performed by V. Mortier. C. Verplancke performed the *Agrobacterium tumefaciens* transformations. S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.
7

Receptor-like kinases involved in nodulation on *Medicago truncatula*

Virginie Mortier, Carolien De Cuyper, Stéphane Rombauts, Marcelle Holsters and Sofie Goormachtig

In preparation
Abstract

CLE peptides are short-distance signaling molecules, involved in balancing cell division and differentiation during numerous aspects of plant development. They are mostly recognized by several receptor complexes working in parallel. Nearly all components of these receptor complexes are leucine-rich-repeat receptor-like-kinase (LRR-RLK) of subclass XI. We searched for putative nodule-specific CLE peptide receptors belonging to this subclass XI. Two candidate genes, *MtRLK1* and *MtRLK2*, were initially identified. In-depth phylogenetic and expression analysis of *MtRLK2*, rather hints at a role during plant immunity. On the other hand, *promoter:GUS* and qRT-PCR analysis of *MtRLK1*, a close homolog of *BAM3*, confirmed its nodulation-related expression pattern. In addition, the *MtRLK1* expression pattern is lying adjacent to and is partially overlapping with the expression patterns of nodulation-related CLE peptides, confirming that MtRLK1 might act as a CLE ligand receptor to control stem cell homeostasis in the nodule meristem. We also investigated the expression of *SUNN*, a LRR-RLK of subclass XI involved in autoregulation of nodulation, during nodulation and observed that the gene is only expressed at a low level in the vasculature of the root. An analogous expression pattern was observed for *MtRLK1*, suggesting that these receptors might interact in the root vasculature.

7.1 Introduction

Plant growth relies on meristem-located stem cells from which most plant tissues and organs are post-embryonically formed (Byrne *et al.*, 2003; Carles and Fletcher, 2003; Gross-Hardt and Laux, 2003). Growth is mainly organized at the shoot- and the roottip, in respectively the shoot and root apical meristem (SAM, respectively RAM). Plants tightly control the equilibrium between cell division and differentiation at those sites in order to keep a specific number of dividing stem cells to sustain indeterminate growth and at the same time to provide enough cells for differentiation into the appropriate tissues and organs (Hobe *et al.*, 2001; Fletcher, 2002; Carles and Fletcher, 2003). CLE peptides are small, secreted, intercellular peptides that act as short-distance signaling molecules in a non-cell-autonomous manner to balance proliferation and differentiation not only at the SAM and RAM but also during vascular development and during nodulation (Brand *et al.*, 2000; Hirakawa *et al.*, 2008; Hobe *et al.*, 2003; Okamoto *et al.*, 2009; Mortier *et al.*, 2010, 2011; Reid *et al.*, 2011). CLE ligands are sug-
MtRLKs involved in nodulation

gested to bind an array of plasma membrane located receptor complexes (Zhu et al., 2010a,b; Bleckmann et al., 2010; Guo et al., 2010; Ogawa et al., 2008; Ohyama et al., 2009; Kinoshita et al., 2010; Stahl et al., 2009; Meng and Feldman, 2010). For instance at the SAM in Arabidopsis, the stem cell maintenance and organ specification is balanced by a negative feedback-loop including the CLE peptide ligand CLV3 (Fletcher et al., 1999; Ni and Clark, 2006; Kondo et al., 2006), the leucine-rich repeat receptor like kinase (LRR-RLK) CLAVATA1 (CLV1) (Dievart et al., 2003; Clark et al., 1997) and its close homologs BARELY ANY MERISTEM1 (BAM1), BAM2 and BAM3 (Deyoung and Clark, 2008; DeYoung et al., 2006), the LRR receptor-like-protein (LRR-RLP) CLV2 (Jeong et al., 1999; Kayes and Clark, 1998), the transmembrane kinase-related protein CORYNE/SUPPRESSOR OF OVEREXPRESSION OF LLP1-2 (CRN/SOL2, hereafter CRN) (Casamitjana-Martinez et al., 2003; Muller et al., 2008; Miwa et al., 2008), the CLV1-unrelated LRR-RLK RECEPTOR-LIKE PROTEIN KINASE2/TOADSTOOL2 (RPK2/TOAD2, hereafter RPK2) (Kinoshita et al., 2010; Sawa and Tabata, 2011), the KINASE ASSOCIATED PROTEIN PHOSPHATASE (KAPP) (Williams et al., 1997; Stone et al., 1998), the type 2C protein phosphatases POLTERGEIST (POL) and POL-LIKE 1 (PLL1) (Gagne and Clark, 2010; Song et al., 2006, 2008) and the homeodomain transcription factor WUSCHEL (WUS) (Schoof et al., 2000; Mayer et al., 1998; Brand et al., 2000).

The SAM is organized in several domains and layers and central are a group of dividing stem cells that are distributed over three layers and that give rise to particular organs (Schoof et al., 2000; Hobe et al., 2001; Carles and Fletcher, 2003). The CLV3 peptides, expressed in the outermost L1 layer and middle L2 layer of the SAM, are secreted in the extracellular medium and diffuse to the adjacent, more inside located L3 layer. There, they are sequestered by plasma membrane-localized receptors (CLV1, BAM1, BAM2, CLV2, CRN and RPK2), generating a signal that is relayed through KAPP, POL and PLL1, and which results in WUS suppression in the organizing centre (OC), a small group of non dividing cells, located in the L3 layer, which control stem cell maintenance. WUS, in turn, has a positive effect on CLV3 expression (Brand et al., 2000; Schoof et al., 2000; Reddy et al., 2004; Reddy and Meyerowitz, 2005). As a consequence, in A. thaliana, clv1, clv2 and clv3 loss-of-function mutants cause an increased WUS expression domain, resulting in additional stem cell accumulation, ensuing an enlargement of the SAM, increased floral organ number and altered phyllotaxy (Clark et al., 1993, 1995; Kayes and Clark, 1998; Brand et al., 2000; Schoof et al., 2000; Laux et al., 1996; Wang and Fiers, 2010). In wus mutants the identity
of the neighboring stem cells is lost, resulting in cell differentiation, which ensues the consumption of the SAM and termination of organogenesis (Laux et al., 1996).

CLV1 and CLV2 are not the only receptors for CLV3 and different receptor complexes seem to act together for SAM homeostasis. Unraveling the specific composition of the receptor complexes that bind CLV3 has turned out to be a tedious work. Initial experiments involving clv1 mutants revealed that clv1 missense alleles are dominant-negative, while clv1 null alleles are weak in phenotype, suggesting that other receptors function in parallel to CLV1 (Dievart et al., 2003). Co-immunoprecipitation (co-IP) via transient expression in tobacco but also via in vivo experiments in Arabidopsis meristem cells confirmed the existence of different receptor complexes, such as CLV1 homomultimers, heteromultimers of CLV1 with BAM1 and BAM2, and CLV2/CRN heteromultimers, being involved independently and with a similar ligand affinity in CLV3 peptide perception (Zhu et al., 2010a,b; Bleckmann et al., 2010; Guo et al., 2010; Ogawa et al., 2008; Ohyama et al., 2009). CRN and CLV2 must interact to form a functional receptor complex, as CRN is lacking a distinct extracellular domain, while CLV2 is devoid of a kinase domain. Receptor complexes consisting of CLV1-CRN-CLV2 and CLV1-CRN were previously suggested (Zhu et al., 2010a,b; Bleckmann et al., 2010), but the interactions between the components of these complexes were later on shown to be weak in transient systems and absent in vivo (Guo et al., 2010). Recently, also a RPK2 homodimer has been shown to transmit the CLV3 signal in the Arabidopsis SAM independently from CLV1/CLV1, CLV1/BAM and CLV2/CRN (Kinoshita et al., 2010). The biochemical interaction between CLV3 and RPK2 could however not be shown (Kinoshita et al., 2010). The BAM receptors were initially suggested to act opposite to CLV1, to promote meristem growth, as reduced SAMs were observed on bam1/bam2 double mutants, and an arrest of SAM growth on BAM triple mutants (bam1/bam2/bam3) (DeYoung et al., 2006). However, CLV1 can fully rescue bam1 and bam2 mutants when broadly expressed, while BAM1 and BAM2 can partially rescue clv1 mutants when specifically expressed in the meristem, implying a common function (DeYoung et al., 2006). In contrast to the restricted expression pattern of CLV1 in the SAM centre, BAM1 and BAM2 exhibit weak expression in the SAM centre and high expression at the meristem flanks (Clark et al., 1997; DeYoung et al., 2006). Hence, based on these expression patterns and phenotypes of double mutants, a new hypothesis was put forward, in which the BAM1 and BAM2 receptors are suggested to be redundant to CLV1 for the stem cell regulation in the meristem centre, but have additional roles at the meristem flanks to sequester CLV3-like ligands that are
MtRLKs involved in nodulation

expressed outside the SAM, in order to inhibit these ligands to enter the stem cells/OC region (Deyoung and Clark, 2008). While CLV1 expression is restricted to the SAM, CLV2, CRN, RPK2, BAM1, BAM2 and BAM3 are more broadly expressed throughout the plant, where they regulate numerous developmental processes (Kayes and Clark, 1998; Strabala et al., 2006; Muller et al., 2008; Mizuno et al., 2007; Nodine et al., 2007; Clark et al., 1993; DeYoung et al., 2006; Hord et al., 2006).

In the RAM of Arabidopsis, an analogous pathway is observed as the one described above for the SAM, to fine tune the balance between stem cell differentiation and maintenance (Stahl et al., 2009). A quiescent center (QC), which is the functional equivalent of the SAM-located OC, comprises four cells and is surrounded by stem cells, also called initials, which give rise to the different root tissues (Sarkar et al., 2007). Recently, Stahl and Simon (2009) reported on the existence of a CLE40/ARABIDOPSIS CRINKLY4 (ACR4)/WOX5 pathway controlling distal stem cell regulation in Arabidopsis root meristems. Reduction of CLE40 levels expanded the WOX5 expression domain, resulting in distal stem cell accumulation, while increased levels of CLE40 promoted distal stem cell differentiation by reduced WOX5 expression (Stahl et al., 2009). CLE40 signaling in the roots was shown to be independent of CLV2 (Stahl et al., 2009), but dependent on ACR4, encoding a RLK which is mainly expressed in the columella stem cells (De Smet et al., 2008; Stahl et al., 2009). Like CLE40, ACR4 is suggested to be involved in a negative regulation of distal stem cell fate, as acr4 mutants carry additional layers of distally located columella stem cells (De Smet et al., 2008; Stahl et al., 2009). Moreover, the absence of a synergistic phenotype when supplying CLE40 peptides to acr4 mutants implies that ACR4 and CLE40 are acting in the same pathway (Stahl et al., 2009). Finally, ectopic CLE40 peptides would have a positive effect on ACR4 expression (Stahl et al., 2009; Stahl and Simon, 2009). According to Stahl and Simon (2009), this upregulation of ACR4 by CLE40, might be necessary to sequester all available CLE40 peptides and consequently protect WOX5 expression in the QC niche cells, thereby maintaining the surrounding stem cells. In addition to CLE40, CLE14 and CLE20 are suggested to be involved in RAM maintenance. These CLE peptide genes are expressed outside the RAM in highly differentiated root cells, and their influence on RAM homeostasis was suggested to be CLV2/CRN-dependent, but CLV1-independent (Casamitjana-Martinez et al., 2003; Miwa et al., 2008; Meng et al., 2010; Meng and Feldman, 2010, 2011; Muller et al., 2008). This indicates that CLV2 and CRN might act cooperatively in mediating CLE signaling not only in the shoot but in certain cases also in the roots. Hence, like in the SAM, several receptor
complexes, including ACR4, CLV2 and CRN, are involved in CLE-regulated control of RAM homeostasis.

A CLE peptide mediated signaling pathway also controls the balance between proliferation of (pro)cambial cells and differentiation into xylem tissue during secondary growth of vascular tissue (Evert, 2006; Hirakawa et al., 2008, 2010a,b). TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF), a phloem-expressed CLE peptide with an identical amino acid sequence as CLE41 and CLE44 of Arabidopsis, signals through the procambial cell-located LRR-RLK of subclass XI TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) receptor/PHLOEM INTERCALATED WITH XYLEM (TDR/PXY, hereafter TDR) to regulate WOX4 expression in the procambium and cambium, resulting in the inhibition of tracheary element differentiation. Hence, these CLE peptides inhibit cellular differentiation which is opposite to the function of CLV3 in the SAM and CLE14, CLE20 and CLE40 in the RAM (Kubo et al., 2005; Ito et al., 2006; Fisher and Turner, 2007; Hirakawa et al., 2008, 2010a). In contrast to the CLE peptide mediated repression of WUS/WOX5 expression observed in the SAM/RAM, TDIF application results in an upregulation of WOX4 in a TDR-dependent manner (Hirakawa et al., 2010a).

Legumes plants have particular secondary root organs, the nodules, which harbor symbiotic nitrogen fixing rhizobia. Nodules develop after re-initiation of cell division in the cortical and pericycle cells (Oldroyd and Downie, 2008; Ferguson et al., 2010). The nodule primordium is colonized by rhizobia, resulting in cells in which the bacteria reside and fix nitrogen. Many legumes, amongst which model legume Medicago truncatula, carry indeterminate nodules with an apical meristem that continuously provides new cells that are infected by bacteria and in which nitrogen fixation is taking place (reviewed by (Oldroyd and Downie, 2008; Ferguson et al., 2010).

Although the location/existence of an OC/QC in the nodule meristem is currently unknown, the coordination of cell proliferation and differentiation is generally assumed to be similar to the CLE/RLK/WOX pathway observed during SAM, RAM and vascular meristem maintenance. Based on expression patterns and functional analysis, two M. truncatula CLE genes, MtCLE12 and MtCLE13, were suggested to be involved in nodule organogenesis and autoregulation of nodulation (AON) (Mortier et al., 2010) (see chapter 4). The AON mechanism prevents the uncontrolled growth of nodules and involves a long-distance feedback mechanism, whereby early infection events suppress subsequent nodule initiation (Kosslak and Bohlool, 1984; Carroll et al., 1985a,b; Delves et al., 1986; Pierce and Bauer, 1983; Nutman, 1952). A shoot localized receptor complex, with components that are similar to receptors of CLV3 in Arabidop-
MtRLKs involved in nodulation

sis, controls AON. The first identified component of this complex was the *M. truncatula* SUPER NUMERIC NODULES (SUNN, or HYPERNODULATION ABER-RANT ROOT FORMATION1 (HAR1) in *Lotus japonicus*, NODULE AUTOREGULA-TION RECEPTOR KINASE (NARK) in soybean and SYMBIOSIS29 (SYM29) in pea), a LRR-RLK of subclass XI and closest legume homolog of Arabidopsis CLV1 (Nishimura et al., 2002a; Schnabel et al., 2005; Okamoto et al., 2009; Mortier et al., 2010). Recently, the Lotus and pea CLV2-homologs, as well as KLAVIER (KLV), en-coding a LRR-RLK closely homologous to Arabidopsis RPK2, were added, suggesting that, similar to SAM and RAM homeostasis, several receptor complexes are involved in the shoot control of nodulation (Kinoshita et al., 2010; Krusell et al., 2011).

What the signal is that binds this receptor complex is unknown but it is with high probability a CLE peptide. It has been proposed that the CLE peptide might come from the developing nodules in the root. Functional analysis in *L. japonicus*, *M. truncatula* and soybean, indeed identified a group of structurally related CLE peptides that are expressed in the nodules as good candidates because ectopic expression abolishes or reduces nodulation in a HAR1/SUNN/NARK dependent way (Okamoto et al., 2009; Mortier et al., 2010, 2011; Reid et al., 2011). However, long-distance travel of these CLE peptides have not been shown and since the functional data involves ectopic ex-pression analysis and because CLE peptides are currently proposed to be short distance signals, it is equally possible that different CLE peptide/receptor complexes act in the root and the shoot to control nodule number.

We searched for putative nodule-specific CLE peptide receptors based on the ob-servation that many known and putative CLE peptide receptors such as CLV1, BAM1, BAM2, BAM3 and TDR belong to subclass XI of LRR-RLKs (Shiu and Bleecker, 2001). A primary analysis identified two possible candidate genes, *MtRLK1* and *MtRLK2*. However, a more in-depth phylogenetic analysis revealed that *MtRLK2* is more closely related to the genes encoding LRR-RLKs of subclass VII, suggesting a possible role in plant immunity, while *MtRLK1* is closely homologous to the Arabidopsis BAM3. Both *MtRLK1* and *MtRLK2* are upregulated from 6 days post inoculation on and their expression is positioned downstream of most early NF signaling components. In addi-tion, the expression pattern of *MtRLK1* is lying adjacent to and is partially overlapping with the expression patterns of *MtCLE12* and *MtCLE13*, confirming that it might act as a receptor for MtCLE12 and MtCLE13 ligands. Finally, we also investigated the ex-pression of SUNN in nodules and could confirm previous data indicating that the gene is not expressed during nodulation but has a low expression level in the vasculature of
the root.

Chapter 7

7.2 Results

7.2.1 Search for SUNN-related RLKs involved in nodulation

Many CLE receptors, such as CLV1, TDIF and possibly BAM1, BAM2 and BAM3, belong to the subclass XI of LRR-RLKs (Shiu and Bleecker, 2001; DeYoung et al., 2006; Deyoung and Clark, 2008). To find putative CLE peptide receptors expressed in developing nodules, we looked for all LRR-RLK homologs of subclass XI from the M. truncatula genomic data (Mt3.0) and analyzed the in silico expression patterns using the GeneAtlas tool21.

To identify the subclass XI LRR-RLKs from M. truncatula, an in silico pipeline was used which is based on the HMMer software (Rombauts S. and Van de Peer Y., in preparation) that is more sensitive and specific than BLAST or PSI-BLAST analyses (Eddy, 2009). Primarily, Hidden Markov Models (HMMs) were constructed based on a multiple alignment of all known Arabidopsis LRR-RLKs of subclass XI but also of subclass XIII. The subclass XIII was included in the analysis because phylogenetic analysis revealed that this group is closely related to the subclass XI of RLKs (Shiu and Bleecker, 2001). All conserved regions in the alignment (domains) from at least 6 amino acids were taken into consideration. In a next step, the whole M. truncatula proteome (Mt3.0) and all known Arabidopsis LRR-RLKs, were screened for the presence of those HMMs. The scores for each HMM, received from the HMMer software, were normalized in function of the length of each individual domain to allow domains to contribute equally to the final score. The final scores were next ordered in vectors per gene and stored in a matrix. By applying hierarchical clustering (Cluster 3.0) on this matrix, genes with highly correlated vectors were grouped together (de Hoon et al.,

21http://mtgea.noble.org/v2/

Figure 7.1 (facing page): In silico expression profiles of MtRLK1, MtRLK2 and SUNN, retrieved from the Medicago Gene Expression Atlas from the Noble foundation. Tissues analyzed are indicated below the diagrams. The three diagrams at the bottom of the page are magnifications of the top diagram and represent the expression profiles of MtRLK1, MtRLK2 and SUNN in nodulation-specific tissues.

164
MtRLKs involved in nodulation
The *M. truncatula RLK* genes that clustered together with *CLV1* and *BAM1-3* were taken as primary candidates.

From this analysis, 33 sequences were retained and for 16 of those, an expression pattern was available at the Medicago Gene Expression Atlas from the Noble Foundation (Supplemental data; Table 7.2). This analysis revealed that two of these 16 genes were upregulated during nodulation (Figure 7.1, A and B); the genes were designated *MtRLK1* (Mtr.4752.1.S1_at) and *MtRLK2* (Mtr.1974.1.S1_at). According to the Medicago Gene Expression Atlas, a basal *MtRLK1* expression was seen in roots and the expression level in developing nodules was higher than in roots. This was true for all nodulated tissues available. *MtRLK2* expression was only detected in nodulated tissues especially in the sample of 4 days post-inoculation. As a comparison, the expression of *SUNN* was analyzed. As shown in Figure 7.1C, the *SUNN* (Mtr.46819.1.S1.s_at) transcript level is lower in nodulated samples compared to root samples (Figure 7.1C). Moreover, the *SUNN* transcripts are seen in a wide range of tissues including leaves, petioles, stems and roots (Figure 7.1C).

To confirm whether the identified *MtRLKs* belong to subclass XI, a phylogenetic analysis was performed (Figure 7.2). *A. thaliana* sequences homologous with *MtRLK1*, *MtRLK2* and *SUNN* were retrieved from the TAIR9 CDS databank using the tBLASTx algorithm and aligned to the 3 *M. truncatula RLKs*. Next, a phylogenetic tree was designed according to the ‘maximum likelihood’ principle (Guindon and Gascuel, 2003) using homologous regions throughout the full length protein sequences. The AtLRR-RLK AT2G25790 was chosen as an outgroup. Bootstrap values were based on 1000 reconstructions. The resulting tree is shown in Figure 7.2. For each Arabidopsis RLK, the subclass is indicated using a color code, that was assigned by Shiu and Bleecker (2001) based on a phylogenetic analysis of the kinase domains. Comparison of the color code distribution with the tree organization shows that a similar phylogenetic relation is obtained when the complete amino acid sequences or only the kinase domains

Figure 7.2 (facing page): Phylogenetic tree of *MtRLK1*, *MtRLK2*, SUNN and their *A. thaliana* homologs. The phylogenetic tree is based on the full amino acid sequences and build according to the ‘maximum likelihood’ principle. The LRR-RLK AT2G25790 was chosen as an outgroup, and bootstrap values were based on 1000 reconstructions. Genes marked in black do not belong to any of these groups. Color-marking refers to the 13 subclasses of LRR-RLKs identified in the genome of *A. thaliana* as identified by Shiu and Bleecker (2001). Arrows mark location of *MtRLK1*, *MtRLK2* and SUNN in the phylogenetic tree.
MtRLKs involved in nodulation
are taken for the analysis. Likewise the same subclass division can be used here as the one used by Shiu and Bleecker (2001). As previously shown, SUNN is the closest related to CLV1 from Arabidopsis (Schnabel et al., 2005). Also MtRLK1 is closely related to CLV1. MtRLK1 is the closest relative of BAM3 and belongs together with CLV1, BAM1, BAM2 and SUNN to the same branch of the phylogenetic tree (Figure 7.2). On the other hand, MtRLK2 shares the highest similarity with the LRR-RLKs of subclass VII, to which FLAGELLIN SENSITIVE2 (FLS2) and EF-TU RECEPTOR (EFR) belong (Figure 7.2).

7.2.2 QRT-PCR analysis of RLK1, RLK2 and SUNN during noduleation and in different tissues

In order to confirm the in silico expression data retrieved from the Medicago Gene Expression Atlas from the Noble foundation, the temporal expression of MtRLK1, MtRLK2 and SUNN was studied during nodule development, by analyzing the relative transcript levels at 4, 6, 8, and 10 days post inoculation (dpi). The elongation zone of uninoculated roots, the nodule initiation site, was used as the reference tissue. MtRLK1 transcripts increased from 6 dpi until 10 dpi (Figure 7.3A). MtRLK2 expression was low at 4 dpi, but increased at 6 dpi, and remained high until 10 dpi (Figure 7.3B). The expression level of SUNN was lower in all noduleation related tissues compared to the level observed in roots (Figure 7.3C). These results broadly confirm the in silico expression data.

![Expression analysis during nodulation](image)

Figure 7.3: Expression analysis during nodulation. Expression analysis of MtRLK1, MtRLK2 and SUNN by qRT-PCR on cDNA samples of zone I root tissues of uninoculated plants (NI) and at 4, 6, 8, and 10 dpi. The elongation zone of uninoculated roots, the nodule initiation site, was used as the reference tissue. Data and error bars represent means ± SD. The experiment was repeated twice with comparable results.

To determine tissue- or organ-specific expression, quantitative reverse-transcriptase
MtRLKs involved in nodulation

(qRT)-PCR was carried out for MtRLK1, MtRLK2 and SUNN on cDNAs derived from root elongation zones, leaves, stems, root tips, shoot apical meristems (SAMs), first leaves, and cotyledons grown in nitrogen poor, nitrogen rich or nodulated conditions. The root elongation zone of roots grown in nitrogen rich conditions was used as the reference tissue. MtRLK1 and SUNN transcripts were found in all material tested and thus have a general expression pattern (Figure 7.4, A and C). For MtRLK1, the highest expression is measured in root and stem tissues, while for SUNN, the highest expression was seen in stems. The expression of MtRLK2 is specific for nodulated root tissues (Figure 7.4B).

Figure 7.4: Expression analysis in different plant tissues. Expression analysis of MtRLK1, MtRLK2 and SUNN respectively, by qRT-PCR on cDNA samples of root elongation zones (Root), leaves, stems, root tips, shoot apical meristems (SAMs), first leaves and cotyledons (cotyl) grown in nitrogen rich conditions, and of 1-month-old nodulated roots (Root nod). The root elongation zone of roots grown in nitrogen rich conditions was used as the reference tissue. A cutoff was set at Ct value ≥ 35. Data and error bars represent means ± SD.

7.2.3 RLK1, RLK2 and SUNN expression pattern in roots and developing nodules

Spatial expression patterns of MtRLK1, MtRLK2 and SUNN in roots and developing nodules were investigated by promoter:GUS analysis and in situ hybridizations. A 2-kb region upstream of MtRLK1, MtRLK2 and SUNN was isolated based on the available genomic data22 and cloned 5’ to the uidA gene. Transcriptional activation of the uidA

gene was visualized by GUS staining.

Figure 7.5: Promoter:GUS activity of *MtRLK1, MtRLK2* and *SUNN* in uninoculated roots. For *MtRLK1* (A) a faint and for *SUNN* (C) a bright blue staining was observed in the root vascular tissue (arrowheads). B, No blue staining was observed in the *pMtRLK2:GUS* transformed root samples. Bars = 0.5 mm.

In the vascular tissue of uninoculated roots, a weak and a strong blue staining was

Figure 7.6 (facing page): *MtRLK1, MtRLK2* and *SUNN* promoter activity during nodulation. A-F, Promoter:GUS activity of *MtRLK1* in nodule primordia (A and D), young nodules (B and E) and mature nodules (C and F). D to F are bright-field pictures of longitudinal sections through the nodules represented in A to C, respectively. In nodule primordia, weak GUS expression is observed at the base of the primordium (D, arrow). In slightly older nodules, blue staining is observed in the central tissue in a zone comprising the infection and fixation zone (E, arrow). In mature nodules, expression is restricted to the apical zone of elongated nodules, with the highest expression in the lower part of the meristem and infection zone. G-L, Promoter:GUS activity of *MtRLK2* in nodule primordia (G and J), young nodules (H and K) and mature nodules (I and L). J to L are bright-field pictures of longitudinal sections through the nodules represented in G to I, respectively. In nodule primordia blue coloring was observed in infection threads containing differentiating cells (J, arrow), but not in the outer cortical cells (J, arrowhead). In young nodules, blue coloring was observed in the central tissue in a zone comprising the infection and fixation zone (K, arrow). A weak expression was observed in the pre-infection zone, but not in the meristem (K, asterisk). In mature nodules expression is detected in the infection zone and the upper part of the fixation zone, but not in the meristematic tissue (L). M-R, Promoter:GUS activity of *SUNN* in root vascular tissue (P), young nodules (M, N and Q) and mature nodules (O and R). P is a bright-field picture of a section through a root vascular tissue. Q and R are bright-field pictures of longitudinal sections through the nodules represented in N and O, respectively. Blue coloring was observed in the phloem of the root vascular bundles (P, arrows; M and N, arrowheads) and at the base of the nodule vascular tissue (Q, arrows). No expression was detected in the meristem, infection and fixation zone of mature nodules (Q and R). All sections were counterstained with 0.05 % ruthenium red. m, meristem; inf, infection zone; fix, fixation zone; xy, xylem; co, cortex; Bars = 2 mm (A-C, G-I and M-O), 0.4 mm (D-E, J-K and Q), 0.1 mm (P) and 1 mm (F, L and R).
MtRLKs involved in nodulation
observed for MtRLK1 and SUNN, respectively (Figure 7.5, A and C). For MtRLK2 no GUS expression could be detected in the roots (Figure 7.5B).

At early stages after inoculation, pMtRLK1:GUS activity was observed within the incipient nodule primordia (Figure 7.6, A and D). Sectioning revealed that it were the cells derived from the pericycle/endodermis that stained blue. At a later stage, when infection threads were observed within the primordium, GUS staining was still mostly seen in the part of the primordium located near the vascular tissue. Later in nodule development, in mature nodules with an apical meristem, pMtRLK1:GUS was restricted to the apical zone of elongated nodules, with the highest expression in the lower part of the meristem and infection zone (Figure 7.6, C and F).

Also MtRLK2-related GUS staining was seen in primordia at very early stages (Figure 7.6G). Sectioning revealed that pMtRLK2:GUS was only observed in infection threads containing cells (Figure 7.6J). In round, young nodules, pMtRLK2:GUS staining was seen throughout the central tissue, comprising the infection and young fixation zone, (Figure 7.6, H and K). No pMtRLK2:GUS expression was seen in the meristem (Figure 7.6K). Also in mature nodules expressing pMtRLK2:GUS, GUS staining was observed in the infection zone and the upper part of the fixation zone, but not in the meristematic tissue (Figure 7.6, I and L).

Expression of SUNN was observed in the phloem of the root vascular bundles (Figure 7.6, M, N and P) and at the base of the nodule vascular tissue (Figure 7.6Q). Blue staining was not seen in the cortical tissue of young nodules (Figure 7.6, M, N and Q), neither in the meristem, infection and fixation zone of mature nodules (Figure 7.6, O and R).

In situ hybridizations to detect the transcript accumulation of MtRLK1 and MtRLK2 revealed an expression pattern broadly similar to the results of the promoter:GUS analysis. Transcripts of MtRLK1 were mostly detected in the infection zone, but also slightly in the pre-infection zone and meristematic tissue (Figure 7.7, A and B). For MtRLK2, transcript levels were located not only in the infection and fixation zone, but also at a very low level in the meristem (Figure 7.7, C and D).

7.2.4 Contribution of nodulation-related components and hormones for RLK1, RLK2 and SUNN expression

To investigate whether NF signaling components are required for the expression of MtRLK1, MtRLK2 and SUNN, we analyzed their transcript levels by qRT-PCR before
MtRLKs involved in nodulation

Figure 7.7: *MtRLK1* and *MtRLK2* transcript accumulation in nodules by using *in situ* hybridizations. Microscopical images of *in situ* hybridizations on sections of young nodules. On the bright field picture (A and C), signal is seen as black spots, on the dark field picture (B, D), signal is seen as white spots. A-B, Detection of *MtRLK1* transcripts. *MtRLK1* transcripts are mostly seen in the infection zone, but also in the pre-infection zone and in the meristematic tissue close to the pre-infection zone. C-D, Detection of *MtRLK2* transcripts, mostly in the infection and fixation zone, but also slightly in the meristem. Sections were counterstained with toluidine blue. f, fixation zone; i, infection zone; pi, pre-infection zone; m, meristem. Bars = 0.5 mm.

and after inoculation of *nin*, the *ERN1* mutant branching infection threads1-1 (*bit1-1*), *nsp1*, *nsp2*, *dmi1*, *dmi2*, and *dmi3* mutants (Figure 7.8). The mutant lines did not develop nodules, except for *bit1-1*, which formed arrested primordia and infection foci (Andriankaja *et al.*, 2007; Middleton *et al.*, 2007). For *MtRLK1*, gene expression was upregulated upon inoculation in wild type *M. truncatula* roots (Figure 7.8A). In the roots of the nodulation mutants this effect was not observed, indicating that the expres-
sion of \textit{MtRLK1} is dependent on early nodulation signaling components (Figure 7.8A). A similar result was obtained for \textit{MtRLK2}, except in \textit{bit1-1}, where an upregulation after inoculation was still observed, albeit less abundantly than in wild type plants (Figure 7.8B). To confirm the qRT-PCR analysis, \textit{pMtRLK2:GUS} transgenic roots were generated in an \textit{ERN1} mutant background and analyzed at 5 dpi. GUS staining revealed the typical \textit{MtRLK2} expression pattern in the wild type roots and in the \textit{bit1-1} mutant, blue stained regions were seen corresponding to arrested infection foci (Figure 7.8D). These data are in agreement with the qRT-PCR data. The reduction in \textit{SUNN} expression observed after inoculation of wild type plants was also measured in the nodulation mutants \textit{nsp1, nsp2, bit1-1, nin-1} and \textit{dmi1} but not in the mutants \textit{dmi2} and \textit{dmi3} (Figure 7.8C).

Auxin and cytokinin are important hormones for nodule formation (Oldroyd and Downie, 2008; Ding and Oldroyd, 2009). To determine whether auxins and/or cytokinins affect \textit{MtRLK1, MtRLK2} and \textit{SUNN} expression, 10^{-6} M indole-3-acetic acid (IAA) or 10^{-7} M 6-benzylaminopurine (BAP) was supplemented to the growth medium of 5-day-old seedlings. The roots of 18 seedlings were harvested under each condition after 0, 3, 6, 12, 24, and 96 h. Roots from plates without hormone addition were used as a negative control. No significant differences in \textit{MtRLK1} or \textit{SUNN} expression were detected in treated versus control roots (data not shown). For \textit{MtRLK2} no expression was detected in any of the tested samples (data not shown).

\subsection*{7.2.5 Effect of \textit{MtRLK1} RNAi on nodulation}

To investigate the effect of knocking down \textit{MtRLK1} expression on the nodulation process, a RNAi hairpin construct was made and introduced into transgenic roots by \textit{Agrobacterium rhizogenes} Arqual1 transformation. To do so, a 205 bp long fragment, located in that part of the open reading frame (ORF) encoding the extracellular domain, was selected. Next, composite plants with transgenic roots were made, grown in aeroponics, inoculated with \textit{Sm2011} pBHR-mRFP and analyzed at 14 dpi. The expression level of \textit{MtRLK1} was measured by qRT-PCR analysis on cDNA samples of a pool of 10 nodules harvested on transgenic roots expressing either \textit{35S:GUS} (control) or a hairpin construct inducing the knock-down of \textit{MtRLK1} expression (RNAi \textit{MtRLK1}). Unfortunately, we were not able to demonstrate an efficient knock-down of \textit{MtRLK1} expression (Figure 7.9). Possibly, the fragment is too short to activate the RNAi machinery. Therefore, the experiment will be repeated with a longer RNAi fragment.
MtRLKs involved in nodulation

Figure 7.8: MtRLK expression in nodulation mutants. A, B and C, Expression analysis of MtRLK1, MtRLK2 and SUNN, respectively, by qRT-PCR on cDNA samples of zone I root tissues of wild type plants (WT) and nsp1, nsp2, bit1-1, nin, dmi1, dmi2, or dmi3 mutants, before inoculation (control) and at 7 dpi. A cutoff was set at Ct value ≥ 35. D, pMtRLK2:GUS activity at 5 dpi in the roots of a wild type plant (A17) and in a bit1-1 mutant. Blue stained cortical regions are observed corresponding to infection. The experiments were repeated twice with comparable results. Data and error bars represent means ± SD.

7.3 Discussion

CLE peptides are mostly recognized by different receptor complexes of which many members belong to the LRR-RLKs of subclass XI (CLV1, BAM1, BAM2, BAM3, SUNN and orthologs) (Shiu and Bleecker, 2001). In our search for putative receptors of MtCLE12 and MtCLE13 ligands in the genome of *M. truncatula*, we identified two new receptor candidates, *MtRLK1* and *MtRLK2*. Although both *MtRLK1* and *MtRLK2* were initially identified as LRR-RLK of subclass XI, a more in-depth phylogenetic analysis revealed that *MtRLK2* is actually closer related to the LRR-RLKs of subclass VII, to which the pattern recognition receptors (PRRs) FLAGELLIN SENSITIVE 2
Figure 7.9: Analysis of the knock-down of *MtRLK1*. qRT-PCR analysis of *MtRLK1* expression in cDNA samples of nodules harvested on transgenic roots expressing either 35S:GUS (control) or a hairpin construct to induce knock-down of *MtRLK1* expression (RNAi *MtRLK1*). Data and error bars represent means ± SD.

(FLS2) and EF-TU RECEPTOR (EFR) from Arabidopsis belong. PRRs are involved in plant immunity by the recognition of pathogen associated molecular patterns (PAMPs), ensuing the activation of a mitogen-activated protein kinase (MAPK) signaling pathway to trigger immunity (Jones and Dangl, 2006). Hence, based on its phylogenetic position, *MtRLK2* is suggested to act as a PRR. The expression pattern detected by qRT-PCR, *promoter:GUS* analysis and *in situ* hybridization fits with a role during invasion. *MtRLK2* was solely expressed in nodulated roots and was not detected in other plant tissues. In addition, at the cellular level, *MtRLK2* expression was seen in cells that surrounded invading infection threads, not only early at the infection sites, but also later in the cortex and finally in the infection zone and young fixation zone of the mature nodule. It is well known that rhizobial invasion is accompanied by plant-derived defense responses to prevent the uncontrolled growth of rhizobia and/or to avoid co-invasion of opportunistic or pathogenic bacteria. In addition, the defense responses might contribute positively to support infection thread formation (Arrighi et al., 2006; Smit et al., 2007; Oldroyd and Downie, 2008). *MtRLK2* might be involved in activating those defense responses specifically during infection thread development, as *MtRLK2* expression was not detected anymore in cells of the mature fixation zone. What triggers the expression of *MtRLK2* is not known but it might be of bacterial origin. This is supported by the invasion-specific expression pattern. In agreement, addition of cytokinin and auxin could not trigger the expression. Moreover, the *MtRLK2* expression was dependent on most components of the early NF signaling pathway, including *DMI1*,
MtRLKs involved in nodulation

DM12, DM13, NSP1, NSP2, and NIN. Only in the ERN mutant, bit1-1, an upregulation of MtRLK2 was measured. Bit1-1 is the only mutant tested that allows primary invasion and cell division (Andriankaja et al., 2007; Middleton et al., 2007), and MtRLK2 was associated with sites of bacterial invasion. Whether the bacterial Nod factors can activate MtRLK2 expression or whether other bacterial components are involved, is currently not known, but interesting to test in the future. In addition, functional analysis, including RNAi and ectopic expression might reveal its precise role in nodulation.

A role for MtRLK2 as CLE ligand receptor, although not plausible because of the expression patterns and phylogenetic analysis, can yet not be excluded because several CLE peptide receptors are known, which do not belong to subclass XI of LRR-RLKs (Jeong et al., 1999; Kayes and Clark, 1998; Miwa et al., 2008; Muller et al., 2008; Hirakawa et al., 2008; Stahl et al., 2009). On the other hand, MtRLK1, like SUNN, is more likely to function as a CLE-ligand receptor because it is closely related to the members of subclass XI of LRR-RLKs. More particularly, the phylogenetic analysis showed that MtRLK1 shares the highest similarity with A. thaliana BAM3 while, as already known, SUNN is the closest M. truncatula homolog of CLV1 (Schnabel et al., 2005). Both BAM3 and CLV1 function in SAM homeostasis by regulating stem cell identity (DeYoung et al., 2006; Deyoung and Clark, 2008), suggesting that MtRLK1 might be involved in controlling the balance between cell proliferation and differentiation within the nodule. Nevertheless, functional analyses need to be done as homologous genes do not always carry out identical functions; e.g. sunn mutants do not exhibit a clv1 phenotype, but are characterized by a supernodulation phenotype (Schnabel et al., 2005).

The question arises whether both SUNN and MtRLK1 might be receptors of MtCLE12 and MtCLE13. So far, CLE peptides are known to act as short distance signals that are perceived in a cell-non autonomous manner by neighboring cells (Fukuda et al., 2007; Hirakawa et al., 2008; Whitford et al., 2008; Miwa et al., 2009; Stahl et al., 2009). Both SUNN and MtRLK1 are expressed in the vascular tissue of the root but in contrast to SUNN, which is downregulated upon inoculation, the transcript level of MtRLK1 raised from 6 dpi on. The MtRLK1 upregulation coincided with the expression of MtCLE12 and MtCLE13 (Mortier et al., 2010). Moreover, at the onset of the nodulation process, MtRLK1 transcripts were detected in the inner cells of the developing nodules. Later on in mature nodules, MtRLK1 expression was seen in part of the meristem and in the infection zone. This expression pattern is lying adjacent to and is partially overlapping with the expression pattern of MtCLE12 and MtCLE13 (Figure 7.10) (Mortier et al., 2010). Hence, if CLE peptides act as short-distance signal-
ing molecules, \textit{MtRLK1} might be a receptor of the MtCLE12 and MtCLE13 peptides (Clark et al., 1997; Ogawa et al., 2008; Stahl et al., 2009; Hirakawa et al., 2010b). The analysis of expression in the different nodulation mutants indicated that all early nodulation components tested are needed for nodulation-triggered \textit{MtRLK1} expression. Even in \textit{bit1-1}, in which arrested nodule primordia are detected, \textit{MtRLK1} expression was not seen. This is in contrast to \textit{MtCLE13} from which promoter activity was already seen before or at the onset of primordium formation. Hence, \textit{MtRLK1} expression is switched on after \textit{MtCLE13} expression, but before \textit{MtCLE12} expression. By which trigger is unknown but the expression seems independent of auxin or cytokinin addition (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007).

\textbf{Figure 7.10:} Expression pattern of CLE peptides (MtCLE12 and MtCLE13) and putative CLE peptide receptors (SUNN and MtRLK1) involved at different stages during nodulation on \textit{M. truncatula}. A nodule initiation, B nodule primordium, C mature indeterminate nodule.

The expression pattern of \textit{SUNN} is less supportive for short-distance signaling via the MtCLE12 and MtCLE13 ligands. The \textit{SUNN} transcripts were solely detected in the vasculature of the root and of the basal side of the nodule. This is a few cell
layers away from the site where MtCLE12 and MtCLE13 expression are detected. In addition, the expression was decreasing as nodulation progressed, which is opposite to the expression pattern of MtCLE12 and MtCLE13. Still, a function for SUNN as a long-distance receptor cannot be ruled out. There was a large variation in basal expression level between the different nodulation mutants for both MtRLK1 and MtSUNN. Hence, an unknown component might modulate the expression levels of both genes in the vascular tissue of the root.

MtCLE12 and MtCLE13 are supposed to have a dual role in nodulation: to control nodule number and to control nodule homeostasis (Mortier et al., 2010). MtCLE12 and MtCLE13 were suggested to be involved during AON, as ectopic expression of these genes resulted in SUNN-dependent inhibition of nodulation and RNAi resulted in SUNN-dependent increase in nodule number (Mortier et al., 2010) (see chapter 5). Grafting experiments have shown that although SUNN is expressed in the root, it is the shoot-expressed SUNN that controls nodule number (Penmetsa et al., 2003; Francisco and Harper, 1995). Similar observations were made for soybean and L. japonicus (Jiang and Gresshoff, 2002; Krusell et al., 2002; Nishimura et al., 2002a). Based on these experiments it has been proposed that the nodulation-related CLE peptides might migrate to the shoot to act as ligands for SUNN and its orthologs. However, long distance movement of CLE peptides have not been demonstrated yet and so far it is not known whether root or shoot expressed SUNN is needed for the MtCLE12 or MtCLE13 overexpression phenotype. Interestingly, MtRLK1 shares an analogous expression pattern with SUNN in the root. A weak and strong blue staining was observed in the root vascular tissue for MtRLK1 and SUNN, respectively. A similar expression pattern was reported for the SUNN homologs, HAR1 from L. japonicus and NARK from Glycine max (Nontachaiyapoom et al., 2007). This suggests that in the vasculature, MtRLK1 might act as an interacting partner of SUNN. In agreement, in the SAM and the RAM several homo- and heteromultimers were previously shown to be involved in stem cell homeostasis through CLE peptide signaling (Zhu et al., 2010a; Bleckmann et al., 2010; Guo and Clark, 2010; Miwa et al., 2008; Muller et al., 2008; Stahl et al., 2009; Stahl and Simon, 2009). Functional analysis needs to be done to unequivocally show the function of MtRLK1. Unfortunately, we were not able to demonstrate an efficient knock-down of MtRLK1 expression so far. Possibly, the fragment used was too short to efficiently activate the RNAi machinery. The experiment should be repeated with a longer RNAi fragment.

As suggested by their expression pattern, MtCLE12 and MtCLE13, might control
the balance between cell division and differentiation during nodulation. In addition, RNAi analysis has shown that down-regulation of \textit{MtCLE12} and \textit{MtCLE13} expression resulted in nodules with an early senescence zone, indicative for a change in differentiation stage of the nodule cells. During early nodulation, expression of \textit{MtRLK1} is also linked with cell differentiation as the expression was detected in nodule primordia, and later on in the apical region of the nodule comprising meristematic cells, infection zone cells and cells of the early fixation zone. This expression pattern is similar to the expression patterns of \textit{BAM1} and \textit{BAM2} in differentiating cells on the meristem flanks of the SAM (DeYoung \textit{et al.}, 2006). Hence, \textit{MtRLK1} might be the receptor of \textit{MtCLE12} and \textit{MtCLE13} ligands to control cell division and differentiation in the nodule. A gradient of \textit{MtCLE12} and \textit{MtCLE13} peptides with the highest concentration in the pre-infection/infection zone might control the transition of the meristem descendants into cells of the fixation zone through \textit{MtRLK1} signaling (Figure 7.10) (Mortier \textit{et al.}, 2010). Combined with the results of the RNAi analysis (see chapter 5), these data suggest that \textit{MtCLE12} and \textit{MtCLE13} are restraining cell differentiation, similar to what was reported for the CLE peptide TDIF (Hirakawa \textit{et al.}, 2008, 2010b). However, in contrast to \textit{TDIF}, the signal generated downstream of \textit{MtCLE12/MtCLE13} would not only be produced in stem cells, but also in differentiating cells, the places where \textit{MtRLK1} transcripts were detected. Possibly, restraining of cell differentiation by \textit{MtCLE12} and \textit{MtCLE13} is needed to sustain a positive environment in differentiating cells, to allow efficient bacterial invasion. For \textit{BAM3}, the closest homolog of \textit{MtRLK1}, an opposite role has been reported, more precisely in cell differentiation during pollen formation and the development of the vascular system (DeYoung \textit{et al.}, 2006; Deyoung and Clark, 2008).

Whatever the function, there is an urgent need for functional analysis of both receptors identified in this study to demonstrate their possible function. It seems that we have identified another receptor-like-kinase that might be involved in CLE peptide signaling during nodulation. The CLE peptide signaling gets very complex and different receptor complexes might be located in different cells to interpret the CLE peptide landscape and translate it in the proper outcomes. Although the functional analysis might be hampered by the redundant action of the CLE peptides and receptors, many experiments can be done to further understand how the CLE peptides act. For instance, translational fusions should confirm that \textit{MtCLE12} and/or \textit{MtCLE13} peptides are secreted in the nodule infection zone, where \textit{MtRLK1} is expressed. In addition, biochemical analysis should be performed to analyze the interactions between \textit{MtRLK1} and \textit{SUNN}, or
other possible candidates of the CLE peptide receptor complex.

7.4 Materials and methods

Biological material

Medicago truncatula Gaertn. cv. Jemalong A17 and J5 as well as _nin, bit1-1, nsp1, nsp2, dmi1, dmi2_, and _dmi3_ mutants (Catoira et al., 2000; Oldroyd and Long, 2003; Marsh et al., 2007; Middleton et al., 2007) were grown and inoculated as described (Mergaert et al., 2003). _Sinorhizobium meliloti_ 1021, _Sm1021_ pHC60-GFP (Cheng and Walker, 1998), and _Sm2011_ pHBr-mRFP (Smit et al., 2005) were grown at 28°C in yeast extract broth medium (Vervliet et al., 1975), supplemented with 10 mg L⁻¹ tetracycline for the _Sm1021_ pHC60-GFP and _Sm2011_ pHBr-mRFP strains.

For _promoter:GUS_ analysis, a 2-kb region upstream of _MtRLK1_ (CT485797), _MtRLK2_ (CR931811) and _SUNN_ (AY769943) was isolated from genomic DNA based on the available genomic data. The promoters were fused to the _uidA_ gene in pKm43GWRoLDC1 (Karimi et al., 2002). Primers used for amplification are presented in Table 7.1.

Table 7.1: Primers used in the analyses.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway cloning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>promoter-MtRLK1</td>
<td>ATATGCACCAACAACGAAA</td>
<td>CATTATTTGGAATAACTAGC</td>
</tr>
<tr>
<td>promoter-MtRLK2</td>
<td>ATGACGTGGCCTACATGACA</td>
<td>GACATGAAAGGCTTTGAGAAA</td>
</tr>
<tr>
<td>promoter-SUNN</td>
<td>TCCCTTCAACACAAATGGA</td>
<td>CATCTTCTTTTGCTACGTTTT</td>
</tr>
<tr>
<td>RNAi MtRLK1</td>
<td>GCAAATCTGTTGTTGAAAAGG</td>
<td>TGTGAGTTCGGAAGATTG</td>
</tr>
<tr>
<td>qRT-PCR amplification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MtRLK1</td>
<td>GCCAGTGGGAGATTATTT</td>
<td>GTGCGTTACACACTTTGTTCC</td>
</tr>
<tr>
<td>MtRLK2</td>
<td>CATCTTCAGGCTACATTGC</td>
<td>GAGACGGTGCGCAATAACTG</td>
</tr>
<tr>
<td>SUNN</td>
<td>GCTCTGCTGCTATTTCGAC</td>
<td>ACTGGCTCTCTCTATTCAG</td>
</tr>
<tr>
<td>40S Ribos</td>
<td>GCCATGTCCCAAGTTTGGCGT</td>
<td>TTTTCTACCAACTCAG</td>
</tr>
<tr>
<td>in situ hybridization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MtRLK1</td>
<td>GCCAGTGGGAGATTATTTGGAAG</td>
<td>AAGCACAAGCAAGGTATGC</td>
</tr>
<tr>
<td>MtRLK2</td>
<td>TGGACTTCTTGGCTAGTG</td>
<td>TGTGAGTTCGGAAGATTG</td>
</tr>
</tbody>
</table>

For the qRT-PCR analysis, _M. truncatula_ J5 plants were grown _in vitro_ in square Petri dishes (12 × 12 cm) on nitrogen-poor SOLi agar (Blondon, 1964). After 7 days,
root tips, SAMs, cotyledons, and first leaves were harvested, as well as mature leaves, stems, and roots from 1-month-old plants grown in perlite under nitrogen-rich conditions (Sm1021 pH60-GFP) and 1-month-old nodulated roots. For the analysis of temporal expression during nodulation, susceptible root zones were harvested 4 to 10 dpi from plants grown in pouches, watered with nitrogen-poor SOLi medium, and inoculated with Sm1021 pH60-GFP. Infection threads were visible from 4 dpi on, nodule primordia at 6 dpi, and small nodules at 8 dpi. Two days later, at 10 dpi, slightly bigger nodules were observed. Tissue was collected by visualizing the green fluorescent bacteria under a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany) equipped with a blue-light source and a Leica GFP Plus filter set ((λexc = 480/40; λem = 510 nm LP barrier filter). The zone I of uninoculated roots was isolated at the same developmental stage as the 4 dpi stage. For the analysis of MtRLK1, MtRLK2 and SUNN expression in nodulation mutants, plants were grown in an aeroponic system. Half of the plants were harvested at the age of 6 days, while the other half of the plants was inoculated with Sm2011 pBHR-mRFP and was harvested 7 days later.

Phylogenetic analysis

MtRLK1, MtRLK2 and SUNN homologs from A. thaliana were retrieved from the TAIR9 CDS databank using the tBLASTx algorithm24. The amino acid homologs of these sequences were downloaded from NCBI25 and put together in a multiFASTA file. By use of the ‘Multiple Sequence Comparison by Log-Expectation’ (MUSCLE) (Edgar, 2004), a multiple sequence alignment was designed. Highly similar or divergent domains were deleted with the help of BioEdit7. Next, the PhyML program (Guindon and Gascuel, 2003) was applied to design a phylogenetic tree, based on the complete amino acid sequences of MtRLK1, MtRLK2, SUNN and their A. thaliana homologs and build according to the ‘maximum likelihood’ principle. Bootstrap values were based on 1000 reconstructions. We made use of Treeview1.6.6 for visualization (Page, 1996).

RNA extraction, cDNA synthesis, and qRT-PCR analysis

Total RNA was isolated with the RNeasy Plant mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. After a DNase treatment, the samples

24 http://www.arabidopsis.org/index.jsp
MtRLKs involved in nodulation were purified through NH₄Ac (5 M) precipitation, quality controlled, and quantified with a Nanodrop spectrophotometer (Isogen, Hackensack, NJ). RNA (2 μg) was used for cDNA synthesis with the Superscript Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA). The samples were diluted 50 times and stored at -20°C until further use. The qRT-PCR experiments were done on a LightCycler 480 (Roche Diagnostics, Brussels, Belgium) and SYBR Green was used for detection. All reactions were done in triplicate and averaged. The total reaction volume was 5 μl (2.5 μl master mix, 0.25 μl of each primer [5 μM] and 2 μl cDNA). Cycle threshold (Cᵀ) values were obtained with the accompanying software and data were analyzed with the 2⁻△△Cᵀ method (Livak and Schmittgen, 2001). The relative expression was normalized against the constitutively expressed 40S ribosomal S8 protein (TC100533, MGI). Primers used (Table 7.1) were unique in the MGI version 9.0 and the Medicago EST Navigation System database (Journet et al., 2002).

In vitro application of auxins, and cytokinins

Auxins (10⁻⁶ M IAA) and cytokinins (10⁻⁷ M BAP) were diluted in dimethylsulfoxide and supplemented to the medium of 5-day-old, in vitro-grown plants. As a control, plants were grown without supplemented hormones. The plants were cultured at 25°C, 16-h photoperiod, and 70 μE m⁻²m⁻¹ light intensity per day. The roots were covered with aluminum foil for light protection. After 0, 3, 6, 12, 24 and 96 h of incubation, the roots of 18 plants under each condition were harvested and analyzed by qRT-PCR. The experiment was repeated twice with comparable results.

Agrobacterium rhizogenes-mediated transgenic root transformation

The protocol was adapted from Boisson-Dernier et al. (2001). Approximately 48 h after germination, the radicle was sectioned at 5 mm from the roottip with a sterile scalpel. Sectioned seedlings were infected by coating the freshly cut surface with the binary vector-containing A. rhizogenes Arqua1 strains. The A. rhizogenes strain was grown at 28°C for 2 days on solid yeast extract broth medium with the appropriate antibiotics (Quandt et al., 1993). The infected seedlings were placed on agar (Kalys) containing the SOLi medium, supplemented with 1 mM NH₄NO₃, in square Petri dishes (12 × 12 cm) placed vertically for 5 days at 20°C, 16-h photoperiod, and 70 μE m⁻²m⁻¹. Subsequently, plants were placed on the same medium between brown papers at 25°C and under identical light conditions. One and 2 weeks later, plants
were screened for transgenic roots, characterized by GFP fluorescence with a stereomicroscope MZFLII (Leica Microsystems) equipped with a blue-light source and a Leica GFP plus filter set. One main transgenic root was retained per composite plant. Four weeks after infection, plants were transferred to an aeroponic system, pouches, or perlite-containing pots and incubated with SOLi medium. Three to 7 days after planting, composite plants were inoculated.

Histochemical localization of GUS activity

GUS activity in cotransformed roots and nodules was analyzed using 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid as substrate (Van den Eede et al., 1992). Roots and nodules were vacuum infiltrated during 20 min and subsequently incubated in GUS buffer at 37°C. Incubation lasted 6, 8 and 10 h for pMtRLK1-GUS, pMtRLK2-GUS and pSUNN-GUS, respectively. After staining, roots and root nodules were fixed, dehydrated, embedded with the Technovit 7100 kit (Heraeus Kulzer, Wehrheim, Germany), according to the manufacturer’s instructions, and sectioned with a microtome (Reichert-Jung, Nussloch, Germany). The 3-μm thick sections were mounted on coated slides (Sigma-Aldrich, St. Louis, MO). For tissue-specific staining, sections were submerged in a 0.05 % (w/v) ruthenium red solution (Sigma-Aldrich, St. Louis, MO), washed in distilled water, and dried. Finally, sections were mounted with Depex (BDH Chemicals, Poole, England). Photographs were taken with a Diaplan microscope equipped with bright- and dark-field optics (Leitz, Wetzlar, Germany).

In situ hybridization

Ten-μm sections of paraffin-embedded nodules were hybridized as described (Goormachtig et al., 1997). Nodules were harvested, incubated in fixation buffer, and maintained for twice 15 min under vacuum. A 35S-labeled antisense probe against a part of the open reading frame and the 3’ UTR of MtRLK1 and MtRLK2 was produced according to standard procedures (Sambrook et al., 1989). Primers used for probe amplification are listed in Table 7.1. The probes were cloned into pCRII-TOPO (Invitrogen, Carlsbad, CA) and further digested with BamHI restriction enzyme to yield templates for radioactive antisense probe production with T7 RNA polymerase (Invitrogen).
7.5 Supplemental data

Table 7.2: Overview of 33 *MtRLK* genes retrieved from the analysis described on page 164.

<table>
<thead>
<tr>
<th>Gene</th>
<th>BAC</th>
<th>MT3.5</th>
<th>identity</th>
<th>chrom</th>
<th>E/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtRLK1</td>
<td>CT485797,34.5</td>
<td>Medtr5g090100.1</td>
<td>100</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK2</td>
<td>CR931811,16.4</td>
<td>Medtr5g019070.1</td>
<td>99.7</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK3</td>
<td>AC158497,52.4</td>
<td>Medtr2g014560.1</td>
<td>100</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK4</td>
<td>CT009540,33.5</td>
<td>Medtr3g092390.1</td>
<td>100</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK5</td>
<td>CU302336,1.4</td>
<td>Medtr5g026010.1</td>
<td>100</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK6</td>
<td>CT009540,14.5</td>
<td>Medtr3g092420.1</td>
<td>100</td>
<td>3</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK7</td>
<td>AC203530,15.3</td>
<td>Medtr5g087090.1</td>
<td>100</td>
<td>8</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK8</td>
<td>CU302336,20.4</td>
<td>Medtr5g025890.1</td>
<td>98.53</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK9</td>
<td>CU302345,22.3</td>
<td>Medtr5g025860.1</td>
<td>96.37</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK10</td>
<td>CU302345,21.3</td>
<td>Medtr5g025850.1</td>
<td>97.82</td>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK11</td>
<td>AC175312,46.5</td>
<td>Medtr1g090520.1</td>
<td>99.78</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK12</td>
<td>AC174346,49.5</td>
<td>Medtr6g036780.1</td>
<td>87.77</td>
<td>6</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK13</td>
<td>AC174346,53.5</td>
<td>Medtr6g036840.1</td>
<td>81.91</td>
<td>6</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK14</td>
<td>CT030165,27.5</td>
<td>Medtr?g067530.1</td>
<td>99.89</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK15</td>
<td>AC149574,15.4</td>
<td>Medtr8g066700.1</td>
<td>100</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK16</td>
<td>CT027665,52.4</td>
<td>Medtr5g044680.1</td>
<td>97.62</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK17</td>
<td>AC140550,56.4</td>
<td>Medtr2g005810.1</td>
<td>99.86</td>
<td>2</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK18</td>
<td>AC203555,16.4</td>
<td>Medtr4g032320.1</td>
<td>91.9</td>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK19</td>
<td>AC171265,41.5</td>
<td>Medtr5g082980.1</td>
<td>93.56</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK20</td>
<td>CT009479,61.4</td>
<td>Medtr4g016910.1</td>
<td>100</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK21</td>
<td>CU302345,20.3</td>
<td>Medtr5g025840.1</td>
<td>97.68</td>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK22</td>
<td>CT962508,27.4</td>
<td>Medtr3g070220.1</td>
<td>100</td>
<td>3</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK23</td>
<td>CT009479,57.4</td>
<td>Medtr4g016800.1</td>
<td>30.88</td>
<td>3</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK24</td>
<td>CR955004,34.4</td>
<td>Medtr5g014700.1</td>
<td>100</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK25</td>
<td>AC141862,30.4</td>
<td>Medtr4g097880.1</td>
<td>99.56</td>
<td>8</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK26</td>
<td>AC154036,26.4</td>
<td>Medtr8g092100.1</td>
<td>90</td>
<td>4</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK27</td>
<td>AC154036,25.4</td>
<td>Medtr8g098200.1</td>
<td>99.9</td>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK28</td>
<td>CU302336,10.4</td>
<td>Medtr5g025950.1</td>
<td>98.79</td>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK29</td>
<td>AC144729,4.4</td>
<td>Medtr5g082920.1</td>
<td>100</td>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK30</td>
<td>CU302336,2.4</td>
<td>Medtr5g026000.1</td>
<td>100</td>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>MtRLK31</td>
<td>AC121244,30.5</td>
<td>Medtr4g070950.1</td>
<td>100</td>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK32</td>
<td>CT009479,7.4</td>
<td>Medtr4g016780.1</td>
<td>93.76</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MtRLK33</td>
<td>AC146559,20.4</td>
<td>Medtr1g079520.1</td>
<td>98.93</td>
<td>1</td>
<td>H</td>
</tr>
</tbody>
</table>

The sequences can be retrieved from: http://www.medicagohapmap.org/

BAC: number of the gene on the BAC clones

MT3.5: IMGAG annotation of the gene (version MT3.5)

Identity: compared between original sequence and sequence of IMGAG annotation

E/H: data supported by EST (E) or homology (H)
Chapter 7

Acknowledgements

We thank our colleagues Annick De Keyser and Christa Verplancke for skillful technical assistance, Carolien De Cuyper and Mieke Van de Walle for their input during their Master theses, Wilson Ardiles for sequence analysis, Marnik Vuylsteke for help with the statistical analysis and Stéphane Rombauts for help with bioinformatics.

Authors contributions

C. De Cuyper performed most of the expression analyses, as well as the phylogenetic analysis during her masters thesis, as a student of V. Mortier. S. Rombauts was involved in the bioinformatic analysis. S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.
Involvement of *MtLOG* genes during indeterminate nodulation on *Medicago truncatula*

Virginie Mortier, Ulrike Mathiesius, Petr Tarkowski, Marcelle Holsters and Sofie Goormachtig

In preparation
Cytokinin signaling is a prerequisite for nodule formation. However, it is not clear whether NF signaling involves de novo cytokinin synthesis, cytokinin activation or relocation. We addressed this question via the analysis of *Medicago truncatula LOG* genes, encoding cytokinin riboside 5’-monophosphate phosphoribohydrolases involved in the direct activation of cytokinins. Two *MtLOG* genes, *MtLOG1* and *MtLOG2*, were found, the expression of which is upregulated during nodulation in a Nod Factor-dependent way. Histochemical analysis of *pMtLOG1:GUS* transgenics as well as functional analysis by RNAi and overexpression indicated an important role during nodulation and lateral root formation. *pMtLOG1:GUS* analysis indicated expression in root primordia, in dividing cortical cells of nodule primordia and later in the meristematic and early infection zone of mature nodules. Ectopic expression of *MtLOG1* resulted in plants with reduced nodule numbers, and premature nodule senescence. This inhibition of nodule formation was local and SUNN-independent, but might involve the upregulation of *MtCLE12* and *MtCLE13*, two *M. truncatula CLE* genes, which are involved during nodulation. Moreover, ectopic expression of *MtLOG1* resulted in reduced lateral root formation, enlargement of the root vascular tissue and shortening of the primary root in a *Mtcre1*-dependent manner. The involvement of *MtLOG* genes during nodule initiation and lateral root emergence was confirmed by the simultaneous downregulation of *MtLOG1* and *MtLOG2*. Together, these results suggest that the release of free cytokinins via MtLOGs accounts for proper nodule primordium development, nodule meristem functioning and partially for the negative regulation of lateral root formation.

8.1 Introduction

Cytokinins are involved in several physiological and developmental plant processes, amongst which lateral root formation, meristem activity, cell division, leaf senescence, nutritional signaling, germination, nodulation, circadian rhythms and stress tolerance (Mok, 1994; Sakakibara, 2006; Riefler *et al.*, 2006; Gonzalez-Rizzo *et al.*, 2006; Hana no *et al.*, 2006; Murray *et al.*, 2007; Tirichine *et al.*, 2007; Argueso *et al.*, 2009; Werner and Schmulling, 2009). Cytokinins are mobile molecules that can function as autocrine, paracrine or long-distance signals. The active forms of cytokinins consist of N^6-substituted adenine derivatives, such as (Δ^2-isopentenyl)adenine (iP), trans-zeatin.
Involvement of *MtLOG* genes during nodulation

(tZ) and *cis*-zeatin (cZ) (Mok and Mok, 2001; Sakakibara, 2006).

Cytokinin homeostasis is maintained by a fine-tuned balance between synthesis, catabolism and storage of inactive forms (Figure 8.1) (Sakakibara, 2006; Werner et al., 2003). Transfer RNA-isopentenyltransferases (tRNA-IPTs) act during the formation of cZ, a cytokinin for which no functional relevance was yet shown in Arabidopsis (Miyawaki et al., 2006), while adenosine phosphate-isopentenyltransferases (IPTs) catalyze the synthesis of iP and tZ precursors (Kakimoto, 2001; Takei et al., 2001; Sakamoto et al., 2006). The cytokinin precursors are converted into active cytokinins by a two-step pathway or directly in a one-step reaction (Chen, 1997; Kurakawa et al., 2007). In the two-step pathway, cytokinin riboside 5’-monophosphates are converted, by currently unknown enzymes, into the corresponding nucleosides and subsequently into active cytokinin nucleobases. The direct activation pathway, on the other hand, is mediated by a cytokinin riboside 5’-monophosphate phosphoribohydrolase, designated LONELY GUY (LOG), and allows immediate conversion to the active cytokinin nucleobases iP and tZ (Kurakawa et al., 2007). Inactivation of cytokinins is achieved through either conjugation or degradation, by cytokinin glycosyltransferases and cytokinin oxidases/dehydrogenases (CKXs), respectively (Houba-Herin et al., 1999; Morris et al., 1999; Schmulling et al., 2003; Galuszka et al., 2007; Martin et al., 2001; Mok and Mok, 2001; Hou et al., 2004). IPTs, CKXs and LOGs are expressed at specific locations and time points, especially at regions of active growth during plant development (Werner and Schmulling, 2009; Kuroha et al., 2009). However, cytokinin precursors were also identified in phloem and xylem saps, suggesting that the place of cytokinin precursor biosynthesis does not always correspond with the places of cytokinin activation (Corbesier et al., 2003; Hirose et al., 2008).

The LOG proteins seem to be very important to release active cytokinins during plant development. The first LOG gene, *OsLOG*, was identified in rice (*Oryza sativa*) in a screen for mutants deficient in the maintenance of shoot meristems (Kurakawa et al., 2007). In the genome of Arabidopsis, 9 LOG homologs were subsequently identified, of which 7 had enzymatic activities equivalent to that of *OsLOG* (Kuroha et al., 2009). LOG proteins were generally localized in the cytosol and nuclei (Kurakawa et al., 2007; Kuroha et al., 2009). Functional analysis of the *AtLOG* genes illustrated their importance for cytokinin effects. Ectopic overexpression of *AtLOG* genes resulted in reduced apical dominance, retardation of leaf senescence and elevated rate of cell division in the root vasculature and the embryo (Kuroha et al., 2009). Double and triple mutants showed altered root and shoot morphology and a reduced sensitivity to cy-
Chapter 8

Figure 8.1: Overview of cytokinin metabolism. TransferRNA-isopentenyltransferases (tRNA-IPTs) act during the formation of cis-zeatin (cZ), while adenosine phosphate-isopentenyltransferases (IPTs) catalyze the synthesis of (△2–isopentenyl)adenine (iP) and trans-zeatin (tZ) precursors. The cytokinin precursors are converted into active cytokinins by a two-step pathway, which converts cytokinin riboside 5′-monophosphates into the corresponding nucleosides and subsequently into active cytokinin nucleobases. The release of iP and tZ can also be performed directly in a one-step reaction which is mediated by a cytokinin riboside 5′-monophosphate phosphoribohydrolase, designated LOG. Inactivation of cytokinins is achieved through either conjugation or degradation, by cytokinin glycosyltransferases (UGT) and cytokinin oxidases/dehydrogenases (CKXs), respectively.

tokinins during lateral root formation (Kuroha et al., 2009). The partially overlapping expression patterns of the LOG genes, as well as the absence of phenotype in AtLOG single mutants, compared to AtLOG multiple mutants, suggested redundant functions for LOG proteins (Kuroha et al., 2009).

Cytokinin signaling involves a phosphorelay mechanism, which is very similar to the two-component systems occurring in prokaryotes (Figure 3.2) (To and Kieber, 2008; Werner and Schmulling, 2009). Three genuine transmembrane cytokinin receptors were identified in Arabidopsis: the ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3 and AHK4, the latter also referred to as WOODENLEG (WOL) or CYTOKININ RESPONSE1 (CRE1) and homologs were identified in several plant species, amongst which Medicago truncatula and Lotus japonicus (Riefler et al., 2006; To and Kieber, 2008; Inoue et al., 2001; Hwang and Sheen, 2001). Upon cytokinin binding, these receptors autophosphorylate and transfer the phosphate group to ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHPs). The AHPs move in and out the nucleus, independently of the phosphorylation state (Punwani et al.,
Involvement of _MiLOG_ genes during nodulation

2010), but inside the nucleus, phosphorylated AHPs relay the signal to a group of ARABIDOPSIS RESPONSE REGULATORS (ARRs) which are classified according to their C-terminal domain (To _et al._, 2007). Type A ARRs repress cytokinin signaling in a negative feedback loop, while type B ARRs are transcription factors regulating the expression of primary cytokinin response genes among which type A ARRs (To _et al._, 2007; Kim, 2008). In addition, the expression of cytokinin response genes is also regulated by CYTOKININ RESPONSE FACTORS (CRFs), whose accumulation is also mediated by AHPs (Rashotte _et al._, 2006; Rashotte and Goertzen, 2010).

Cytokinins control cell division at various positions within the plant. They are positive regulators of shoot apical meristem (SAM) activity and are involved in defining the boundaries between the SAM and shoot organ primordia (Tucker and Laux, 2007; Shani _et al._, 2006; Giuliani _et al._, 2004; Lee _et al._, 2009). The specification and maintenance of the vascular meristem might also be mediated by cytokinins (Mahonen _et al._, 2006a,b). In cytokinin deficient mutants, a reduced vascular diameter was indeed observed due to a decrease in vascular cell proliferation in combination with an enhancement of the differentiation rate of pericycle cells towards protoxylem cells (Mahonen _et al._, 2006a,b). In addition, in Arabidopsis and poplar, cytokinins were shown to have a positive effect on secondary vascular development, via the regulation of cambial activity (Mahonen _et al._, 2006a,b; Matsumoto-Kitano _et al._, 2008; Nieminen _et al._, 2008).

Cytokinins might play opposite roles in the root apical meristem (RAM) and SAM because cytokinins have been shown to enhance the differentiation rate of RAM-located stem cells, suggesting their involvement in the determination of the root meristem size (Dello Ioio _et al._, 2007; Bilotou _et al._, 2005). Moreover, cytokinins are involved in root stem-cell specification during early embryogenesis and in the negative regulation of lateral root formation (Muller and Sheen, 2008; Fukaki and Tasaka, 2009; Benkova _et al._, 2003).

Legume plants gained the ability to establish a nitrogen fixing symbiosis with rhizobia. As a result, root nodules are formed in which the bacteria reside to fix atmospheric nitrogen for the plant. Nodule development requires the coordinated establishment of bacterial infection and _de novo_ organ formation (Jones _et al._, 2007; Ferguson _et al._, 2010). Downstream of the Nod Factors (NF), signal molecules are produced that activate the nodulation process. Cytokinins are essential to activate cortical cell division for nodule primordium formation (Gonzalez-Rizzo _et al._, 2006; Murray _et al._, 2007; Tirichine _et al._, 2007). In several legume species, amongst which alfalfa (*Medicago*...
sativa), M. truncatula, white clover (Trifolium repens), pea (Pisum sativum) and L. japonicus the importance for cytokinins in nodulation has been demonstrated. Early experiments have shown that a NF-deficient Sinorhizobium meliloti strain, which constitutively produced tZ, induced nodule formation (Cooper and Long, 1994). The induction of nodule-like structures was also observed by exogenous application of cytokinins to alfalfa, Sesbania rostrata and white clover (Dehio and de Bruijn, 1992; Bauer et al., 1996; Fang and Hirsch, 1998; Mathesius et al., 2000).

Recently it was shown that M. truncatula transgenic plants with suppressed expression of MtCRE1, Mtcre1 mutants and L. japonicus knockout mutants for the MtCRE1 homolog, LHK1, were defective in nodule primordia formation (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Plet et al., 2011). Additionally, a L. japonicus gain-of-function mutant for the LHK1 receptor provoked spontaneous nodules, indicating that cytokinin signaling is both necessary and sufficient for nodule formation (Tirichine et al., 2007). In agreement, reduced cytokinin accumulation blocks nodulation, as in L. japonicus, ectopic expression of CKX genes, involved in cytokinin degradation, inhibits nodulation (Lohar et al., 2004). In addition, the type B MtRR1 and the type A MtRR4 are activated by rhizobial inoculation in a manner dependent on several components of the NF signalization pathway (Tirichine et al., 2007). Attempts have been made to localize the cytokinin response during nodulation. Histochemical localization of type A RR ARR5 in transgenic L. japonicus roots, indicated a rapid induction of ARR5 activity in root hairs and dividing cortical cells after rhizobial inoculation (Lohar et al., 2004). Also in M. truncatula, the expression of ARR4-5 and ARR10-12 homologs, as well as the cytokinin receptor MtCRE1, is induced upon inoculation (Gonzalez-Rizzo et al., 2006; Lohar et al., 2006). pMtCRE1:GUS analysis and in situ hybridizations revealed expression in the NF response zone of the cortical cells and later on in the developing nodule primordium (Lohar et al., 2006; Plet et al., 2011). Based on these results it was proposed that cytokinin might be the mobile factor, activated/produced in the epidermis downstream of DMI3 and translocated to the cortex were subsequent cytokinin signaling would induce cell division for primordium formation. In the cortex, cytokinin would be sensed by the cytokinin receptor MtCRE1 and subsequent signaling via type A MtRR4 and type B MtRR1 would result in the activation of the transcription factors ERN1, NSP2 and NIN, involved in the transcription of early nodulation (ENOD) genes to induce cortical cell divisions (Tirichine et al., 2007; Frugier et al., 2008; Plet et al., 2011). MtCRE1 would also regulate nodulation-related auxin signaling by reducing PIN protein expression (Plet et al., 2011). Moreover, histochemical
Involvement of *MtLOG* genes during nodulation

analysis of *pMtCRE1:GUS* activity revealed expression in the meristematic cells of mature nodules, suggesting cytokinins to be involved in nodule meristem homeostasis of mature *M. truncatula* indeterminate nodules (Plet et al., 2011). Finally, cytokinins might also be involved in mediating root susceptibility to rhizobial infection and nodule organogenesis, as hyperinfection is observed in *hyperinfected1* (*hit1*) a mutant of the cytokinin receptor gene *LHK1* (Murray et al., 2007; Frugier et al., 2008).

Until now, it is not clear whether NF signaling involves *de novo* cytokinin synthesis, cytokinin activation or relocation. We addressed this question by identifying possible *LOG* genes in the *M. truncatula* genome. For two *MtLOG* genes, *MtLOG1* and *MtLOG2*, expression was upregulated during nodulation in a NF-dependent way. The expression of both genes was analyzed in detail during nodule formation. Functional analysis by RNAi and overexpression indicate an important role for *MtLOGs* during nodulation as well as lateral root formation.

8.2 Results

8.2.1 Identification of potential nodulation-related *LOG* genes in the genome of *Medicago truncatula*

Kurakawa et al. (2007) identified 9 members of the Arabidopsis LOG protein family. Based on the sequences of these *AtLOG* genes, homologs were identified in the genome of *M. truncatula* by tBLASTx analysis against the *M. truncatula* genomic data (Mt3.0). Seven of the 9 members of the Arabidopsis *LOG* family genes (*AtLOG1* till *AtLOG7*) were highly homologous to AC148995.43.5 and AC150977.28.5, which were renamed *MtLOG1* and *MtLOG2*, respectively. The other two members of the Arabidopsis LOG family genes (*AtLOG8* and *AtLOG9*), which cluster separately in the phylogenetic tree of the Arabidopsis LOG family proteins (Kuroha et al., 2009), were highest homologous to AC152551.11.5, designated *MtLOG3*. No other *M. truncatula* genes were retrieved that had a significant similarity with the *AtLOG* genes. We calculated the similarities between the *MtLOG* and *AtLOG* genes using the supermatcher tool of wEMBOSS. *MtLOG1* and *MtLOG2* share 87.6 % similarity, *MtLOG1* and *MtLOG3* 69.2 % and *MtLOG2* and *MtLOG3* 67.2 %. *MtLOG1* is most homologous with *AtLOG3* (78.7 %) and shares between 60.6 % and 78.0 % similarity with the other Arabidopsis *LOG* genes. *MtLOG2* is also most homologous with *AtLOG3* (78.5 %) and shares between 57.3 % and 77.5 % similarity with the other Arabidopsis *LOG* genes,
while *MtLOG3* is most homologous to *AtLOG8* (77.5 %) and shares between 55.5 % and 68.9 % similarity with the other Arabidopsis *LOG* genes.

In order to retrieve an *in silico* expression pattern of the three putative *MtLOG* genes, their sequences were blasted (BLASTn) against the Medicago Gene Expression Atlas from the Noble Foundation\(^\text{26}\). For *MtLOG1* (Mtr.39530.1.S1_at), an upregulation was observed in 4-day-old nodules, as compared to the expression in uninoculated control roots (Figure 8.2A). Moreover, according to this data, *MtLOG1* is not expressed in root tissue and a low level of expression is detected in leaves, petioles, buds, stems and cell suspension cultures (Figure 8.2A). Also for *MtLOG2* expression (Mtr.50458.1.S1_at) an upregulation during nodulation is observed in the data presented by the Medicago Gene Expression Atlas, with the highest expression at 4 days post inoculation (dpi) (Figure 8.2B). Compared to *MtLOG1*, *MtLOG2* seemed to be expressed more broadly in several other plant tissues, amongst which leaves, seeds and roots (Figure 8.2B). Expression of *MtLOG3* (Mtr.24814.1.S1_at) was detected in almost every tissue analyzed, and a reduction in *MtLOG3* transcripts was observed in nodule tissues from 4 dpi onward (Figure 8.2C). The temporal expression patterns during nodulation were confirmed by qRT-PCR analysis (Figure 8.3, A-C).

The transcript levels were analyzed in nodulated root tissues at 4, 6, 8, and 10 dpi and compared to the expression levels in uninoculated control roots. The elongation zone of uninoculated roots, the nodule initiation site, was used as the reference tissue. The *MtLOG1* transcript level steadily increased from 4 dpi on (Figure 8.3A). *MtLOG2* expression was low at 4 dpi, but increased at 6 dpi, and remained high until 10 dpi (Figure 8.3B). The *MtLOG3* transcript level decreased from 4 dpi until 10 dpi (Figure 8.3C). These data confirm the *in silico* data. Further studies only involved the *MtLOG1* and *MtLOG2* genes.

\(^{26}\)http://mtgea.noble.org/v2/

Figure 8.2 (facing page): *In silico* expression profiles of *MtLOG1*, *MtLOG2* and *MtLOG3*, retrieved from the Medicago Gene Expression Atlas from the Noble foundation. Tissues analyzed are indicated below the diagrams. The three diagrams at the bottom of the page are magnifications of the top diagram and represent the expression profiles of *MtLOG1*, *MtLOG2* and *MtLOG3* in nodulation-specific tissues.
Figure 8.3: Expression analysis of MtLOG genes during nodulation. A, Relative expression of MtLOG1. B, Relative expression of MtLOG2. C, Relative expression of MtLOG3. Expression levels were measured by qRT-PCR on cDNA samples of zone I root tissues of uninoculated plants (NI) and at 4, 6, 8, and 10 dpi. Data and error bars represent means ± SD. This experiment was repeated twice with comparable results.

8.2.2 MtLOG1 expression pattern in developing nodules and in lateral roots

Spatial expression pattern of MtLOG1 in developing nodules was investigated by promoter:GUS analysis. A 2-kb region upstream of MtLOG1 was isolated based on the available genomic data and cloned 5’ to the uidA gene. Transcriptional activation of the uidA gene was visualized by GUS staining.

In uninoculated roots, no GUS staining was seen in the root zone susceptible for nodulation. Three days after inoculation, when incipient nodule primordia are present, GUS staining was seen in the centre of the nodule primordium and to a much lesser extent at the base of the nodule primordium. In the outer cortex, no GUS staining was observed (Figure 8.4, A and B). At a slightly later stage, GUS staining was detected throughout the nodule primordium (Figure 8.4, C and D). In elongated, mature nodules weak MtLOG1 expression was seen at the apex of the nodule, more specifically in the meristem and early differentiating nodule cells (Figure 8.4, E and F). No GUS staining was observed in the outer cortical cells and in cells of the mature infection zone (Figure 8.4F). MtLOG1:GUS expression was also observed in lateral root primordia (Figure 8.4G) and in root tips (data not shown).

Due to technical problems, cloning of pMtLOG2:GUS was not finished in time, but
Involvement of MtLOG genes during nodulation currently being performed.

Figure 8.4: MtLOG1 promoter activity during nodulation. A-B, pMtLOG1:GUS activity in nodule primordia. B, Bright-field picture of a longitudinal section through the nodule primordium represented in A. Expression is observed in the upper dividing cells of the primordium (arrow), but not in the dividing cells close to the root vasculature (asterisk) and not in the outer cortical cells (hash). C-D, Promoter:GUS activity of MtLOG1 in young nodules. D, Bright-field picture of a longitudinal section through the nodule represented in C. Expression is observed throughout the nodule cortical tissue (arrow), except in the outer cell layers (hash). E-F, pMtLOG1:GUS activity in mature nodules. F, Bright-field picture of a longitudinal section through the nodule represented in E. A weak expression is observed in the meristem (arrow) and early differentiating cells, but not in the infection zone, nor in the outer cortical cells of the nodule (hash). G, pMtLOG1:GUS activity in lateral root primordia. All sections were counterstained with 0.05 % ruthenium red. xy, xylem; ph, phloem, p, pericycle, m, meristem; inf, infection zone. Bars = 1 mm (A, C, E and F) and 0.5 mm (B and D).

8.2.3 Influence of auxin and cytokinin on MtLOG1 and MtLOG2 expression

A proper auxin/cytokinin balance is a prerequisite for nodule formation (Oldroyd and Downie, 2008; Ding and Oldroyd, 2009). To determine whether auxins and/or cytokinins affect MtLOG1 and MtLOG2 expression, 10^{-6} M indole-3-acetic acid (IAA) or 10^{-7} M 6-benzylaminopurine (BAP) was supplemented to the growth medium of
5-day-old seedlings. For each condition, roots of 18 seedlings were harvested after 0, 3, 6, 12, 24, and 96 h. Roots from plates without hormone addition were used as a negative control. The expression of *MtCLE13* was measured as a positive control (Mortier *et al.*, 2010).

No significant differences in *MtLOG1* expression was detected in treated versus control roots. In roots treated with 10^{-7} M BAP, *MtLOG2* transcripts were upregulated after a 96 h treatment (Figure 8.5). The upregulation of *MtLOG2* expression observed after addition of 10^{-6} M IAA was not confirmed in an independent experiment (Figure 8.5).

Figure 8.5: Influence of auxin and cytokinin on *MtLOG2* expression. qRT-PCR analysis of *MtLOG2* expression on cDNA samples of roots grown in the presence of 10^{-6} M auxin (IAA) or 10^{-7} M cytokinin (BAP). Growth medium without hormones was used for the control plants. Samples of 5-day-old plants were taken at 0, 3, 6, 12, 24, and 96 h after hormone addition. Data and error bars represent means ± SD. This experiment was repeated twice with comparable results.

8.2.4 *MtLOG1* and *MtLOG2* expression in nodulation mutants

To investigate whether NF signaling is required for the induction of *MtLOG1* and *MtLOG2* expression, we analyzed the transcript levels by qRT-PCR, before and after inoculation of *nin-1, nsp1, nsp2, dmi1, dmi2, dmi3*, or *Mtcre1-1* mutants (Figure 8.6). The mutant lines did not develop nodules, except to a very low extent for *Mtcre1-1*, which formed arrested primordia and infection foci (Andriankaja *et al.*, 2007; Middleton *et al.*, 2007; Plet *et al.*, 2011). For *MtLOG1* and *MtLOG2*, gene expression
Involvement of *MtLOG* genes during nodulation was upregulated upon inoculation in wild type *M. truncatula* roots compared to control roots (Figure 8.6, A-D). In the roots of the nodulation mutants this effect was not observed anymore (Figure 8.6, A-D). These results suggest that *MtLOG1* and *MtLOG2* expression during nodulation is dependent on the components of the early NF signaling pathway.

Figure 8.6: *MtLOG* expression in nodulation mutants. A and C, Relative expression of *MtLOG1*. B and D, Relative expression of *MtLOG2*. A-B, Expression analysis by qRT-PCR on cDNA samples of zone I root tissues of wild type plants (A17) and *nsp1, nsp2, nin-1, dmi1, dmi2* and *dmi3* mutants before inoculation (control) and at 7 dpi. The upregulation in *dmi3* for *MtLOG2* is not statistically relevant, as evaluated with ANOVA by means of the GenStat software (p > 0.05). C-D, Expression analysis by qRT-PCR on cDNA samples of zone I root tissues of wild type plants (A17) and *Mtcre1-1* mutants before inoculation (control) and at 7 dpi. Data and error bars represent means ± SD. These experiments were repeated twice with comparable results.

To confirm the results of the qRT-PCR analysis, *pMtLOG1:GUS* transgenic roots were generated in a *Mtcre1-1* and *nin-1* mutant background and analyzed 5 days after inoculation with *Sm2011* pBHR-mRFP. For wild type (A17) and the *Mtcre1-1* mutant, root zones harboring infection threads were isolated based on mRFP fluorescence of the *Sm2011* pBHR-mRFP bacteria. As no infection threads are observed on *nin-1* plants, root zones, susceptible to rhizobial infection, were harvested. *pMtLOG1:GUS* expression at the level of nodule primordia was only observed in wild type plants and not in *Mtcre1-1* and *nin-1* mutants (Figure 8.7). The *pMtLOG1:GUS* expression pattern
in lateral root primordia was also observed in the Mtcre1-1 and nin-1 mutants (Figure 8.7). These results confirm that MtLOG1 is dependent on MtCRE1 and NIN for its nodulation related expression, but not for its expression in lateral root primordia.

Figure 8.7: pMtLOG1:GUS activity in lateral root and nodule primordia in a Mtcre1-1 and nin-1 mutant background, as compared to wild type plants (A17) (n = between 15 and 20). Expression in the lateral root primordia is observed in every plant analyzed, while expression in nodule primordia was only detected in wild type plants and not in Mtcre1-1 and nin-1 mutant plants. Bars = 1 mm.

8.2.5 Effect of ectopic expression of MtLOG1 on nodulation

To analyze the function of MtLOG1, composite plants with 35S: MtLOG1 expressing roots were made by A. rhizogenes transformation. QRT-PCR analysis confirmed the ectopic overexpression of the 35S: MtLOG1 constructs (Figure 8.8A). Preliminary cytokinin measurements indicated that 35S: MtLOG1 roots contain less cytokinin nucleotides (iPMP) than 35:GUS roots (p < 0.001, t-test) (Figure 8.8B), while the level of active cytokinins (free base iP) was not affected by MtLOG1 overexpression (Figure 8.8C) (Experiment executed by P. Tarkowski).

Nodulation of these transgenic roots was assessed at 7 dpi. Control roots (35S:GUS) contained on average 8.91 ± 0.50 nodules per root (Figure 8.8D), while on 35S: MtLOG1 transgenic roots, an average of only 0.57 ± 0.14 nodules were counted (Figure 8.8D). This difference in nodule number is statistically relevant (p < 0.001, Regression analysis).

To analyze whether the few nodules that are formed are functional, composite plants were inoculated with Sinorhizobium meliloti 2011 pBHR-mRFP to be able to follow
Involvement of *MtLOG* genes during nodulation

Figure 8.8: Effects of the ectopic expression of *MtLOG1* on nodulation and cytokinin levels. A, Relative expression of *MtLOG1* in 35S:*MtLOG1* roots compared to 35S:*GUS* roots. Expression levels were measured by qRT-PCR on cDNA samples of uninoculated root tissues made by *Agrobacterium rhizogenes* transformation with either 35S:*GUS* or 35S:*MtLOG1*, 45 days after germination. The experiment was repeated twice with comparable results. B, Quantification of cytokinin nucleotides (iPMP) (pmol/g FW) in 35S:*MtLOG1* roots compared to 35S:*GUS* roots (n = 3) (p < 0.001, Student t-test). Data and error bars represent means ± SD. C, Quantification of active cytokinins (free base iP) (pmol/g FW) in 35S:*MtLOG1* roots compared to 35S:*GUS* roots (n = 3). Data and error bars represent means ± SD. D, Average nodule number. Measurements were done 7 dpi on 35S:*GUS* or 35S:*MtLOG1* transgenic roots of composite plants (n = 29-35). The total mean of two biological repeats is represented in the graph. Data and error bars represent means ± SE. Asterisks indicates a statistically significant difference in comparison to 35S:*GUS* transgenic roots (p < 0.001, Regression analysis).

Infection via mRFP fluorescence. The bright red color observed throughout the central tissue of young 35S:*MtLOG1* transformed nodules reveals that the nodules are totally filled with bacteria (Figure 8.9D). GFP fluorescence was used to visualize co-transformed roots (Figure 8.9, A and C).

Next, we investigated whether the infection progressed normally in 35S:*MtLOG1* plants by performing microscopic analysis on 3-μm thick Technovit sections of 14 day-old nodules. Infection threads are clearly distinguishable on sections of 35S:*GUS* and 35S:*MtLOG1* transgenic nodules (Figure 8.9, F and I), indicative of normal rhizobial infection. However, the meristematic tissue of 35S:*MtLOG1* transformed nodules
Figure 8.9: Nodulated roots of plants transformed with either 35S:GUS or 35S:MtLOG1. A and C, 35S:GUS and 35S:MtLOG1 co-transformed roots were visualized by GFP fluorescence, respectively. B and D, Sinorhizobium meliloti 2011 pBHR-mRFP were depicted based on mRFP fluorescence imaging in 35S:GUS and 35S:MtLOG1 transformed nodules, respectively. E-J, Microscopic analysis of nodules ectopically expressing GUS (E-G) or MtLOG1 (H-J) at 14 dpi. E and H, Longitudinal section through a nodule ectopically expressing 35S:GUS (control) and 35S:MtLOG1, respectively. F, Detail of the meristem and infection zone of the nodule represented in E. The meristematic tissue and infection zone are distinguishable. G, Detail of the fixation zone of the nodule represented in E. Large infected cells that are totally filled with symbiosomes are observed (asterisks). I, Detail of the meristematic tissue and fixation zone of the nodule represented in H. No dense cells, indicative of meristematic tissue, are observed anymore. J, Detail of fixation zone of the nodule represented in H. Senescence is observed in most infected cells (hashes). The sections were stained with toluidine blue. m = meristem, i = infection zone, f = fixation zone. Bars = 5 mm (A to D), 0.5 mm (E and H) and 50 μm (F-G and I-J).
Involvement of MtLOG genes during nodulation

seemed to disappear (Figure 8.9I). In addition, a high level of nodule senescence was observed on the sections of 35S:MtLOG1 transformed nodules (Figure 8.9, E and G), while on sections of control nodules (35S:GUS) of the same age, almost no senescent tissue was present (Figure 8.9, H and J).

As a L. japonicus gain-of-function mutant for the LHK1 receptor provoked spontaneous nodules, we wondered whether the ectopic expression of MtLOG1 would result in a similar phenotype (Tirichine et al., 2007). Therefore, 35S:MtLOG1 chimeric plants were grown under uninoculated and nitrogen-poor conditions and screened for nodule formation at several time points. On two-month-old plants, neither nodules nor bumps were observed, indicating that ectopic expression of MtLOG1 is insufficient to provoke spontaneous nodule formation.

8.2.6 Interaction of MtLOG1 with autoregulation of nodulation

Because 35S:MtLOG1 resulted in fewer nodules, we wondered whether MtLOG1 might be involved in autoregulation of nodulation (AON), a long distance mechanism that controls nodule number. Previously it was shown that the CLE peptide gene, MtCLE13, putatively activating the AON pathway, was induced by cytokinin (Mortier et al., 2010). Therefore, the expression of MtCLE13 was investigated by qRT-PCR analysis on cDNA samples of uninoculated root tissues transformed with 35S:MtLOG1 by use of A. rhizogenes. In addition, two other MtCLE genes (MtCLE4 and MtCLE12) were tested. MtCLE12 and MtCLE13 expression was higher in 35S:MtLOG1 roots compared to the level seen in control roots (Figure 8.10, A-B). For MtCLE4 no differential expression was measured (data not shown). We next investigated whether MtCLE12 and/or MtCLE13 overexpression has an effect on MtLOG1 and MtLOG2 expression. QRT-PCR analysis on cDNA of chimeric plants ectopically expressing either MtCLE12 or MtCLE13 revealed no consistent differential expression of MtLOG1 and MtLOG2 between control and 35S:MtCLE12 or 35S:MtCLE13 roots. Hence, MtLOG1 expression might contribute to MtCLE12 and MtCLE13 expression during nodulation.

We previously have shown that nodulation is totally inhibited on 35S:MtCLE12 and 35S:MtCLE13 roots and that this effect involves long-distance mechanisms (Mortier et al., 2010). To test whether ectopic expression of MtLOG1 might also result in long distance effects, composite plants were generated with small 35S:GUS or 35S:MtLOG1 transgenic roots in addition to the wild type main root. At 7 dpi with Sm2011 pBHR-mRFP, nodule number was assessed. On average 17.36 ± 1.72 nodules were counted.
on the primary wild type root of 35S:GUS plants, while 14.62 ± 1.59 nodules were counted on the primary wild type root of 35S:MiLOG1 plants (Figure 8.10C). Regression analysis (Poisson distribution, logarithmic link) by means of the GenStat software revealed that these differences were not statistically relevant (p > 0.05). This result indicates that the effect of the ectopic overexpression of MiLOG1 on nodulation acts locally and not systemically.

The negative effect of 35S:MtCLE12 and 35S:MtCLE13 was abolished in sunn-4 mutants which are affected in the AON pathway due to a mutation in a leucine-rich-repeat receptor-like-kinase (LRR-RLK) possibly perceiving CLE peptides (chapter 5). In a next step, the effect of ectopic overexpression of MiLOG1 was tested in a sunn-4 mutant background. Nodulation was assessed 7 days after inoculation with Sm2011 pBHR-mRFP and resulted in 41.50 ± 4.41 nodules on 35S:GUS roots (control), and in 8.67 ± 1.75 nodules on 35S:MiLOG1 roots (Figure 8.10D). Regression analysis (Poisson distribution, logarithmic link) by means of the GenStat software revealed that these differences are statistically relevant (p < 0.001, Regression analysis).

Together, these results indicate that the effect of ectopic expression of MiLOG1 might involve MtCLE12 and MtCLE13 peptide signaling but that the inhibition acts locally and is independent of SUNN.

8.2.7 Effect of knock-down of MiLOG1 and MiLOG2 expression on nodulation

To further unravel the role of MiLOG genes during nodulation, an RNAi hairpin construct was created that simultaneously down-regulates the expression of MiLOG1 and MiLOG2 (experiments executed by Ulrike Mathesius, Australia). Due to the homology between MiLOG1 and MiLOG2 it was impossible to create hairpin constructs which discriminated between both genes. Composite plants were inoculated with S. meliloti strain E65 and nodule number was assessed at 14 dpi. In wild type A17 plants, an average of 3.52 ± 0.30 nodules were counted on control roots transformed with an empty vector, while RNAi MiLOG1/MiLOG2 plants had on average 2.64 ± 0.31 nodules (p <, ANOVA) 0.05) (Figure 8.11A). QRT-PCR analysis confirmed the simultaneous knock-down of MiLOG1 and MiLOG2 in A17 plants (Figure 8.11B).
Involvement of *MtLOG* genes during nodulation

Figure 8.10: Interaction of *MtLOG1* with autoregulation of nodulation. A-B, Expression analysis of genes that are differentially regulated in *35S:MtLOG1* roots compared to *35S:GUS* roots. A, Relative expression of *MtCLE12*. B, Relative expression of *MtCLE13*. Expression levels were measured by qRT-PCR on cDNA samples of uninoculated root tissues transformed with either *35S:GUS* or *35S:MtLOG1* 45 days after germination. Data and error bars represent means ± SD. The experiment was repeated twice with comparable results. C, Long-distance effect of roots expressing *MtLOG1* on wild type root nodulation of composite plants. Average nodule number at 7 dpi on the wild type main root of composite plants bearing additional transgenic *35S:GUS* (control) or *35S:MtLOG1* roots (n = 28-31). Data and error bars represent means ± SE. Regression analysis by means of the GenStat software revealed that there are no statistical differences (p > 0.05). The total mean of two biological repeats is represented in the graph. D, Effect of ectopic overexpression of *MtLOG1* on nodulation in a *sunn-4* mutant background. Average nodule number at 7 dpi on composite plants bearing transgenic *35S:GUS* (control) or *35S:MtLOG1* roots (n = between 26 and 28). Data and error bars represent means ± SE. Statistical differences were evaluated with a regression analysis by means of the GenStat software. Asterisk indicates a statistically relevant difference in comparison to *35S:GUS* transgenic roots (p < 0.001, Regression analysis). The total mean of two biological repeats is represented in the graph.
Figure 8.11: Effect of knock-down of MtLOG1 and MtLOG2 on nodulation. A, Nodule numbers in wild type hairy roots 14 days after inoculation with S. meliloti strain E65. Wild type (A17) plants were transformed with an empty vector (control) or an RNAi construct targeting MtLOG1 and MtLOG2 (RNAi MtLOG1/MtLOG2) and inoculated 3 weeks post transformation (n = between 70 and 99). Data and error bars represent means ± SE. Asterisk indicates statistically significant differences in comparison to control roots (p < 0.05, ANOVA). B, Expression of MtLOG1/MtLOG2 in RNAi-transformed hairy roots (RNAi MtLOG1/MtLOG2) of wild type (A17) plants compared to empty vector controls determined by qRT-PCR. Values show means and standard deviations of three biological replicates and three technical replicates. Each biological replicate contains 8 to 10 roots and was harvested 14 dpi (at the time of counting nodules).

8.2.8 Effect of ectopic expression of MtLOG1 and knock-down of MtLOG1 and MtLOG2 on root development

To analyze the function of MtLOG1, composite plants with 35S:MtLOG1 expressing roots were made by A. rhizogenes transformation. A difference in root length was measured at 40 days post germination, since the control roots were on average 40.52 ± 3.55 cm long, while the 35S:MtLOG1 roots measured 22.88 ± 3.55 cm (Figure 8.12A). In accordance, the lateral root number was on average 40.07 ± 3.31 for control transgenic roots (35S:GUS) and 18.23 ± 2.45 for 35S:MtLOG1 transgenic roots (Figure 8.12B). Finally, the lateral root density was calculated, based on the lateral root numbers and the root length of the respective plants, and resulted in 1.36 ± 0.13 lateral roots per cm for control roots and in 1.38 ± 0.14 lateral roots per cm for 35S:MtLOG1 roots (Figure 8.12C). Except for the lateral root density, all differences in measurements were statistically relevant (p < 0.001, Regression analysis).

In addition to the root phenotypes described above, 35S:MtLOG1 expressing roots had a more robust appearance than 35S:GUS roots. To analyze this observation more in detail, transversal sections of root tissue located 1 to 2 cm above the root tip of 1-
Involvement of *MtLOG* genes during nodulation

Figure 8.12: Effects of the ectopic expression of *MtLOG1* on root formation. Measurements were done 40 days after germination on *35S:GUS* or *35S:MtLOG1* transgenic roots of composite plants (n = 29-35). A, Average lateral root number. B, Average root length. C, Average lateral root density. Asterisks indicate statistically significant differences in comparison to *35S:GUS* transgenic roots (p < 0.001, Regression analysis). Data and error bars represent means ± SE. The total mean of two biological repeats is represented in the graphs.

Month-old plants were made and analyzed. As shown in Figure 8.13, the vascular tissue of *35S:MtLOG1* transgenic roots was more expanded than that of control roots. The diameter of the vascular bundle, comprising xylem tissue, phloem tissue, pericycle and endodermal cell layer was measured and an average diameter of 276.2 ± 6.0 μm was obtained for *35S:MtLOG1* roots, while this was only 182.0 ± 5.0 μm for control roots (p < 0.001, Student t-test) (Figure 8.13C). Careful analysis of the sections indicated larger but also more cells in *35S:MtLOG1* vascular tissues (Figure 8.13B). The same measurements were performed for the cortical tissue of these roots. No change in size of the cortical zone, neither in number of cortical cells was seen in radial sections of *35S:MtLOG1* roots compared to control roots. These data suggest that the thickening of *35S:MtLOG1* transformed roots is the result of expansion of the vascular tissue.

As *MtCRE1* is an important cytokinin receptor in *M. truncatula*, we controlled whether the root phenotypes observed on *35S:MtLOG1* hairy roots are *MtCRE1*-dependent. Therefore, composite plants with *35S:MtLOG1* expressing roots were made by *A. rhizogenes* transformation in a *Mtcre1-1* mutant background. The dry weight of 20 roots of each line was measured at one month post germination. Control roots weighted on average 9.54 ± 0.99 mg, while *35S:MtLOG1* roots weighted on average 9.57 ± 0.99 mg (Figure 8.13D). These differences are statistically not relevant (Regression analysis, p > 0.05). The diameter of the vascular tissue was also measured, and no statistically relevant differences were observed. The diameter of the vascular tissue of *35S:GUS*
Chapter 8

Figure 8.13: Enlargement of the root vascular tissue due to cell expansion and increase in cell number caused by the ectopic expression of *MtLOG1* is dependent on *MtCRE1*. A and B, Toluidine blue stained sections through young root segments ectopically expressing *GUS* and *MtLOG1*, respectively. C, Average diameter of the root vascular tissue of *35S:GUS* and *35S:MtLOG1* chimeric wild type (A17) plants (n = 3). Asterisk indicates a statistically significant difference in comparison to *35S:GUS* transgenic roots (p < 0.001, Student t-test). D-E, Effects of the ectopic expression of *MtLOG1* on root formation in a *Mtcre1-1* mutant background. D, Dry weight of the total root material. Measurements were done 1 month post germination on *35S:GUS* and *35S:MtLOG1* transgenic roots of composite *Mtcre1-1* mutant plants (n = 42). No statistical differences were measured (p > 0.05, ANOVA). E, Average diameter of the root vascular tissue of *35S:GUS* and *35S:MtLOG1* chimeric plants (n = 3-7). Statistical differences were evaluated with a two-tailed, unpaired Student t-test. Measurements represented in C and E were made on root material harvested 1 to 2 cm above the root tip of 1 month old plants. Measurements of the diameter of the vascular tissue included the endodermal cell layer, identified by the presence of Casparian strips (arrows). Data and error bars represent means ± SE. e, endodermis; p, pericyclus; xy, xylem; ph, phloem. Bars = 0.25 mm.
roots was on average $208.67 \pm 24.86 \mu m$ long, while the diameter of the vascular tissue of $35S: MtLOG1$ roots was on average $188.29 \pm 7.75 \mu m$ long (Figure 8.13E). These results suggest that the root phenotypes observed on $35S: MtLOG1$ plants is $MtCRE1$ dependent.

Next, the number of lateral root was analyzed in the RNAi $MtLOG1/MtLOG2$ plants (Experiments executed by U. Mathesius and A. Wasson). In wild type A17 plants, an average of 2.70 ± 0.30 lateral roots were counted on control roots transformed with an empty vector, while RNAi $MtLOG1/MtLOG2$ plants had on average 3.72 ± 0.36 lateral roots ($p < 0.05$, ANOVA) (Figure 8.14, A). Also in $Mtcre1-1$ mutants a statistically significant difference in lateral root number was counted, as an average of 4.20 ± 0.47 lateral roots were counted on control roots transformed with an empty vector, while RNAi $MtLOG1/MtLOG2$ plants bared on average 6.17 ± 0.66 lateral roots ($p < 0.05$, ANOVA) (Figure 8.14B). QRT-PCR analysis confirmed the simultaneous knock-down of $MtLOG1$ and $MtLOG2$ in A17 and $Mtcre1-1$ mutants, respectively (Figure 8.14, C-D).

In agreement with a function in releasing active cytokinins, ectopic overexpression resulted in smaller root systems with reduced lateral root numbers, while RNAi resulted in more lateral roots. $MtCRE1$ seems to be the most important cytokinin receptor, but the RNAi experiments suggest that other receptors mediate the cytokinin effect on lateral root number.

8.3 Discussion

We identified 3 LOG genes ($MtLOG1$, $MtLOG2$ and $MtLOG3$) in the genome of $M. truncatula$ (470 Mb) by tBLASTx analysis. LOG genes encode cytokinin riboside 5’-monophosphate phosphoribohydrolases involved in the direct conversion of cytokinin riboside 5’-monophosphates to active cytokinins (Kurakawa et al., 2007; Kuroha et al., 2009). In comparison to the 11 LOG genes identified in the genome of rice (430 Mb) and the 9 LOG genes identified in the genome of Arabidopsis (157 Mb), more $MtLOG$ genes were expected to be retrieved. Possibly the $M. truncatula$ and Arabidopsis LOG genes are too divergent to be identified via tBLASTx analysis. Alternatively, the 16 % of the genome of $M. truncatula$ that still needs to be sequenced might contain several more LOG genes.

The 3 $MtLOG$ genes share a high degree of similarity with the 7 $AtLOG$ genes ($AtLOG1$ to $AtLOG5$, $AtLOG7$, and $AtLOG8$), which were shown to be involved in
Figure 8.14: Effect of knock-down of MtLOG1 expression on lateral root formation in wild type (A17) and Mtcre1-1 mutant plants. A-B, Lateral root numbers in hairy roots 14 dpi with S. meliloti strain E65. Wild type (A17) (A) or Mtcre1-1 mutants (B) were transformed with an empty vector (control) or an RNAi construct targeting both MtLOG1 and MtLOG2 (RNAi Mt-LOG1/MtLOG2) and inoculated 3 weeks post transformation. (n = between 70 and 99). Data and error bars represent means ± SE. Asterisks indicate statistically significant differences in comparison to control roots (p < 0.05, ANOVA). C-D, Expression of MtLOG1/MtLOG2 in RNAi-transformed hairy roots (RNAi MtLOG1/MtLOG2) of wild type (A17) (C) or Mtcre1-1 mutants (D) compared to empty vector controls determined by qRT-PCR. Values show means and standard deviations of three biological replicates and three technical replicates. Each biological replicate contains 8 to 10 roots and was harvested 14 dpi.

the release of the active cytokinin nucleobases from the cytokinin riboside 5’-monophosphates similar to what was reported for OsLOG (Kurakawa et al., 2007; Kuroha et al., 2009). Preliminary results indeed have shown that 35S:MtLOG1 roots contain less cytokinin nucleotides compared to 35S:GUS roots, indicating that MtLOG1 is a true 5’ monophosphate phosphoribohydrolase. However, no more free cytokinins were measured in these roots. This is in contrast to the results of Kuroha et al. (2009) and Kurakawa et al. (2007). The difference between their experiments and the experiments
described here is that they used DEX inducible constructs allowing the analysis of short-term effects, while here the constitutive 35S promoter was used, enabling the analysis of long term effects only. Possibly, the plants have adapted their physiology by activating cytokinin degrading or conjugating mechanisms to counteract the effect of LOG overexpression. New experiments should involve more sensitive measurement on more plant material, as well as CKX analysis (P. Tarkowski, personal communication).

Transcripts of two of the three MtLOG genes were upregulated during nodulation. MtLOG1, expression is restricted to lateral root primordia and nodules, while MtLOG2 is more broadly expressed in different plant tissues, suggesting its participation in several development processes. The nodulation-related expression was shown to be dependent on the components of the early NF signaling pathway, DMI1, DMI2, DMI3, NSP1, NSP2, NIN and MtCRE1, indicating that the genes are only induced after the activation of the MtCRE1 receptor. In addition, the earliest stage at which the MtLOG1 expression was seen, was in cells of developing nodule primordia. Hence, it is unlikely that the cytokinins released via MtLOG1 and possibly MtLOG2 act as a primary cytokinin pool that is sensed by MtCRE1 to initiate nodule formation. Rather, MtLOG1 and MtLOG2 might be involved in a positive feedback loop to maintain the cytokinin levels to allow continued cell division. Other triggers such as translocation or activation of cytokinins, or changes in cytokinin susceptibility might be needed to allow the initiation of cortical cell divisions.

How MtLOG1 and MtLOG2 expression is triggered is currently unknown. Although the nodulation-related expression is dependent on MtCRE1, addition of cytokinin did not activate MtLOG1 expression. Also exogenous addition of auxin could not trigger the expression of both genes. Because, the expression of MtLOG1 was only observed after the first cell divisions, a developmental factor related to cell division might induce both genes. A combination of cytokinin and auxin as well as the stele factor, uridine, isolated years ago as a factor that controls cortical cell division (Smit et al., 1995b; Crespi and Galvez, 2000), are interesting possibilities to test.

In mature nodules, pMtLOG1:GUS staining was seen in the meristematic zone and early differentiating nodule cells suggesting that MtLOG1 might be involved in cell division and differentiation of mature nodule meristems. In accordance, MtCRE1 and the cytokinin response regulator 4 (MtRR4) are expressed in the same zone of mature nodules (Plet et al., 2011). Hence at this stage, MtLOG1 and possibly MtLOG2 might account for cytokinins that are perceived by MtCRE1 to trigger cell division. Also in other plant developmental processes, LOG genes control meristematic activities.
For instance, the OsLOG gene was shown to be essential to maintain SAM activity (Kurakawa et al., 2007; Kuroha et al., 2009).

Functional analysis revealed an important function for MtLOG1 and MtLOG2 during nodulation. Simultaneous knock-down of MtLOG1 and MtLOG2 expression resulted in a reduction in nodule number. These data further support the positive effect of cytokinins on nodulation as was previously suggested by numerous experiments (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Plet et al., 2011; Tirichine et al., 2007; Lohar et al., 2004). For instance, in L. japonicus, a cytokinin degrading enzyme of Arabidopsis or rice resulted in a reduction of nodulation (Lohar et al., 2004). Also the knock-down and knock-out of the gene encoding the cytokinin receptor MtCRE1 resulted in plants with a strongly reduced nodule number (Gonzalez-Rizzo et al., 2006; Plet et al., 2011). Finally, a loss-of-function mutation in the gene encoding the cytokinin receptor LHK1 of L. japonicus induced a reduction of nodulation (Murray et al., 2007). Hence, the cytokinins produced by the MtLOG proteins might account at least partly for the cytokinin pool needed to support nodule formation. The lhlk1 loss-of-function mutation also exhibited hyperinfection (Murray et al., 2007). It might be interesting to analyze whether hyperinfection is also observed on the RNAi MtLOG1/MtLOG2 transformed roots.

A gain-of-function mutation in the L. japonicus LHK1 gene resulted in spontaneous nodulation indicating that activation of the cytokinin receptor is sufficient to induce nodule development (Murray et al., 2007). In agreement, exogenous application of cytokinin resulted in spontaneous nodule formation in alfalfa, Sesbania and white clover and a rhizobial mutant ectopically producing cytokinin could induce nodule formation (Cooper and Long, 1994; Dehio and de Bruijn, 1992; Bauer et al., 1996; Fang and Hirsch, 1998; Mathesius et al., 2000). Ectopic expression of MtLOG1 did however not result in spontaneous nodule formation. This discrepancy might be explained by the absence or by low levels of cytokinin precursors in the root cortex, the place where the first cell divisions for primordium formation occur. In Arabidopsis, high concentrations of cytokinin precursors were measured in both the xylem and phloem tissue (Corbesier et al., 2003; Hirose et al., 2008). These precursors might not reach the cortex until nodulation is initiated. Interestingly symplasmic continuity between the phloem and nodule initials is installed early after inoculation (Complainville et al., 2003). Hence, the cytokinin precursors might only reach the cortical cells once this continuity is made.

In agreement with the restricted availability of precursors in the vascular system,
only an enlargement of the root vascular tissue was observed in 35S:MtLOG1 transgenic roots. The ectopic expression of AtLOG genes also resulted in an enlargement of the root vascular tissue (Kuroha et al., 2009). Cytokinsins are known positive regulators of cambial activity (Ye, 2002; Matsumoto-Kitano et al., 2008; Nieminen et al., 2008). Hence it would be interesting to investigate whether the enlarged vascular tissues observed here are consequences of induced activity of the cambium.

Because many experiments have shown that cytokinsins are positive regulators of nodulation it came as a surprise that inoculation of 35S:MtLOG1 roots resulted in a reduced number of nodules. Analysis of the few nodules that were still formed on those roots indicated that bacterial infection threads were normal in size and shape indicating that rather the root susceptibility towards nodulation might be decreased in 35S:MtLOG1 roots. Such a reduction in root susceptibility was not observed after exogenous application of cytokinsins (Gronlund et al., 2005; Radutoiu et al., 2003). However, Lorteau et al. (2001) indicated that high concentrations of exogenous cytokinsins inhibit nodulation. Possibly, the ectopic expression of MtLOG1 might result in the release of too high levels of cytokinsins inducing a negative effect on nodulation. Alternatively, the ectopic expression of MtLOG1 might activate additional factors, as illustrated by the profound changes in vascular development that affect nodule formation.

The MtCLE12 and MtCLE13 peptides might act as a downstream factor of MtLOG1 because the expression of both corresponding genes was enhanced in 35S:MtLOG1 transgenic roots compared to the levels observed in control roots. These CLE peptides negatively regulate nodulation and interact with the AON pathway that systemically controls nodule number and is activated at the onset of primordium formation (Okamoto et al., 2009; Mortier et al., 2010; Reid et al., 2011; Li et al., 2009). As a result, ectopic expression of MtCLE12 or MtCLE13 ensues a systemic and SUNN-dependent inhibition of nodulation (Mortier et al., 2010). Hence, the activation of both MtCLE genes might explain the observed inhibition of nodulation. Although this hypothesis is tempting, differences were observed between the nodulation phenotype of MtLOG1 and MtCLE12 or MtCLE13 overexpressing roots. The effect of 35:MtLOG1 was milder compared to the effect of overexpression of either CLE peptide gene because, instead of a total inhibition, only a reduction in nodule number was observed in the case of MtLOG1. In addition, in contrast to what was observed for MtCLE12 and MtCLE13, the effect of 35S:MtLOG1 was local and independent of SUNN. It is currently difficult to interpret these data, but it cannot be excluded that MtCLE12 and/or
MtCLE13 exert SUNN-independent effects on nodulation, which might be invisible because they are overruled by SUNN-dependent effects.

In accordance with the upregulation of MtCLE13 expression by the ectopic expression of MtLOG1, exogenous addition of cytokinins could induce MtCLE13 (Mortier et al., 2010). In contrast however, MtCLE12 was not detected after cytokinin addition (Mortier et al., 2010). Currently, no hypothesis can explain this observation, but it might have to do with the observation that MtCLE12 is only expressed from a late stage of nodule primordium formation on, while MtCLE13 is expressed very early on, at a stage at or even before the first cell divisions are observed (Mortier et al., 2010). Together, although the upregulation of MtCLE12 and MtCLE13 might explain the inhibitory effect seen on nodulation of MtLOG1 plants, many aspects should still be resolved. It will be interesting to control the localized expression of both MtCLE genes in the 35S:MtLOG1 plants. Moreover, the analysis of the MtCLE12/MtCLE13 RNAi in 35S:MtLOG1 roots might reveal whether the CLE peptides play an active role in the 35S:MtLOG1 induced reduction of nodulation.

Analysis of the few nodules that did form on 35S:MtLOG1 transgenic roots revealed no or only a small meristem and a high level of senescence. Premature nodule senescence might be a consequence of an imbalance between cell division and differentiation leading to aberrant differentiation of infected cells and subsequently senescence. Also in ENOD40 RNAi roots as well as in MtCLE12/MtCLE13 RNAi lines a similar observation was made (Kumagai et al., 2006). The link between meristem activity and senescence or the need for a coordinated differentiation between bacterial and plant cells might be an interesting subject to further study. Alternatively, 35S:MtLOG1 might have a direct effect on nodule senescence. In agreement, Coba de la Pena et al. (2008) reported the upregulation of a cytokinin receptor homolog in Lupinus albus during nodule senescence. The induction of nodule senescence by cytokinin activation is in contrast to the positive effect cytokinins have on leaf senescence (Wingler et al., 1998; Van de Velde et al., 2006). Because MtLOG1 is expressed in the nodule apical zone, it is however more appealing that the senescence observed is a consequence of a modulation of the meristematic activities. It will be interesting to analyze whether MtLOG1 might work together with the CLE peptides at the level of meristem activities rather than in the control of nodule numbers.

The MtLOG genes also contribute to the cytokinin effect on root development. In Arabidopsis, LOG genes were shown to negatively control lateral root emergence (Kuroha et al., 2009). This is in agreement with observations that demonstrated the
Involvement of *MtLOG* genes during nodulation

Figure 8.15: Overview of the involvement of *MtLOG* genes during early nodulation. Expression of *MtLOG* genes was shown to be located downstream of the component of the early NF signaling pathway, including epidermal factors and *MtCRE1*. In addition, histochemical analysis indicated initiation of *MtLOG1* expression after the first cell divisions for primordium development did take place. Hence, it is unlikely that the cytokinins released via *MtLOG* genes act as a primary cytokinin pool that is sensed by *MtCRE1* to initiate nodule formation, but rather are involved in a positive feedback loop to maintain the cytokinin levels. Functional analysis of *MtLOG* genes by RNAi and ectopic overexpression analysis suggested a role during cell division and differentiation and possibly during AON. This might happen via CLE peptides, as ectopic expression of *MtLOG1* resulted in the ectopic expression of *MtCLE12* and *MtCLE13*.

The negative effect of cytokinins on root growth and lateral root formation in many plant species, including *M. truncatula* (Gonzalez-Rizzo et al., 2006; Bishopp et al., 2009). *MtLOG1* might indeed account for the production of cytokinins that negatively regu-
late lateral root formation because \textit{pMtLOG1:GUS} activity was detected in lateral root primordia and an elevated number of lateral roots was observed on \textit{MtLOG1/MtLOG2} RNAi plants. Moreover, on \textit{35S:MtLOG1} transgenic roots, a reduction in root length and lateral root number was observed indicative for a possible enhanced production of cytokinins that inhibit root growth. Yet, the length of the primary root in plants ectopically expressing a \textit{AtLOG} gene was similar to the root length of control plants (Kuroha \textit{et al.}, 2009), while here a reduction in root length was measured. Possibly, morphological or molecular differences between \textit{A. thaliana} and \textit{M. truncatula} but also between the activities of the LOG proteins might account for this discrepancy.

Previous experiments with the cytokinin receptor \textit{MtCRE1} suggested that signaling via this receptor might account for the negative role of cytokinin on root growth (Nishimura \textit{et al.}, 2004; Lohar \textit{et al.}, 2004; Gonzalez-Rizzo \textit{et al.}, 2006). We confirm this as indeed more lateral roots were observed on \textit{Mtcre1-1} mutants compared to wild type. However, the \textit{MtLOG1/MtLOG2} RNAi constructs also resulted in an enhanced number of lateral roots on \textit{Mtcre1-1} mutant plants indicating that other cytokinin receptors, apart from MtCRE1, might play a role. Also in Arabidopsis, multiple cytokinin receptors control the effect on lateral root growth (Nishimura \textit{et al.}, 2004; Li \textit{et al.}, 2006). Two other cytokinin receptors have been found in \textit{M. truncatula}, it will be interesting to find the other receptors that contribute to the influence of cytokinins on lateral root growth.

Together, these results suggest that \textit{de novo} synthesis of cytokinins via MtLOGs accounts for proper nodule primordium development and nodule meristem function (Figure 8.15). In addition, the same \textit{MtLOG} genes might negatively regulate lateral root formation. Further studies will reveal the individual contributions of both MtLOG proteins studied here, but stable mutants will be needed for additional analyses. In addition, \textit{MtLOG1} might be involved in the activation of the autoregulation pathway via the activation of two \textit{MtCLE} genes that control nodule number. It is well known that the AON mechanism is activated when the first cell divisions appear in the cortex (Li \textit{et al.}, 2009). However, further experiments are required to clearly demonstrate the potential link between cytokinin production and the AON mechanism.
8.4 Materials and Methods

Biological material

M. truncatula Gaertn. cv. Jemalong A17 and J5 as well as *nin-1, nsp1, nsp2, dmi1, dmi2, dmi3, Mtcrel-1* and *sunn-4* mutants (Catoira *et al.*, 2000; Oldroyd and Long, 2003; Marsh *et al.*, 2007; Middleton *et al.*, 2007; Schnabel *et al.*, 2005; Gonzalez-Rizzo *et al.*, 2006) were grown and inoculated as described (Mergaert *et al.*, 2003). *Sinorhizobium meliloti* 1021, *Sm1021* pHC60-GFP (Cheng and Walker, 1998), and *Sm2011* pBHR-mRFP (Smit *et al.*, 2005) were grown at 28°C in yeast extract broth medium (Vervliet *et al.*, 1975), supplemented with 10 mg L⁻¹ tetracycline for the *Sm1021* pHC60-GFP and *Sm2011* pBHR-mRFP strains.

For RNAi analysis, the *S. meliloti* strain E65 was maintained on Bergensen’s Modified Medium (BMM) (Rolfe *et al.*, 1980) containing 50 μM tetracycline, while the *Agrobacterium rhizogenes* ARqua1 strain (Boisson-Dernier *et al.*, 2001) was maintained on Tryptone Yeast (TY) medium containing 100 μg/ml streptomycin.

For *promoter:GUS* analysis, a 2-kb region upstream of *MtLOG1* was isolated from genomic DNA based on the available genomic data28. The promoters were fused to the *uidA* gene in pKm43GWRolDC1 (Karimi *et al.*, 2002). Primers used for amplification are presented in Table 8.1.

For the qRT-PCR analysis, *M. truncatula* J5 plants were grown *in vitro* in square Petri dishes (12 x 12 cm) on nitrogen-poor SOLi agar (Blondon, 1964). For the analysis of temporal expression during nodulation, nodules were harvested 4 to 10 dpi from plants grown in pouches, watered with nitrogen-poor SOLi medium, and inoculated with *Sm1021* pHC60-GFP. Infection threads were visible from 4 dpi on, nodule primordia at 6 dpi, and small nodules at 8 dpi. Two days later, at 10 dpi, slightly bigger nodules were observed. Tissue was collected by visualizing the green fluorescent bacteria under a stereomicroscope MZFLII (Leica Microsystems, Wetzlar, Germany) equipped with a blue-light source and a Leica GFP Plus filter set (λ_ex = 480/40; λ_em = 510 nm LP barrier filter). The zones I of uninoculated roots were isolated at the same developmental stage as the 4 dpi stage. For the analysis of *MtLOG1* expression in nodulation mutants, plants were grown in an aeroponic system. Half of the plants were harvested at the age of 6 days, while the other half of the plants was inoculated with *Sm2011* pBHR-mRFP and was harvested 7 days later. Chimeric plants bearing one

of the following constructs, 35S:GUS, 35S:MtLOG1, 35S:MiCLE4, 35S:MiCLE12 or 35S:MiCLE13, were placed in an aeroponic system at the age of 1 month, were grown under nitrogen-rich conditions and their roots were harvested 2 weeks later.

Table 8.1: Primers used in the analyses.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORF MtLOG1</td>
<td>ATGGACTCACGCAATGGT</td>
<td>CTACCTTGGAGATGTCAATAATC</td>
</tr>
<tr>
<td>promoter MtLOG1</td>
<td>TGAGAAGAGACGCAAAACA</td>
<td>CATTGTATTGGAATAAAGGTAA</td>
</tr>
<tr>
<td>RNAi MtLOG1/MtLOG2</td>
<td>TGGAGGAGGAAGCATT</td>
<td>GAGTCCATATCCCTC</td>
</tr>
<tr>
<td>qRT-PCR amplification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MtLOG1</td>
<td>AACAAATGGACTCACGCAATGGT</td>
<td>GGCAGCACTTTGGTAGGTAAG</td>
</tr>
<tr>
<td>MtLOG2</td>
<td>CGATTTCCTTTCTAAGTTGAGA</td>
<td>TGACGTAACCCGATGATG</td>
</tr>
<tr>
<td>MiCLE4</td>
<td>AAATTCGACGCTTCTCTTCATG</td>
<td>TGGCACACCTCTCTTGTCTCC</td>
</tr>
<tr>
<td>MiCLE12</td>
<td>CACGCTTTGCTTCTCTTGTCTTC</td>
<td>ACCTGTGGAAAGCTAATCCTCT</td>
</tr>
<tr>
<td>MiCLE13</td>
<td>CGGAACCGCTTCTACGAAGACTG</td>
<td>TCTTGTGGTGATCTTCATATG</td>
</tr>
<tr>
<td>40S</td>
<td>GCCATTTGCAACGAGTTTGATGCT</td>
<td>TTTCCTACAAACTTCTCC</td>
</tr>
<tr>
<td>RNAi MtLOG1/MtLOG2</td>
<td>ACCAGGGGATATGGGAACCTC</td>
<td>CTCTTTGCAAGTGTTGTCCT</td>
</tr>
<tr>
<td>GAPDH</td>
<td>TGCCATCTCGATGGTCCAGT</td>
<td>GTGCCTCTGGATCTTCC</td>
</tr>
</tbody>
</table>

Generation of LOG12 RNAi vector and transformation of A. rhizogenes

We used the pHellsgate8 RNAi vector. A 220 bp fragment of the MtLOG1/MtLOG2 gene of M. truncatula was amplified with the primers listed in Table 8.1, which also inserted attb sites for cloning into the pDONOR vector. The inserts were verified by restriction digests. The verified construct was then transformed into the A. rhizogenes strain ARqua1 using the freeze-thaw transformation method of (Hofgen and Willmitzer, 1988). M. truncatula cv. Jemalong A17 seeds were scarified on sandpaper, sterilized in 6 % (w/v) sodium hypochlorite for 10 min and thoroughly rinsed in sterile water. Seeds were vernalized at 4°C overnight and germinated at 25°C in the dark. The transformation of M. truncatula with A. rhizogenes followed the technique of (Boisson-Dernier et al., 2001) Transformation with empty pHellsgate8 vector was used as a negative control. Composite plantlets were grown on 15 cm diameter Petri dishes containing sloped modified Fahraeus (F) medium with Kanamycin (25 mg/l) (Boisson-Dernier et al., 2001). Plantlets were grown at 20°C for 7 days, before being transferred to 25°C. A 16 h light period at 150 μE light intensity was used throughout. Plants were then transferred to plates containing F medium without Kanamycin and
incubated for one more week before inoculation with a fresh culture of *S. meliloti* E65 (OD600 = 0.2). Individual roots were marked on the plate and inoculated with 10 μL of bacterial culture. Plates were incubated for two weeks at 25°C with a 16 h light period at 150 μE light intensity. After two weeks, each of the marked roots was analyzed for nodule and lateral root numbers. Immediately afterwards, three lots of 8-10 roots for each treatment were excised, frozen in liquid nitrogen and used for RT-PCR.

RNA extraction, cDNA synthesis, and qRT-PCR analysis

Total RNA was isolated with the RNeasy Plant mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. After a DNase treatment, the samples were purified through NH₄Ac (5 M) precipitation, quality controlled, and quantified with a Nanodrop spectrophotometer (Isogen, Hackensack, NJ). RNA (2 μg) was used for cDNA synthesis with the Superscript Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA). The samples were diluted 50 times and stored at -20°C until further use. The qRT-PCR experiments were done on a LightCycler 480 (Roche Diagnostics, Brussels, Belgium) and SYBR Green was used for detection. All reactions were done in triplicate and averaged. The total reaction volume was 5 μl (2.5 μl master mix, 0.25 μl of each primer [5 μM] and 2 μl cDNA). Cycle threshold (Cₜ) values were obtained with the accompanying software and data were analyzed with the 2⁻△△Cₜ (Livak and Schmittgen, 2001). The relative expression was normalized against the constitutively expressed 40S ribosomal S8 protein (TC100533, MGI). Primers used (Table 8.1) were unique in the MGI version 9.0 and the Medicago EST Navigation System database (Journet et al., 2002). For RNAi analysis, data was analyzed in excel using a relative quantification method based on Pfaffl (2001) with GAPDH as the reference gene. Except for the RNAi analysis, each experiment was repeated at least two times with independent biological tissue.

Statistical analysis

The following generalized linear model (GLM) \(Y_{ijk} = \mu + \text{genotype}_j + \text{experiment}_k + \text{error}_{ijk} \) (Regression analysis) was fitted to the nodule number, lateral root number and lateral root density data, partitioning phenotypic variation into fixed genotype and experiment effects and random error effects. \(Y_{ijk} \) is the phenotype of the \(i \)-th plant from the genotype \(j \) analyzed in experiment \(k \); \(\mu \) is the overall mean of the phenotypes obtained for all lines considered. Because the data has a Poisson distribution, a logarithm
base e link function was incorporated. In the case of root length, an analysis of variance (ANOVA) was performed. All analyses were done by means of the GenStat software\(^2^9\).

In vitro application of auxins, and cytokinins

Auxins (10\(^{-6}\) M IAA) and cytokinins (10\(^{-7}\) M BAP) were diluted in dimethylsulfoxide and supplemented to the medium of 5-day-old, *in vitro*-grown plants. As a control, plants were grown without supplemented hormones. The plants were cultured at 25°C, 16-h photoperiod, and 70 μE m\(^{-2}\)m\(^{-1}\) light intensity per day. The roots were covered with aluminum foil for light protection. After 0, 3, 6, 12, and 24 h of incubation, the roots of 18 plants under each condition were harvested and analyzed by qRT-PCR. The experiment was repeated twice with comparable results.

A. rhizogenes-mediated transgenic root transformation

The protocol was adapted from Boisson-Dernier *et al*. (2001). Approximately 48 h after germination, the radicle was sectioned at 5 mm from the roottip with a sterile scalpel. Sectioned seedlings were infected by coating the freshly cut surface with the binary vector-containing *A. rhizogenes* Arqua1 strains. The *A. rhizogenes* strain was grown at 28°C for 2 days on solid yeast extract broth medium with the appropriate antibiotics (Quandt *et al*., 1993). The infected seedlings were placed on agar (Kalys) containing the SOLi medium, supplemented with 1 mM NH\(_4\)NO\(_3\), in square Petri dishes (12 × 12 cm) placed vertically for 5 days at 20°C, 16-h photoperiod, and 70 μE m\(^{-2}\)m\(^{-1}\). Subsequently, plants were placed on the same medium between brown paper at 25°C and under identical light conditions. One and 2 weeks later, plants were screened for transgenic roots, characterized by GFP fluorescence with a stereomicroscope MZFLII (Leica Microsystems) equipped with a blue-light source and a Leica GFP plus filter set. One main transgenic root was retained per composite plant. Four weeks after infection, plants were transferred to an aeroponic system, pouches, or perlite-containing pots and incubated with SOLi medium. Three to 7 days after planting, composite plants were inoculated.

To check the long distance effect of *MtLOG1*, the main root was kept on the juvenile plant and infected by stabbing the hypocotyls with a fine needle containing an *A. rhizogenes* culture and cotransformed as described above, after which the plants were

\(^{29}\)http://www.vsni.co.uk/software/genstat/
 grown for 2 weeks at 25°C with a 16-h photoperiod and light at 70 μE m⁻² s⁻¹. After the plants had been transferred to an aeroponic system for 7 days, nodulation was analyzed on the main, untransformed root of plants bearing GFP-positive hairy roots.

Histochemical localization of GUS activity

GUS activity in cotransformed roots and nodules was analyzed using 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid as substrate (Van den Eede et al., 1992). Roots and nodules were vacuum infiltrated during 20 min and subsequently incubated in GUS buffer at 37°C. Incubation lasted 4 h for pMtLOG1-GUS. After staining, roots and root nodules were fixed, dehydrated, embedded with the Technovit 7100 kit (Heraeus Kulzer, Wehrheim, Germany), according to the manufacturer’s instructions, and sectioned with a microtome (Reichert-Jung, Nussloch, Germany). The 3-μm thick sections were mounted on coated slides (Sigma-Aldrich, St. Louis, MO). For tissue-specific staining, sections were submerged in a 0.05 % (w/v) ruthenium red solution (Sigma-Aldrich, St. Louis, MO), washed in distilled water, and dried. Finally, sections were mounted with Depex (BDH Chemicals, Poole, England). Photographs were taken with a Diaplan microscope equipped with bright- and dark-field optics (Leitz, Wetzlar, Germany).

Cytokinin measurements

Samples were devided into two technical replicates (100 mg). Cytokinins were extracted and separated, essentially as outlined by Novak et al. (2003). Frozen plant tissue (100 mg) was homogenized by vibration mill and extracted overnight at -20°C in 1 ml Bielski buffer enriched with stable isotope internal standards. Passing the extract, in sequence, through a cation (SCX-cartridge) and an anion [DEAE-Sephadex combined with an SPE(C18)cartridge] exchanger afforded fraction 1 containing the cytokinin free bases, ribosides, and glucosides, and fraction 2 containing the nucleotides. Both fractions were purified further by immunoaffinity extraction based on generic monoclonal anticytokinin antibodies, but fraction 2 was first treated with alkaline phosphatase. Quantification was done by isotope dilution method (UPLC-MS/MS) according to Novak et al. (2008).
Acknowledgements

We thank René Geurts (Wageningen University), Pascal Gamas and Clare Gough (Institut de la Recherche Agronomique-Toulouse), Doug Cook (University of California, Davis), Giles Oldroyd (John Innes Institute), Florian Frugier (ISV CNRS, Gif-sur-Yvette), and Julia Frugoli (Clemson University, South Carolina) for *S. meliloti* strains and *M. truncatula* mutants, Petr Tarkowski for cytokinin measurements, Ulrike Mathesius and Anton Wasson for RNAi analysis and our colleagues Annick De Keyser and Christa Verplancke for skillful assistance, Martijn Decroos for his input during his master thesis, Wilson Ardiles for sequence analysis and Marnik Vuylsteke for help with statistical analysis.

Authors contributions

The main part of this work was performed by V. Mortier. The RNAi analyses were done by U. Mathesius, while P. Tarkowski performed the cytokinin measurements. S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.
Search for nodulation related *CLE* genes in the genome of *Glycine max*

Virginie Mortier, Berhanu Amsalu Fenta, Cindy Martens, Stéphane Rombauts, Marcelle Holsters, Karl Kunert and Sofie Goormachtig

Redrafted from: *Journal of Experimental Botany*, 2011 Jan 27. [Epub ahead of print]
Chapter 9

Abstract
CLE peptides are potentially involved in nodule organ development and in autoregulation of nodulation (AON), a systemic process that restricts nodule number. A genome-wide survey of CLE peptide genes in the soybean genome resulted in the identification of 39 GmCLE genes, the majority of which were not annotated yet. qRT-PCR analysis indicated two different nodulation-related CLE expression patterns, one linked with nodule primordium development and a new one linked with nodule maturation. Moreover, two GmCLE gene pairs, encoding group-III CLE peptides which were previously shown to be involved in AON, had a transient expression pattern during nodule development, were induced by the essential nodulation hormone cytokinin and one pair was also slightly induced by addition of nitrate. Hence, our data support the hypothesis that group-III CLE peptides produced in the nodules are involved in primordium homeostasis and intertwined in activating AON, but not in sustaining it.

9.1 Introduction

Legumes can grow on nitrogen-poor soils by establishing a symbiosis with soil-borne bacteria called rhizobia. This symbiosis results in the formation of new root organs, the nodules, in which the bacteria fix nitrogen for the plant. In return, the microsymbiont receives carbon sources and a protective niche. The rhizobia-legume interaction is initiated by mutual recognition of molecular signals. Upon sensing flavonoids exuded by the roots of a compatible host, the rhizobia produce decorated lipochitooligosaccharides, the nodulation (Nod) factors (NFs) that are recognized by LysM receptor-like kinases (RLKs) (D’Haese and Holsters, 2002). NF recognition activates two coordinated plant developmental programs: initiation of an infection process by which bacteria enter the host and simultaneously elicitation of cortical and pericycle cell division, resulting in the nodule organ. When infection threads reach the cells of the nodule primordium, the bacteria are released into the symbiosomes to fix nitrogen. Two main nodule types are observed. Determinate nodules, with Lotus japonicus as the model legume, are initiated in the outer cortex. Early in development, the primordium cells cease to divide and nodule enlargement is mainly due to cell expansion, resulting in spherical, mature nodules. Indeterminate nodules, for which Medicago truncatula (barrel medic) is the model, arise from inner cortical cell division. Some cells of the
GmCLE genes expressed during nodulation

primordium will become meristematic and will form a persistent apical meristem (Patriarca et al., 2004; Crespi and Frugier, 2008). Downstream from the NFs, nodule primordium formation depends on cytokinin signaling (Frugier et al., 2008; Oldroyd and Downie, 2008), as demonstrated by knockout mutants for the cytokinin receptor gene *LHK1* in *L. japonicus* or by transgenic *M. truncatula* plants with reduced expression of the ortholog *CRE1* that were defective in nodule primordia formation (Gonzalez-Rizzo et al., 2006; Murray et al., 2007). Additionally, the *L. japonicus* snf2 gain-of-function mutant for the LHK1 receptor provoked spontaneous nodules, indicating that cytokinin signaling is both necessary and sufficient for nodule formation (Tirichine et al., 2007). Also auxin flow and signaling are important factors for primordium formation (Mathesius et al., 1998; Boot et al., 1999; Pacios-Bras et al., 2003; van Noorden et al., 2006; Wasson et al., 2006). Recently, a group of CLAVATA3 (CLV3)/ESR-RELATED (CLE) peptides has been investigated for their role in nodulation (Okamoto et al., 2009; Hirakawa et al., 2010a; Mortier et al., 2010). CLE peptides are small (12-13 amino acids) secreted peptides derived from the C-terminal region of pre-proproteins (Mitchum et al., 2008; Oelkers et al., 2008). The *Arabidopsis thaliana* genome contains 32 family members that are involved in balancing proliferation and differentiation during plant development. For instance, in Arabidopsis, CLV3 signaling via the RLK CLAVATA1 (CLV1) is essential to maintain stem cell homeostasis at the shoot apical meristem (SAM). Ectopic expression of **CLV3** resulted in the disappearance of the SAM, while **clv3** mutants enhanced SAM proliferation (Clark et al., 1997; Fletcher et al., 1999; Brand et al., 2000; Ogawa et al., 2008). Another well-known example is the **CLE41-PHLOEM INTERCALATED WITH XYLEM** (PXY) ligand receptor pair that regulates xylem differentiation, and the rate and orientation of vascular cell division (Ito et al., 2006; Hirakawa et al., 2008; Whitford et al., 2008; Etchells and Turner, 2010). CLE peptides with related sequences exhibit functional redundancy (Strabala et al., 2006; Jun et al., 2008). Gain-of-function analysis divided the Arabidopsis CLE peptides in at least three groups. Group-I peptides, exemplified by **CLV3**, arrest premature root and shoot meristem growth when exogenously applied or ectopically produced, indicating that they promote cellular differentiation. Group-II members, exemplified by **CLE41**, prevent premature root and shoot meristem growth when exogenously applied or ectopically produced, indicating that they promote cellular differentiation. Group-II members, exemplified by **CLE41**, prevent cellular differentiation. No clear function has been described yet for the group-III peptides, comprising the CLE1 to CLE7 peptides (Ito et al., 2006; Strabala et al., 2006; Etchells and Turner, 2010). In *L. japonicus* and *M. truncatula*, three (**LjCLE-RS1**, **LjCLE-RS2** and **LjCLE3**)) and two (**MtCLE12** and **MtCLE13**) CLE genes, respectively, are upregulated specifically dur-
ing nodulation. The CLE domain of LjCLE-RS1 and LjCLE-RS2 and MtCLE12 and MtCLE13 is highly similar, indicating that these group-III peptides might exert comparable functions (Okamoto et al., 2009; Mortier et al., 2010). In *M. truncatula*, the *MtCLE12* and *MtCLE13* expression patterns suggest a role in primordium and apical meristem homeostasis (Mortier et al., 2010), while functional analysis revealed that LjCLE-RS1, LjCLE-RS2, MtCLE12, MtCLE13 derived CLE peptides might be implicated in auto-regulation of nodulation (AON) (Okamoto et al., 2009; Mortier et al., 2010). Long-distance AON signaling controls the nodule number to avoid excess of nitrogen sources that would be deleterious for plant growth (Nutman, 1952). Insight into the process of AON was gained by the isolation of mutants affected in a leucine-rich repeat (LRR)-RLK, designated ‘nodule autoregulation receptor kinase’ (NARK) or ‘nitrogen-tolerant symbiosis 1’ (NTS1) in soybean, ‘hypernodulation aberrant root formation’ (HAR1) in *L. japonicus*, ‘symbiosis 29’ (SYM29) in pea, and ‘super numeric nodules’ (SUNN) in *M. truncatula*. They all have a super-nodulation phenotype and exhibit a nitrate-tolerant nodulation, suggesting that the negative control exerted by nitrate on nodulation might happen via the same process (Pierce and Bauer, 1983; Carroll et al., 1985a,b; Wopereis et al., 2000; Oka-Kira et al., 2005; Barbulova et al., 2007; Magori and Kawaguchi, 2009; Kossak and Bohlool, 1984; Duc and Messager, 1989; Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Schnabel et al., 2005, 2010). Grafting experiments have shown that this AON LRR-RLK is active in the shoot (Nishimura et al., 2002a; Searle et al., 2003) and leads to a return signal that is translocated to the roots, to inhibit further nodulation (Nishimura et al., 2002a; Lin et al., 2010). The nature of the AON signaling molecules is still elusive. AON is activated upon NF signaling at the onset of or during cortical cell division (Matthews et al., 1989b; Caetano-Anollés and Gresshoff, 1991; Sagan and Gresshoff, 1996; Suzuki et al., 2008; Li et al., 2009) and, in pea and *L. japonicus* become stronger as the nodules matured (Suzuki et al., 2008; Li et al., 2009). SUNN and its orthologs might perceive CLE peptides to provoke AON, because they are phylogenetically related to many known and putative CLE receptors (Shiu and Bleecker, 2001; Okamoto et al., 2009). The LjCLE-RS1, LjCLE-RS2, MtCLE12, and MtCLE13 peptides are good candidates for triggering AON. Indeed, ectopic expression of the corresponding genes strongly reduced or abolished nodulation locally and systemically in a *HAR1* and SUNN dependent way, in *L. japonicus* and *M. truncatula*, respectively (Okamoto et al., 2009; Mortier et al., 2010). Importantly, inhibition of nodulation was specific for overexpression of *LjCLE-RS1, LjCLE-RS2, MtCLE12, and MtCLE13* and ectopic
expression of CLE genes with a structurally unrelated CLE domain did not induce this effect (Okamoto et al., 2009; Mortier et al., 2010). So far, however, it is not proven that the peptides derived from these genes act as long-distance signals travelling from the developing nodules to the shoot, where SUNN and its orthologs are active.

To gain more insight into the function of CLE peptides in nodulation, the CLE gene expression was analyzed during the development of determinate soybean nodules. Specialized searches predicted 24 peptide genes in the genome of soybean on top of the 15 previously identified (Oelkers et al., 2008). Expression was assayed in various tissues, including developing and mature nodules, after application of various concentrations of nitrate and of cytokinin and auxin. Several GmCLE genes were found of which the expression was upregulated during nodulation. For six GmCLE genes, encoding group-I CLE peptides and divided in three gene pairs, the expression increased steadily during nodulation. Two pairs of CLE genes encoded group-III GmCLE peptides. These genes, as well as one group-I GmCLE gene, were expressed at high levels in developing, but not in mature, nodules. The group-III soybean genes were induced by cytokinin. These data support the hypothesis that group-III CLE peptides produced in the nodules are involved in primordium homeostasis. These peptides might also activate AON, but not sustain it because genes encoding this group of peptides were absent in mature nodules.

9.2 Results

9.2.1 In silico identification of GmCLE genes

Because CLE pre-proproteins are short and the conserved CLE domain is only 12 amino acids (AAs) long, neither BLAST nor phylogeny could be reliably applied to identify the genes. For that reason, to search for GmCLE genes, a pipeline (S. Rombauts and Y Van de Peer, unpublished data) was used based on the HMMer software, which is more sensitive and specific than BLAST or PSI-BLAST (Eddy, 2009). As a first step, Hidden Markov Models (HMMs) were constructed that were derived from a multiple alignment, made with MUSCLE (Edgar, 2004), of all known M. truncatula CLE proteins. All conserved regions in the alignment (domains) from 6 AAs onwards were taken into consideration. Subsequently, an orfeome was constructed from the whole soybean genome and combined with the known M. truncatula CLE peptides was screened with the obtained HMMs. The scores for each HMM, received from the HMMer software, were normalized in function of the length of each individual domain
allowing domains to contribute equally. The final scores were ordered in vectors per gene and stored in a matrix. By applying hierarchical clustering (Cluster 3.0) on the matrix, genes with highly correlated vectors were grouped together. The \textit{M. truncatula} CLE peptides included in the analysis pointed to the clusters of interest. The soybean genes that clustered together with known \textit{M. truncatula} \textit{CLE} genes were taken as primary candidates. In total, 39 GmCLE proteins were identified, of which 15 had been described previously, but none of them had been annotated in the soybean genome (Oelkers \textit{et al.}, 2008) (Table 9.1). All hits were annotated and made available at NCBI (Table 9.1). Due to the duplicated genome of soybean, 17 pairs of highly (at least 85 \%) homologous sequences were found.

The corresponding GmCLE pre-proproteins varied in length between 49 AAs and 131 AAs and show a high level of sequence divergence outside the CLE motif (Table 9.1). Except for GmCLE13, all proteins had an N-terminal signal peptide or signal anchor as predicted by HMM signalP and neural networks (Bendtsen \textit{et al.}, 2004) (Table 9.1). Moreover, \textit{GmCLE13} was the only gene bearing an intron (Table 9.1). The \textit{GmCLE} genes were scattered throughout the chromosomes, except for chromosome 4 and 16 on which no \textit{GmCLE} genes were identified (Table 9.1). A tree-based alignment was done with the CLE domain encoded by all soybean and Arabidopsis \textit{CLE} genes as well as the nodulation-specific \textit{CLE} genes of \textit{M. truncatula} and \textit{L. japonicus}. Twenty-nine \textit{GmCLE} genes encoded CLE peptides designated as group-I and exemplified by \textit{CLV3} (Figure 9.1). Six \textit{GmCLE} genes encoded peptides identical to TDIF/CLE41/CLE44 and were designated as group-II. Four \textit{GmCLE} genes (\textit{GmCLE14}, \textit{GmCLE35}, \textit{GmCLE37}, and \textit{GmCLE39}), encoded peptides that are most homologous to the peptides of the nodulation-specific genes \textit{MtCLE12}, \textit{MtCLE13}, \textit{LjCLE-RS1}, and \textit{LjCLE-RS2} and to Arabidopsis \textit{CLE1} to \textit{CLE7}. This group was named group-III.

To facilitate the comparison of the AAs between CLE domains, they were numbered as described by Oelkers \textit{et al.} (2008) with the zero position assigned to the conserved glycine (G) residue located at the center of the CLE motif and the positions of the other AAs numbered relative to this G. The peptide sequence derived from the pair GmCLE35-GmCLE37 was very similar to that of the nodulation-related CLE peptides, LjCLE-RS1/LjCLE-RS2 and MtCLE13 (Figure 9.1). The sequence only differed at AA positions -3 (A ↔ S) with LjCLE-RS1/LjCLE-RS2 and -1 (G ↔ A) and -3 (A ↔ S) with MtCLE13 (Okamoto \textit{et al.}, 2009; Mortier \textit{et al.}, 2010). In contrast, the CLE domain of \textit{GmCLE14-GmCLE39}, which belongs to the same group-III peptides, differed at least at three AA positions with the other group members. The conserved
CLE23
CLE34
CLE51
CLE52
CLE53
CLE54
CLE55
CLE56
CLE57
CLE58
CLE59
CLE60
CLE61
CLE62

GmCLE01
GmCLE02
GmCLE03
GmCLE04
GmCLE05
GmCLE06
GmCLE07
GmCLE08
GmCLE09
GmCLE10
GmCLE11
GmCLE12
GmCLE13
GmCLE14
GmCLE15
GmCLE16
GmCLE17
GmCLE18
GmCLE19
GmCLE20
GmCLE21
GmCLE22
GmCLE23
GmCLE24
GmCLE25
GmCLE26
GmCLE27
GmCLE28
GmCLE29
GmCLE30
GmCLE31
GmCLE32
GmCLE33
GmCLE34
GmCLE35
GmCLE36
GmCLE37
GmCLE38
GmCLE39

CLE63

General
nomenclature

G. max
nomenclature

Identiﬁcation
number
HM585099
HM585100
HM585101
HM585102
HM585103
HM585104
HM585105
HM585106
HM585107
HM585108
HM585109
HM585110
HM585111
HM585112
HM585113
HM585114
HM585115
HM585116
HM585117
HM585118
HM585119
HM585120
HM585121
HM585122
HM585123
HM585124
HM585125
HM585126
HM585127
HM585128
HM585129
HM585130
HM585131
HM585132
HM585133
HM585134
HM585135
HM585136
HM585137

CLE domain
sequence
RRVPTGSNPLHN
RRVPNGPDPIHN
HEVPSGPNPISN
RRVPTGPNPLHH
HEVPSGPNPISN
RKVYTGPNPLHN
RRVPSCPDPLHN
RIIHTGPNPLHN
TATPGGPNPLHN
RLVPSGPNPLHN
RKVPNASDPLHN
HEVPSGPNPISN
REVPTGPDPLHH
RLAPEGPDPHHN
RDVPGGPNPLHN
RGVPSGANPLHN
REVPSSPDPLHN
RIIYTGPNPLHN
RLVPSGPNPLHN
RLVPTGPNPLHH
RLVPTGPNPLHH
RRVPTGSNPLHN
RIIYTGPNPLHN
RRVPTGPNPLHH
RRVPTGPNPLHN
HEVPSGPNPISN
RRVPNGPDPIHN
RIIHTGPNPLHN
HEVPSGPNPISN
RRVPSCPDPLHN
HEVPSGPNPISN
REVPSSPDPLHN
RGVPSGANPLHN
RKVPNASDPLHN
RLAPGGPDPQHN
RDVPGGPNPLHN
RLAPGGPDPQHN
RKVYTGPNPLHN
RLTPEGPDPHHN
GmCLE05
GmCLE02
GmCLE08
GmCLE12
GmCLE07
GmCLE03
GmCLE17
GmCLE16
GmCLE11
GmCLE37
GmCLE15
GmCLE35
GmCLE06
GmCLE14

GmCLE21
GmCLE20
GmCLE01
GmCLE18
GmCLE04

GmCLE39
GmCLE36
GmCLE33
GmCLE32
GmCLE23

GmCLE34
GmCLE29

GmCLE22
GmCLE27
GmCLE31
GmCLE24
GmCLE26
GmCLE38
GmCLE30
GmCLE28

Homologous
partner
71
131
113
111
123
94
97
114
86
86
82
127
49
95
87
67
76
90
107
114
118
73
89
110
99
123
115
119
125
96
113
74
67
84
93
87
94
100
96

Length
(AA)
14
1
8
20
18
19
20
20
9
10
14
15
12
13
5
11
20
2
1
17
5
2
14
10
20
8
2
7
9
10
5
10
1
17
6
8
12
3
12

Chromosome
number
No
Yes
No

Intron

1
0.864
0.99
0.104
0.021
0.998
0.968
0.001
0.968
0.985
0.265
0.999
0
0.974
0.995
0.968
0.997
0.745
0.992
0.268
0.859
0.999
1
0.168
0.917
0.018
0.959
0.001
0.995
0.954
0.993
0.999
0.983
0.267
0.977
0.971
0.981
0.981
0.957

Signal
peptide
probability
0
0.135
0.009
0.89
0.968
0.002
0.031
0.999
0.032
0.014
0.71
0.001
0
0.025
0.005
0.032
0.003
0.254
0.008
0.732
0.141
0
0
0.817
0.079
0.969
0.041
0.999
0.004
0.045
0.006
0.001
0.016
0.708
0.018
0.027
0.018
0.019
0.041

Signal
anchor
probability

Table 9.1: Overview of the GmCLE peptide genes, the derived CLE domain sequences, identiﬁcation number, homologous
partner, protein length, chromosome number, intron presence and signal peptide/anchor probability as predicted by HMM signalP
and neural networks. G. max nomenclature as deﬁned in this article. General nomenclature is according to Oelkers et al. (2008),
who numbered each CLE member independently of the species origin and preﬁxed the numbers with CLE.

GmCLE genes expressed during nodulation

233


9.2.2 Identification of two stages in soybean nodule development with different division and differentiation activities

To identify nodule-related CLE genes with expression patterns that are linked with cell division and differentiation, two soybean nodulation stages were analyzed of which one was linked with dividing and differentiating cells and the other corresponded to mature, fully differentiated nodules. At 2 wpi, many small dividing cells were observed at the periphery of a central section through the nodule (Figure 9.2, A and B). More to the centre, cells differentiated in fixing cells with many infection threads in-between the small cells (Figure 9.2, A and C). Enlargement showed that many cells in that region were partially filled with symbiosomes, indicating that differentiation is in progress. At 4 wpi, a typical nitrogen fixation tissue was observed consisting of large, infected cells that were completely filled with blue-stained symbiosomes (Figure 9.2, E and F), and interspersed by vacuolated, uninfected cells (Figure 9.2, E and F). Cell division or differentiation was no longer observed.

To confirm the difference in cell division activity between the two nodulation stages, the expression of the cell division marker, the B-type cyclin CycB2;1, was analyzed (Umeda et al., 1999; Lee et al., 2003). With BLAST searches, a soybean homolog of the Arabidopsis AtCycB2;1 was found and was designated GmCycB2;1. qRT-PCR was carried out with cDNA derived from both nodulation stages and from uninoculated roots used as a reference tissue. The relative expression of GmCycB2;1 was higher in the 2-wpi nodule sample than in uninoculated roots (Figure 9.3). At 4 wpi, expression was strongly reduced and was even much lower than in uninoculated roots. These results indicate that cell division was high in nodules at 2 wpi and that no cell divisions occurred in mature determinate soybean nodules.

Figure 9.1 (facing page): Tree-based alignment of the CLE domain encoded by all GmCLE genes and of the CLE domain of all Arabidopsis CLE genes as well as the nodulation-specific CLE genes.
GmCLE genes expressed during nodulation
9.2.3 Search for *GmCLE* genes that are differentially expressed during nodulation

To determine the temporal expression during nodulation, qRT-PCR was carried out with cDNA derived from the nodulation-susceptible zone of non-inoculated roots and from nodules at 2 and 4 wpi. The non-inoculated roots were used as reference tissue. With the primer ‘Beacon designer 7’ program, no primers could be designed that discriminated between the two highly homologous genes of the different *GmCLE* gene pairs. Therefore, primer combinations were used that recognized transcripts of both genes of a single pair. Except for *GmCLE25*, all other 38 *GmCLE* genes were expressed. For 8 primer combinations, no differential expression was observed upon nodulation (see Supplementary Table 9.4). Compared to the expression in uninfected roots, the transcript level of *GmCLE06-GmCLE38*, *GmCLE14-GmCLE39* and *GmCLE35-GmCLE37* increased in nodules at 2 wpi, but decreased again in nodules at 4 wpi (Figure 9.4, A-C). The transcript level of *GmCLE11-GmCLE34*, *GmCLE13* and
GmCLE genes expressed during nodulation

Figure 9.3: Expression analysis of *GmCycB2;1* during nodulation. qRT-PCR on cDNA samples of uninoculated roots (Roots) and of nodules (Nod) at 2 and 4 wpi. Error bars represent standard errors (n = 2). Asterisks indicate statistically significant differences in comparison to uninoculated roots (Roots) (p < 0.001, Anova).

GmCLE17-GmCLE32 steadily increased as nodulation progressed and was the highest in mature 4-wpi nodules (Figure 9.4, D-F). Expression of *GmCLE04-GmCLE24, GmCLE09, GmCLE12-GmCLE29, GmCLE15-GmCLE36, GmCLE16-GmCLE33, GmCLE18-GmCLE23* and *GmCLE20-GmCLE21* was much lower in nodules at 2 wpi and 4 wpi than in uninoculated roots (see Supplementary Table 9.4).

9.2.4 Tissue- or organ-specific expression of nodulation-related CLE peptide genes

GmCLE genes, for which the expression was upregulated upon nodulation, were also investigated for expression in other tissues or organs. qRT-PCR analysis was carried out with cDNA derived from roots, root tips, stems, SAMs, cotyledons, mature leaves, and first leaves. Expression measured in roots grown without nitrogen was taken as a reference. A basal expression was observed for every *GmCLE* gene in most of the cDNA samples (Figure 9.5; Supplementary Table 9.5). The expression of *GmCLE06-GmCLE38* and *GmCLE13* was higher in the different shoot tissues than in nitrogen-starved roots. Expression of *GmCLE14-GmCLE39* and *GmCLE35-GmCLE37*, both transiently expressed upon nodulation, was higher in roots than in the different shoot tissues (Figure 9.5; Supplementary Table 9.5).
9.2.5 Induction of nodulation-related \textit{GmCLE} genes by the addition of auxin or cytokinin

To see whether the expression of nodulation-related \textit{GmCLE} genes was linked with primordium formation, their expression was analyzed after addition of either auxins or cytokinins, two hormones that control nodule organ formation (Oldroyd and Downie, 2008; Ding and Oldroyd, 2009). Expression of the nodulation-related \textit{GmCLE} genes was assayed in roots of 5-day-old soybean seedlings grown in the presence of 10^{-6} M IAA or 10^{-7} M BAP and roots were harvested at 0, 4, 8, and 24 h after treatment. Addition of auxin had no influence on any of the tested genes (see Supplementary Table 9.6; Figure 9.6). In samples supplemented with 10^{-7} M BAP, \textit{GmCLE14-GmCLE39} and \textit{GmCLE35-GmCLE37} transcripts were upregulated 24 h after treatment (Figure 9.6, A and B). The expression of the other nodulation-related \textit{GmCLE} genes did not change after BAP treatment (see Supplementary Table 9.6).
GmCLE genes expressed during nodulation

Figure 9.5: Tissue- or organ-specific expression analysis of nodulation-related GmCLE genes. Heat map of GmCLE expression in different tissues as measured by qRT-PCR. Samples are cDNA from roots grown in the absence of NH₄NO₃ (Root -N), root tips, stems, SAMs, cotyledons, mature leaves (leaves) and first leaves (1st leaves).

9.2.6 Influence of nitrate on the expression of the nodulation-related GmCLE genes

Nitrogen starvation is a prerequisite for nodulation and high nitrate availability negatively regulates nodulation (Streeter and Wong, 1988; Barbulova et al., 2007). The influence of nitrate on nodulation has been proposed to happen via the AON mechanism because nodulation of mutants affected in AON is nitrate tolerant (Pierce and Bauer, 1983; Carroll et al., 1985a,b; Wopereis et al., 2000; Oka-Kira et al., 2005; Barbulova et al., 2007; Magori and Kawaguchi, 2009). To analyze whether nitrate has an influence on the expression of nodulation-related GmCLE genes, soybean seedlings were grown for 6 days in the presence of 0, 1, 5 or 10 mM KNO₃. In both biological repeats, the expression of GmCLE14-GmCLE39 increased after addition of 10 mM KNO₃ (see
Figure 9.6: Influence of auxin and cytokinin on GmCLE14-GmCLE39 and GmCLE35-GmCLE37 expression. qRT-PCR analysis of GmCLE14-GmCLE39 and GmCLE35-GmCLE37 expression on cDNA samples of roots grown in the presence of 10^{-6} M auxin (IAA) or 10^{-7} M cytokinin (BAP). Growth medium without hormones was used for the control plants. Samples of 5-day-old plants were taken at 0, 4, 8, and 24 h after hormone addition. Error bars represent standard errors (n = 2). Asterisks indicate statistically significant differences in comparison to control plants, grown without hormone addition (p < 0.001, Anova).

Supplementary Table 9.7). However, due to the variation in the level of upregulation between both repeats, these data were not proven to be statistically different (Figure 9.7; see Supplementary Table 9.7). Also for the other genes no statistical difference in gene expression level was seen between control roots and roots treated with the various concentrations of nitrate (see Supplementary Table 9.7).

9.3 Discussion

The previously identified L. japonicus LjCLE-RS1/LjCLE-RS2 and the M. truncatula MtCLE12 and MtCLE13 genes encode structurally related CLE peptides that are involved in nodulation (Okamoto et al., 2009; Mortier et al., 2010). While tissue specific expression patterns hinted at a role in nodule primordium and meristem homeostasis, functional analysis revealed a role during AON (Okamoto et al., 2009; Mortier et al., 2010). To get a better insight into the role of CLE peptides in nodulation, the expression of CLE peptide genes was examined during determinate nodule development in soybean, so far, the only legume for which the complete genome sequence is available (Schmutz et al., 2010). By specialized searches, 39 CLE genes were identified, 34 of which form homologous pairs, as a result of the duplicated genome (Schmutz et al.,
GmCLE genes expressed during nodulation

Figure 9.7: Influence of KNO₃ on GmCLE14-GmCLE39 expression. qRT-PCR analysis of GmCLE14-GmCLE39 expression in cDNA samples of roots grown for 6 days in the presence of 0, 1, 5 and 10 mM KNO₃. No statistical differences were measured as compared to the plants grown in the absence of KNO₃ (p > 0.05, Anova). Error bars represent standard errors (n = 2).

2010). Although 15 of these had been previously identified (Oelkers et al., 2008), none of them had been annotated in the genome (Table 9.1).

By comparing the GmCLE peptide sequences with those of Arabidopsis, 29 GmCLE peptides were found to belong to group-I, putative promoters of cellular differentiation exemplified by CLV3 (Ito et al., 2006) (Figure 9.1); six GmCLE peptides are related to TDIF and AtCLE41/AtCLE44, which are group-II members, known to prevent cellular differentiation and to control the rate and orientation of vascular cell division (Ito et al., 2006; Etchells and Turner, 2010) (Figure 9.1). Two GmCLE pairs, GmCLE14-GmCLE39 and GmCLE35-GmCLE37, belong to group-III and are similar to the Arabidopsis CLE1 to CLE7 peptides. In Arabidopsis, the functional analysis of group-III peptides resulted in conflicting data. Ectopic addition caused root meristem consumption only at high peptide concentrations and the peptides did not inhibit xylem differentiation in a zinnia (Zinnia elegans) cell culture system (Ito et al., 2006). Overexpression of the corresponding genes did not affect the root meristem, while the shoot meristem disappeared (Meng et al., 2010). Also the nodulation-related LjCLE-RS1/LjCLE-RS2, MtCLE12 and MtCLE13 peptides belong to group-III (Okamoto et al., 2009; Mortier et al., 2010). Hence, GmCLE14-GmCLE39 and GmCLE35-GmCLE37 might exert a similar function as LjCLE-RS1/LjCLE-RS2, MtCLE12 and MtCLE13.
Chapter 9

A nodulation-related function of GmCLE14-GmCLE39 and GmCLE35-GmCLE37 is also suggested by the expression patterns analyzed at two different stages of soybean nodule development. Microscopic analysis, confirmed by the expression of a soybean homolog of the G2-M phase-related marker CycB2;1 (Umeda et al., 1999; Lee et al., 2003) revealed that under our experimental conditions, the central tissue of 2-wpi nodules contains dividing and differentiating cells, while 4-wpi nodules are terminally differentiated. Expression analysis in these two nodulation stages revealed two different nodulation-related CLE patterns. The group-III genes GmCLE14-GmCLE39 and GmCLE35-GmCLE37 as well as the group-I GmCLE06-GmCLE38 had a transient expression pattern with the highest expression in 2-wpi nodules, after which the expression disappeared again in mature differentiated nodules. The expression of GmCLE11-GmCLE34, GmCLE13 and GmCLE17-GmCLE32 steadily increased as nodulation progressed and was the highest in 4-wpi nodules. Thus, although the expression of six GmCLE genes, from which five had a second copy in the genome, are induced during nodulation, only the expression of GmCLE06-GmCLE38 and the group-III peptide genes GmCLE14-GmCLE39 and GmCLE35-GmCLE37 was linked with stages of nodule cell division and differentiation in the nodule primordium (Table 9.2). Compared to L. japonicus and M. truncatula, more GmCLE genes were upregulated during nodulation of soybean, and different nodulation-related expression patterns were seen. Of course completion of the genome sequences might reveal more CLE peptides involved in nodulation in M. truncatula and L. japonicus.

Similar to the previously identified M. truncatula group-III gene MtCLE13 (Mortier et al., 2010), the GmCLE14-GmCLE39 and GmCLE35-GmCLE37 genes of soybean were expressed in the developing nodule primordium and expression of both pairs is induced in roots by the addition of cytokinins, but not of auxins. GmCLE14-GmCLE39 and GmCLE35-GmCLE37 might therefore be not only the structural but also the functional equivalents of MtCLE13 (Table 9.2).

The third transiently expressed gene pair, GmCLE06-GmCLE38, encodes group-I type peptides that are very similar to LjCLE3 (Okamoto et al., 2009). So far, no localized expression pattern is known for any of the nodulation-related LjCLE genes. Our analysis indicates a role for GmCLE06-GmCLE38 during primordium homeostasis. In contrast to GmCLE14-GmCLE39 and GmCLE35-GmCLE37, no induction of GmCLE06-GmCLE38 gene expression was found upon cytokinin or auxin addition to roots.

GmCLE11-GmCLE34, GmCLE13 and GmCLE17-GmCLE32, for which the ex-
Table 9.2: Integrated overview of knowledge about nodulation-related CLE peptides. Summary of all data presented here and those obtained by Mortier et al. (2010) and Okamoto et al. (2009). In black, supported by expression and functional data; grey, still hypothetical functions, because of lack of functional data; NA, not analyzed.

<table>
<thead>
<tr>
<th>Gene</th>
<th>CLE peptide group</th>
<th>Expression in developing nodules</th>
<th>Expression in mature nodules</th>
<th>Cytokinin induction</th>
<th>Auxin induction</th>
<th>KNO3 induction</th>
<th>AON</th>
<th>Possible function in nodulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GmCLE11-GmCLE34</td>
<td>I</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>GmCLE13</td>
<td>I</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>GmCLE17-GmCLE31</td>
<td>I</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>GmCLE06-GmCLE38</td>
<td>I</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>GmCLE14-GmCLE39</td>
<td>III</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GmCLE35-GmCLE37</td>
<td>III</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>MtCLE12</td>
<td>III</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MtCLE13</td>
<td>III</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LjCLE-RS1</td>
<td>III</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LjCLE-RS2</td>
<td>III</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Expression steadily increased during nodulation, encode group-I type peptides from which members are known to cause consumption of the root meristem upon ectopic addition or overexpression. The deduced peptide sequence of GmCLE13 differed only at one position with AtCLE40. The latter peptide is involved in the organization of the root apical meristem by repressing the WUSCHEL homolog WOX5 (Stahl et al., 2009). The expression of GmCLE11-GmCLE34, GmCLE13 and GmCLE17-GmCLE32 was not modulated by auxin or cytokinin. What the function would be of these CLE peptides in mature, terminally differentiated nodules, without stages of division nor differentiation, is not known, but very intriguing because, so far, in all studied cases, no function other than one linked to cell division and differentiation has been found.

The group-III LjCLE-RS1/LjCLE-RS2, MtCLE12 and MtCLE13 peptides might be involved in AON as over expression of the corresponding genes reduced or abolished nodulation locally as well as systemically in a SUNN/HARI-dependent manner (Okamoto et al., 2009; Mortier et al., 2010). This effect was specific for group-III pep-
tides because ectopic expression of CLE genes encoding peptides with a typical group-I signature was ineffective (Okamoto et al., 2009; Mortier et al., 2010). The LjCLE-RS1, LjCLE-RS2, MtCLE12 and MtCLE13 peptides could possibly act as long-distance signals and travel to the shoot to be perceived by SUNN/HAR1 (Okamoto et al., 2009; Mortier et al., 2010). Alternatively, in nodules, the group-III peptides might be perceived by local receptors and provoke an upward long-distance signal that activates, in the shoot, the binding of an as yet unidentified CLE peptide with SUNN/HAR1 for AON.

The soybean group-III peptides GmCLE14-GmCLE39 and GmCLE35-GmCLE37 might, based on the sequence similarity and the expression analysis, be the functional equivalents of LjCLE-RS1, LjCLE-RS2, MtCLE12 and/or MtCLE13 (Table 9.2) and activate AON in soybean. Interestingly, because these soybean group-III CLE genes are not expressed in mature nodules, which exert a high AON activity, our data open the possibility that group-III CLE peptides might activate AON, while other mechanisms take over the control of nodule numbers at later stages during nodulation, possibly involving nitrogen fixation efficiency (Nutman, 1952; Magori and Kawaguchi, 2009).

Mutants defective in AON, exhibit a nitrate-tolerant nodulation, suggesting that nitrate inhibition of nodulation act via the AON pathway (Pierce and Bauer, 1983; Carroll et al., 1985a,b; Wopereis et al., 2000; Oka-Kira et al., 2005; Barbulova et al., 2007; Magori and Kawaguchi, 2009). In L. japonicus, LjCLE-RS2 transcription was upregulated by nitrate (Okamoto et al., 2009). Under our experimental conditions, the expression of one group-III GmCLE gene pair was moderately induced by the addition of nitrate (Table 9.2). Hence, the link between AON, CLE peptides and the influence of nitrate on nodule formation needs further investigation.

In conclusion, in soybean several CLE genes are upregulated during nodulation. Two distinct nodulation-related expression patterns were observed, one linked with nodule primordium formation and differentiation and another linked with nodule maturation. It would be interesting to follow the localized expression of these CLE genes and to study the effects of knockout or overexpression. Such studies might be hampered by redundancy because in the soybean genome, CLE peptides are mostly encoded by gene pairs. Expression of group-III gene pairs was linked with developing and not with mature nodules, suggesting that signaling by group-III CLE peptides might initiate AON and that other mechanisms might take over at later stages in nodulation. Our data provide a framework for biochemical and genetic analysis to explore potential interaction with the SUNN/HAR1/NARK receptor and role in nodule primordium and

244
meristem homeostasis.

9.4 Materials and Methods

Plant material, bacterial strains and growth conditions

Glycine max (L.) Merr. ‘Prima 2000’ seeds were germinated in the dark for 2 days and grown in pots containing vermiculite (Mandoval, Alberton, South Africa). The greenhouse conditions were 27°C/17°C day/night temperature, 60% relative humidity, 13 h photoperiod, 600 mmol m⁻² s⁻¹ photosynthetically active radiation. The plants were watered every 2 days with Hoagland’s solution (Hewitt, 1966). For the plants grown in nitrogen-rich conditions, NH₄NO₃ (1 mM final concentration) was added to the Hoagland’s solution. *Bradyrhizobium japonicum* WB74-1 x 10⁹ CFU g⁻¹ (Soygro bio-fertilizer Limited, Potchefstroom, South Africa) was inoculated just before sowing by adding 0.5 g of the powder to each pot.

Nodules were harvested 2 and 4 weeks post inoculation (wpi) for microscopy and expression analysis. For the quantitative reverse-transcription (qRT)-PCR experiments, roots from non-inoculated plants grown under nitrogen-poor conditions (Hoagland’s solution) were harvested two weeks after sowing. First leaves, cotyledons and SAMs were harvested 1 week after growing under nitrogen-rich conditions (Hoagland’s solution + 1 mM NH₄NO₃) and stems, roottips and leaves 1 week later.

RNA extraction, cDNA synthesis, and qRT-PCR analysis

RNA extraction, cDNA synthesis and qRT-PCR analysis were done as described (Mortier *et al.*, 2010). The relative expression was normalized against the constitutively expressed genes encoding the 40S ribosomal protein S8 (AK285894) or ELF1B protein (TC203623) (Jian *et al.*, 2008). For the five single *GmCLE* genes, specific primer pairs could be predicted by comparison to the whole soybean genome. For the remaining *GmCLE* genes, no specific regions could be found because of the highly homologous pairs, in which case, the selected primer pairs amplified both homologous genes. The primers used, (see Supplementary Table 9.3) were purchased at Inqaba Biotechnical Industries (Pretoria, South Africa). Each experiment was repeated twice with independent biological tissues. Statistical differences were evaluated with ANOVA by means
of the GenStat software30.

In vitro application of auxins, cytokinins and nitrogen

Auxins (10⁻⁶ M indole-3-acetic acid [IAA]) or cytokinins (10⁻⁷ M 6-benzylaminopurine [BAP]) were diluted in dimethylsulfoxide and supplemented to the medium of 5-day-old, in vitro-grown seedlings. As a control, plants were grown without supplemented hormones. The seedlings were grown in Magenta boxes (6 × 6 × 10 cm) on Gelrite agar (Sigma-Aldrich, St. Louis, MO, USA) containing Hoagland’s solution (Hewitt, 1966) supplemented with 1 mM NH₄NO₃. The plants were cultured in a room at a temperature of 26°C, 16 h photoperiod and light intensity of 70 μE s⁻¹m⁻² light per day. After 0, 4, 8, and 24 h of incubation, the roots of 4 plants were harvested and analyzed by qRT-PCR. For the in vitro application of nitrogen, 0, 1, 5 or 10 mM KNO₃ were supplemented to the medium of 2-day-old seedlings. The roots of 6 plants of each condition were harvested 6 days later and analyzed by qRT-PCR. All experiments were repeated twice with comparable results.

Microscopy

Root nodules were fixed, dehydrated and embedded with the Technovit 7100 kit (Heraeus Kulzer, Wehrheim, Germany), according to the manufacturer’s instructions, and sectioned with a microtome (Reichert-Jung, Nussloch, Germany). The 3-μm-thick sections were mounted on coated slides (Sigma-Aldrich). For tissue-specific staining, sections were submerged in a 0.5 % (w/v) toluidine blue solution, washed in distilled water, and dried. Finally, sections were mounted with Depex (BDH Chemicals, Poole, England). Photographs were taken with a Diaplan microscope equipped with bright-field optics (Leitz, Wetzlar, Germany).

9.5 Supplemental data

30http://www.vsni.co.uk/software/genstat/
<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GmCLE01/GmCLE22</td>
<td>A TGAAGCACTTCCACTTGTTCC</td>
<td>CTCTTGTTGTGTAAGGTTG</td>
</tr>
<tr>
<td>GmCLE02/GmCLE27</td>
<td>TAGTAGTGTAGTAGTAGTTTT</td>
<td>AGAAGAACAACAAGCCCCACACCA</td>
</tr>
<tr>
<td>GmCLE03/GmCLE31</td>
<td>GAAGAAGTGAAACAAAAATTCCAAG</td>
<td>ACTTCAATGCACTAGCATGAAAGAT</td>
</tr>
<tr>
<td>GmCLE04/GmCLE24</td>
<td>ATTTGACTTCTCTTTCTTTCAAG</td>
<td>GTCTGAAGAATCATGTTG</td>
</tr>
<tr>
<td>GmCLE05/GmCLE26</td>
<td>CTTTCTCTACCTCTCTCAC</td>
<td>GGCTGATTCTGAAGATTTTGTT</td>
</tr>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>AAACAAAAATAGGTTGATTATTTTCTTTT</td>
<td>CAAATCTGGTTTTTCTTGTGTCG</td>
</tr>
<tr>
<td>GmCLE07/GmCLE30</td>
<td>ATTTGGTTGCGGGCGCAAGA</td>
<td>CAAGATGACCTCTCCAC</td>
</tr>
<tr>
<td>GmCLE08/GmCLE28</td>
<td>CAGAGTCACTTCAATTTCTTCTGT</td>
<td>GAATGCTGTTCTTTGG</td>
</tr>
<tr>
<td>GmCLE09</td>
<td>AAACCACTCTTATAACTGAATGAAA</td>
<td>AGAAAAATGAATCAAATCATTGTCCTTG</td>
</tr>
<tr>
<td>GmCLE10</td>
<td>ATGAGATTCAAATAATTCTCAACC</td>
<td>TAIATATGCAATCCTCCTAGTTG</td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>CAGTGCTCCTTGTGAGGGGTT</td>
<td>GTGCTGATGCTGATC</td>
</tr>
<tr>
<td>GmCLE12/GmCLE29</td>
<td>TGAAGACCCTTCTCTTTCTTTG</td>
<td>GTGCTCGTCTCCTCTCTTCTAG</td>
</tr>
<tr>
<td>GmCLE13</td>
<td>AGGGTGAATGTTGAGGGTAGTTCTTCA</td>
<td>AGGAAATCTATTGGCATTAGGTT</td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>TATCTACCTCCCTCCTCCTCTTC</td>
<td>GCAAAATATGATGAGGATCGC</td>
</tr>
<tr>
<td>GmCLE15/GmCLE36</td>
<td>ATGGCATGTTGATATACCAAGGCTTCA</td>
<td>GACATCTCTTAGAAGAAACTCCATAA</td>
</tr>
<tr>
<td>GmCLE16/GmCLE32</td>
<td>CAGTTGCTCTTGTGTTAAGGAGTATTCT</td>
<td>CACATGCTCTCCCTCTCTCTCTCCTACCGATT</td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>GCATTGCTCTTGTGTTAAGGAGTATTCT</td>
<td>CACATGCTCTCCCTCTCTCTCTCTACCGATT</td>
</tr>
<tr>
<td>GmCLE18/GmCLE23</td>
<td>CTAGGATGTTGACTGTTTCTTGTCC</td>
<td>CTTCACCACACCCTCACC</td>
</tr>
<tr>
<td>GmCLE19</td>
<td>CACATCATTACACCACACCCTT</td>
<td>GTTAATGTGTTGAAATACGTATAAT</td>
</tr>
<tr>
<td>GmCLE20/GmCLE21</td>
<td>CTAACGATTTCACACACACTCAAC</td>
<td>GGGTTCTCTCAAACACCAAAC</td>
</tr>
<tr>
<td>GmCLE25</td>
<td>CACTCACCACACCACATCC</td>
<td>TGTTGTTGAGGTGTGAAAGAG</td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>TCTGGTCTCTACTTCTCTCTGACT</td>
<td>CTTCCTGGTCAAGTCTATCTG</td>
</tr>
<tr>
<td>GmELF1B</td>
<td>GTTGAAGGACCGAGGGGACA</td>
<td>TCTTACCCCTTTGAGCCTG</td>
</tr>
<tr>
<td>Gm40S</td>
<td>GCCAGGCTGCTAACACTAAAG</td>
<td>AAGAGTCTGAGTACGCACAAG</td>
</tr>
<tr>
<td>GmCYCB</td>
<td>TGTAATCTGTACCTGGCTCTT</td>
<td>TCCTCAGATGACCTCTTGTA</td>
</tr>
</tbody>
</table>
Table 9.4: Expression analysis of all *GmCLE* genes during nodulation. qRT-PCR on cDNA samples of uninoculated roots (Roots) and of nodules (Nod) at 2 and 4 wpi. The qRT-PCR analysis was done in duplicate. The average of the relative expression levels of each gene (AV) and the standard error (SE) were calculated. The relative expression levels were defined by the $2^{-\Delta\Delta CT}$ (Livak and Schmittgen, 2001). Statistically significant differences in comparison to uninoculated roots (Roots) are indicated with * (p < 0.05, Anova), ** (p < 0.01, Anova) or *** (p < 0.001, Anova).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Roots AV</th>
<th>SE</th>
<th>Nod (2 wpi) AV</th>
<th>SE</th>
<th>Anova</th>
<th>Nod 4 wpi AV</th>
<th>SE</th>
<th>Anova</th>
</tr>
</thead>
<tbody>
<tr>
<td>GmCLE01/GmCLE22</td>
<td>1.02</td>
<td>0.16</td>
<td>0.99</td>
<td>0.16</td>
<td></td>
<td>1.69</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>GmCLE02/GmCLE27</td>
<td>1.03</td>
<td>0.17</td>
<td>0.35</td>
<td>0.17</td>
<td></td>
<td>0.36</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>GmCLE03/GmCLE31</td>
<td>1.01</td>
<td>0.25</td>
<td>1.14</td>
<td>0.25</td>
<td></td>
<td>0.28</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>GmCLE04/GmCLE24</td>
<td>1.03</td>
<td>0.06</td>
<td>0.19</td>
<td>0.06</td>
<td>*</td>
<td>0.07</td>
<td>0.06</td>
<td>**</td>
</tr>
<tr>
<td>GmCLE05/GmCLE26</td>
<td>1.05</td>
<td>1.00</td>
<td>1.58</td>
<td>1.00</td>
<td></td>
<td>2.81</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>1.02</td>
<td>0.21</td>
<td>3.61</td>
<td>0.21</td>
<td>*</td>
<td>0.59</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>GmCLE07/GmCLE30</td>
<td>1.02</td>
<td>0.24</td>
<td>0.85</td>
<td>0.24</td>
<td></td>
<td>0.94</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>GmCLE08/GmCLE28</td>
<td>1.07</td>
<td>0.65</td>
<td>2.12</td>
<td>0.65</td>
<td></td>
<td>0.75</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>GmCLE09</td>
<td>1.02</td>
<td>0.04</td>
<td>0.08</td>
<td>0.04</td>
<td>***</td>
<td>0.02</td>
<td>0.04</td>
<td>***</td>
</tr>
<tr>
<td>GmCLE10</td>
<td>1.10</td>
<td>2.22</td>
<td>3.70</td>
<td>2.22</td>
<td></td>
<td>3.20</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>1.00</td>
<td>5.20</td>
<td>19.30</td>
<td>5.20</td>
<td>*</td>
<td>16.50</td>
<td>5.20</td>
<td>*</td>
</tr>
<tr>
<td>GmCLE12/GmCLE29</td>
<td>1.02</td>
<td>0.05</td>
<td>0.75</td>
<td>0.05</td>
<td>*</td>
<td>0.37</td>
<td>0.05</td>
<td>**</td>
</tr>
<tr>
<td>GmCLE13</td>
<td>1.07</td>
<td>3.00</td>
<td>30.80</td>
<td>3.00</td>
<td>**</td>
<td>1.10</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>1.10</td>
<td>3.00</td>
<td>30.80</td>
<td>3.00</td>
<td>**</td>
<td>1.10</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>GmCLE15/GmCLE36</td>
<td>1.01</td>
<td>0.02</td>
<td>0.12</td>
<td>0.02</td>
<td>****</td>
<td>0.21</td>
<td>0.02</td>
<td>****</td>
</tr>
<tr>
<td>GmCLE16/GmCLE33</td>
<td>1.00</td>
<td>0.03</td>
<td>0.27</td>
<td>0.03</td>
<td>****</td>
<td>0.08</td>
<td>0.03</td>
<td>****</td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>1.00</td>
<td>5.71</td>
<td>41.80</td>
<td>5.71</td>
<td>*</td>
<td>39.60</td>
<td>5.71</td>
<td>*</td>
</tr>
<tr>
<td>GmCLE18/GmCLE23</td>
<td>1.02</td>
<td>0.14</td>
<td>0.59</td>
<td>0.14</td>
<td></td>
<td>0.08</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>GmCLE19</td>
<td>1.17</td>
<td>0.41</td>
<td>1.27</td>
<td>0.41</td>
<td></td>
<td>2.34</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>GmCLE20/GmCLE21</td>
<td>1.01</td>
<td>0.01</td>
<td>0.18</td>
<td>0.01</td>
<td>***</td>
<td>0.14</td>
<td>0.01</td>
<td>***</td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>1.00</td>
<td>352.60</td>
<td>2254.00</td>
<td>352.60</td>
<td>*</td>
<td>362.00</td>
<td>352.60</td>
<td>***</td>
</tr>
</tbody>
</table>

Table 9.5: Tissue- or organ-specific expression analysis of nodulation-related *GmCLE* genes. qRT-PCR analysis on cDNA samples of different tissues. Samples are cDNA from roots grown in the absence of NH₄NO₃ (Root N), root tips, stems, SAMs, cotyledons, mature leaves (leaves) and first leaves (1st leaves). The relative expression levels of two biological repeats (1 and 2) are represented. The relative expression levels were defined by the $2^{-\Delta\Delta C_T}$ method (Livak and Schmittgen, 2001).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Repeat 1</th>
<th>Root -N</th>
<th>Roottip</th>
<th>Stem</th>
<th>SAM</th>
<th>Cotyledon</th>
<th>Leaves</th>
<th>1st Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>1.00</td>
<td>0.59</td>
<td>19.86</td>
<td>5.40</td>
<td>0.79</td>
<td>2.69</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>1.01</td>
<td>0.43</td>
<td>0.69</td>
<td>0.54</td>
<td>0.45</td>
<td>0.62</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>GmCLE13</td>
<td>1.00</td>
<td>1581</td>
<td>7400</td>
<td>7582</td>
<td>74960</td>
<td>508100</td>
<td>73532</td>
<td></td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>1.05</td>
<td>2.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>1.01</td>
<td>0.64</td>
<td>1.05</td>
<td>1.48</td>
<td>0.46</td>
<td>1.18</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>Repeat 2</th>
<th>Root -N</th>
<th>Roottip</th>
<th>Stem</th>
<th>SAM</th>
<th>Cotyledon</th>
<th>Leaves</th>
<th>1st Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>1.00</td>
<td>0.02</td>
<td>3.59</td>
<td>1.34</td>
<td>0.13</td>
<td>1.06</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>1.06</td>
<td>0.84</td>
<td>1.40</td>
<td>1.34</td>
<td>1.24</td>
<td>0.12</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>GmCLE13</td>
<td>1.03</td>
<td>1.11</td>
<td>5.62</td>
<td>3.80</td>
<td>11.26</td>
<td>73.11</td>
<td>36.68</td>
<td></td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>1.00</td>
<td>8.82</td>
<td>0.21</td>
<td>0.18</td>
<td>0.18</td>
<td>0.50</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>1.00</td>
<td>0.21</td>
<td>1.14</td>
<td>0.61</td>
<td>0.26</td>
<td>0.08</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Table 9.6: Influence of auxin and cytokinin on the expression of *GmCLE* genes. qRT-PCR analysis on cDNA samples of roots grown in the presence of 10^{-6} M auxin (IAA) or 10^{-7} M cytokinin (BAP). Growth medium without hormones was used for the control plants. Samples of 5-day-old plants were taken at 0, 4, 8, and 24 h after hormone addition. The qRT-PCR analysis was done in duplicate. The average of the relative expression levels of each gene (AV) and the standard error (SE) were calculated. The relative expression levels were defined by the $2^{-\Delta\Delta C_t}$ (Livak and Schmittgen, 2001). Asterisk indicates statistically significant differences in comparison to control plants grown without hormone addition ($p < 0.001$, Anova).

<table>
<thead>
<tr>
<th>Gene</th>
<th>0 h</th>
<th>4 h</th>
<th>8 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AV</td>
<td>SE</td>
<td>AV</td>
<td>SE</td>
</tr>
<tr>
<td>Control treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>1.01</td>
<td>0.14</td>
<td>0.56</td>
<td>0.14</td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>1.01</td>
<td>0.20</td>
<td>0.78</td>
<td>0.20</td>
</tr>
<tr>
<td>GmCLE13</td>
<td>1.04</td>
<td>0.07</td>
<td>0.69</td>
<td>0.07</td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>1.01</td>
<td>1.65</td>
<td>0.68</td>
<td>1.65</td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>1.00</td>
<td>0.42</td>
<td>0.95</td>
<td>0.42</td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>1</td>
<td>627</td>
<td>0</td>
<td>627</td>
</tr>
<tr>
<td>IAA treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>1.01</td>
<td>0.14</td>
<td>0.48</td>
<td>0.14</td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>1.01</td>
<td>0.20</td>
<td>1.19</td>
<td>0.20</td>
</tr>
<tr>
<td>GmCLE13</td>
<td>1.04</td>
<td>0.07</td>
<td>0.42</td>
<td>0.07</td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>1.01</td>
<td>1.65</td>
<td>0.84</td>
<td>1.65</td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>1.00</td>
<td>0.42</td>
<td>2.05</td>
<td>0.42</td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>1</td>
<td>627</td>
<td>326</td>
<td>627</td>
</tr>
<tr>
<td>BAP treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>1.01</td>
<td>0.14</td>
<td>0.50</td>
<td>1.14</td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>1.01</td>
<td>0.20</td>
<td>0.51</td>
<td>0.20</td>
</tr>
<tr>
<td>GmCLE13</td>
<td>1.04</td>
<td>0.07</td>
<td>0.95</td>
<td>0.07</td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>1.01</td>
<td>1.65</td>
<td>0.57</td>
<td>1.65</td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>1.00</td>
<td>0.42</td>
<td>1.29</td>
<td>0.42</td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>1</td>
<td>627</td>
<td>1080</td>
<td>627</td>
</tr>
</tbody>
</table>
Table 9.7: Influence of KNO$_3$ on the expression of *GmCLE* genes. qRT-PCR analysis was done on cDNA samples of roots grown for 6 days in the presence of 0, 1, 5, and 10 mM KNO$_3$. The qRT-PCR analysis was done in duplicate. The average of the relative expression levels of each gene (AV) and the standard error (SE) were calculated. The relative expression levels were defined by the $2^{-\Delta\Delta C_t}$ (Livak and Schmittgen, 2001). No statistical differences were measured as compared to the plants grown in the absence of KNO$_3$ ($p > 0.05$, Anova).

<table>
<thead>
<tr>
<th>Gene</th>
<th>0 mM AV</th>
<th>0.55</th>
<th>1 mM AV</th>
<th>0.55</th>
<th>5 mM AV</th>
<th>0.55</th>
<th>10 mM AV</th>
<th>0.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>GmCLE06/GmCLE38</td>
<td>1.01</td>
<td>0.55</td>
<td>0.87</td>
<td>0.55</td>
<td>1.22</td>
<td>0.55</td>
<td>2.21</td>
<td>0.55</td>
</tr>
<tr>
<td>GmCLE11/GmCLE34</td>
<td>1.00</td>
<td>0.18</td>
<td>0.72</td>
<td>0.18</td>
<td>1.08</td>
<td>0.18</td>
<td>0.73</td>
<td>0.18</td>
</tr>
<tr>
<td>GmCLE13</td>
<td>1.03</td>
<td>0.98</td>
<td>0.51</td>
<td>0.98</td>
<td>0.58</td>
<td>0.98</td>
<td>0.41</td>
<td>0.98</td>
</tr>
<tr>
<td>GmCLE14/GmCLE39</td>
<td>1.04</td>
<td>1.34</td>
<td>0.44</td>
<td>1.34</td>
<td>2.15</td>
<td>1.34</td>
<td>3.22</td>
<td>1.34</td>
</tr>
<tr>
<td>GmCLE17/GmCLE32</td>
<td>1.00</td>
<td>0.46</td>
<td>0.60</td>
<td>0.46</td>
<td>0.69</td>
<td>0.46</td>
<td>0.67</td>
<td>0.46</td>
</tr>
<tr>
<td>GmCLE35/GmCLE37</td>
<td>1.10</td>
<td>4.65</td>
<td>1.20</td>
<td>4.65</td>
<td>0.30</td>
<td>4.65</td>
<td>0.10</td>
<td>4.65</td>
</tr>
</tbody>
</table>
Acknowledgements

The authors thank Martine De Cock and Marnik Vuylsteke for help in preparing the paper and for help with the statistical analysis, respectively. This work was supported by grants from the IRSES project (grant no. PIRSES-GA-2008-230830), the Ministerie van de Vlaamse Gemeenschap (grant no. CLO/IWT/020714) and the Research Foundation-Flanders (grants no. G.0350.04N and G.0066.07N).

Authors contributions

The main part of the work was done by V. Mortier. B. Fenta was involved in growing plant material for the assays in Pretoria (South-Africa). C. Martens and S. Rombauts performed the phylogenetic and bioinformatic analysis, respectively. K. Kunert, S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.
Identification of putative CLE peptide receptors involved in determinate nodulation on soybean

Virginie Mortier, Berhanu Amsalu Fenta, Karl Kunert, Marcelle Holsters and Sofie Goormachtig

Redrafted from: Plant Signaling & Behavior, accepted
Abstract

CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides tightly control the balance between stem cell proliferation and differentiation in several plant developmental processes. Transmission of the CLE peptide signal has been shown to be rather complex. Despite their recent identification, little is known about the receptors by which nodulation-specific CLE peptides, which were identified in soybean (*Glycine max*), are perceived. Genetic analysis has indicated that the leucine-rich repeat receptor-like kinase NARK of soybean and its orthologs in other legumes are possible candidates. However, more receptors need to be identified because CLE peptides are often detected by heteromultimeric complexes. Here, we identified two additional putative CLE peptide receptor pairs in the soybean genome with a nodulation-related expression pattern, *GmRLK1-GmRLK2* and *GmRLK3-GmRLK4*, and discuss their role in CLE peptide perception during nodulation.

Due to their sessile nature, plants rely on meristem-located stem cells for growth. Divisions of stem cells need to be tightly controlled to preserve a balance between proliferation and differentiation towards appropriate tissues and organs (Stahl and Simon, 2010). CLAVATA3/EMBRYO SURROUNDING REGION (CLV3/ESR or CLE) peptides have a main role in regulating this balance (Wang and Fiers, 2010). These intercellular peptides are 12 or 13 amino acids long and act as short-distance signaling molecules in a non-cell-autonomous manner (Wang and Fiers, 2010). CLE peptides are involved in several aspects of plant development, among which homeostasis of shoot apical meristem (SAM) and root apical meristem (RAM), vascular development and nodulation (Okamoto *et al.*, 2009; Hirakawa *et al.*, 2010b; Mortier *et al.*, 2010, 2011; Reid *et al.*, 2011).

Of the recently identified CLE peptide receptors (Wang and Fiers, 2010), many belong to the subclass XI of leucine-rich-repeat receptor-like kinases (LRR-RLKs) (Shiu and Bleecker, 2001) and almost all interact to form either homomultimers or heteromultimers (Guo *et al.*, 2010). Whereas the expression of some CLE peptide receptors is restricted to certain plant tissues, other receptors are expressed throughout the plant and are involved in several developmental processes.

The CLE peptide CLV3 that controls the SAM homeostasis (Clark *et al.*, 1995) is perceived in parallel and with a similar ligand-binding affinity by several receptor complexes, including homomultimers of the subclass XI LRR-RLK CLV1, heteromultimers of CLV1 with their close homologs BARELY ANY MERISTEM1 (BAM1) and
BAM2, heteromultimers of the LRR-containing membrane-anchored protein CLV2 and the membrane anchored kinase CORYNE/SUPPRESSOR OF OVEREXPRESSION OF LLP1-2 (CRN/SOL2), and finally by homodimers of the RECEPTOR-LIKE PROTEIN KINASE2/TOADSTOOL2 (RPK2/TOAD2), an LRR-RLK that is only distantly related to CLV1 (Ogawa et al., 2008; Ohyama et al., 2009; Bleckmann et al., 2010; Guo and Clark, 2010; Zhu et al., 2010a). In the RAM homeostasis of Arabidopsis thaliana as well, several receptors are involved in the transmission of CLE peptide signals. The CLE40 ligand is perceived by the LRR-RLK ARABIDOPSIS CRINKLY4 (ACR4), which is unrelated to CLV1, to sustain distal stem cell regulation (Stahl et al., 2009), whereas CLE14 and CLE20 ligands might interact with CLV2 and CRN/SOL2 to inhibit cell division in the root meristem (Meng and Feldman, 2010). Finally, TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF), a phloem-expressed CLE peptide, involved in the inhibition of tracheary element differentiation, signals through the procambium-located receptor, TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM (TDR/PXY) that is very similar to CLV1 (Hirakawa et al., 2008).

Recently, CLE peptides have been shown to function during determinate and indeterminate nodulation (Okamoto et al., 2009; Mortier et al., 2010, 2011; Reid et al., 2011). Nodulation is the result of symbiotic interactions between legumes and soil-borne bacteria called rhizobia. The interaction is characterized by the development of nodules, root-based, organ-like structures in which the inner cells are colonized by nitrogen-fixing bacteria. A complex signal exchange between rhizobia and their hosts triggers nodulation, followed by the activation of the early Nodulation factor (NF) signaling pathway in the plant epidermis to allow rhizobial infection and the activation of cortical cell division for nodule organogenesis (Ferguson et al., 2010). Many legumes, such as soybean (G. max), develop determinate nodules in which all meristematic cells differentiate to build the central tissue of the nodule that consists of infected cells interspersed by some uninfected cells. As a result, these legumes develop round-shaped nodules made up of only fully differentiated cells. However, in many other legumes, such as Medicago truncatula, indeterminate nodules are formed that are characterized by a cylindrical shape and a persistent apical meristem. Detailed expression analysis in M. truncatula has indicated that two CLE genes, encoding structurally related CLE peptides, are expressed in nodule primordium cells and, later on, in the nodule meristematic tissues, indicating that they might control nodule differentiation (Mortier et al., 2010).
As nodulation is an energy-consuming process, plants develop the minimal number of nodules to ensure optimal growth. One of the mechanisms that controls the number of nodules is a long-distance feedback mechanism, called autoregulation of nodulation (AON) (Nutman, 1952; Pierce and Bauer, 1983; Kossak and Bohlool, 1984; Carroll et al., 1985a,b; Delves et al., 1986).

In shoots, a CLV1-like LRR-RLK of subclass XI plays a crucial role for AON, namely NODULE AUTOREGULATION RECEPTOR KINASE (NARK) in soybean, SUPER NUMERIC NODULES (SUNN) in *M. truncatula*, HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) in *Lotus japonicus* and SYMBIOSIS29 (SYM29) in *Pisum sativum* (pea) (Krusell et al., 2002; Nishimura et al., 2002a; Searle et al., 2003; Oka-Kira et al., 2005; Schnabel et al., 2005). Recently, two additional members of this receptor complex have been identified, a CLV2 homolog (PsSYM28/-PsCLV2 and LjCLV2) and an Arabidopsis RPK2/TOAD2 homolog, LjKLAVIER (Lj-KLV) (Kinoshita et al., 2010; Krusell et al., 2011). Interestingly, in contrast to the nark/sunn/har1/sym29 mutants, mutants in these two genes were also affected in the SAM homeostasis, indicating that, in legumes, a receptor complex similar to that described for Arabidopsis, controls not only the SAM activity, but also the nodule number (Kinoshita et al., 2010; Krusell et al., 2011). In addition to their expression in the shoot, NARK and its homologs are also expressed in the root vascular tissue, but their root-specific function is still unknown. The similarity with the Arabidopsis LRR-RLKs of subclass XI (e.g., CLV1, BAM1, BAM2, BAM3 and TDR/PXY) predicts that one or several CLE peptides might be perceived by this complex, but thus far their identity remains elusive. In soybean, expression of several *GmCLE* genes was upregulated during nodulation (Mortier et al., 2011; Reid et al., 2011). Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis revealed that at least three *GmCLE* genes were upregulated in both developing and mature nodules, while the expression of at least three other *GmCLE* genes was transiently induced in developing nodules, but absent in mature nodules (Mortier et al., 2011). Hence, two different nodulation-related CLE expression patterns were found: one linked with nodule primordium development and differentiation and one linked with nodule maturation. Functional analysis has shown that for *GmRIC1/GmCLE14-GmCLE39* and *GmRIC2/GmCLE35-GmCLE37*, which are transiently expressed during nodulation, NARK might be a putative receptor, because overexpression of these genes resulted in a decrease in nodule number in a NARK-dependent manner (Mortier et al., 2011; Reid et al., 2011).
GmRLKs involved in nodulation

These observations together with those in *M. truncatula* and *L. japonicus* have raised the hypothesis that these CLE peptides might move toward the shoot to activate the NARK-containing complex for AON (Okamoto *et al.*, 2009; Mortier *et al.*, 2010, 2011; Reid *et al.*, 2011), but these nodulation-related CLE peptides might equally well be perceived locally by still unknown receptors to control nodule number and nodule differentiation (Mortier *et al.*, 2010, 2011). Besides these AON peptides, three additional GmCLE genes encoding structurally unrelated CLE peptides accumulate during nodulation and might act locally to control the balance between cell division and differentiation inside the nodules.

We looked for putative nodulation-related CLE peptide receptors in the genome of *G. max*, based on the observation that many known and putative CLE peptide receptors such as CLV1, BAM1, BAM2, BAM3 and TDR belong to group XI of LRR-RLKs (Shiu and Bleecker, 2001). By a tBLASTx algorithm (Altschul *et al.*, 1990), based on NARK homology, 13 LRR-RLKs of subclass XI were identified in the soybean genome (Schmutz *et al.*, 2010). The first two hits corresponded to NARK and its homolog, whereas the remaining 11 were designated GmRLK1 to GmRLK11. In-depth sequence analysis revealed that GmRLK1 and GmRLK2 and GmRLK3 and GmRLK4 also form homologous pairs as a result of the soybean genome duplication (Shoemaker *et al.*, 2006). For GmRLK5 to GmRLK11, no homologs were identified. GmRLK2 and GmRLK3 corresponded to Glyma14g03770 and Glyma18g14680, respectively, but GmRLK1 and GmRLK4 have not been annotated yet. According to the supermatcher tool of wEMBOSS (Rice *et al.*, 2000), GmRLK2 and GmRLK3 share 47.3 % and 48.4 % similarity with NARK, respectively. qRT-PCR analysis of cDNA samples at two nodulation stages in soybean with the expression of uninoculated roots as a reference revealed that one sample was linked with dividing and differentiating cells (2 weeks post inoculation (wpi)), whereas the other corresponded to mature, fully differentiated nodules (4 wpi). As no differential expression was measured for GmRLK5, GmRLK6, GmRLK7, GmRLK8, GmRLK9, GmRLK10 and GmRLK11, these genes were not retained for further analysis in the context of nodule development.

With the ‘Beacon designer 7’ program31, no primers could be designed that discriminated between the two highly homologous genes GmRLK1-GmRLK2 and GmRLK3-GmRLK4. Therefore, the primer combinations used recognized transcripts of both genes of a single pair (Table 10.1). Compared to its expression in uninoculated roots, the GmRLK1-GmRLK2 transcript level increased at the two nodulation stages and was the highest in

31www.premierbiosoft.com
mature nodules (Figure 10.1A). Hence, the expression pattern of GmRLK1-GmRLK2 overlaps with that of the nodulation-related CLE peptides, especially with GmCLE11-GmCLE34, GmCLE13 and GmCLE17-GmCLE32 of which the expression also gradually increases during nodulation (Mortier et al., 2011). Functional and promoter:GUS analyses will demonstrate whether these genes are expressed in overlapping and neighboring cells and their possible interaction. Tissue-specific analysis carried out with cDNA derived from roots, root tips, stems, SAMs, cotyledons, mature leaves and first leaves (as described in Mortier et al. (2011)), revealed that GmRLK1-GmRLK2 is expressed in every tissue, with the highest expression in roots and stems, although at a level lower than that in nodules (Figure 10.1, A and C), suggesting that GmRLK1-GmRLK2 might also be involved in nodulation-independent processes. Accordingly, CLV2 and CRN/SOL2 also have a broad expression pattern and are involved in homeostasis of both the SAM and RAM (Jeong et al., 1999; Miwa et al., 2008; Muller et al., 2008). NARK is expressed in roots and shoots as well, but not in nodules (Nontachaiyapoom et al., 2007). Whether the nodulation-independent expression pattern of GmRLK1-GmRLK2 overlaps with that of NARK in the root and shoot vasculature is currently unknown. Furthermore, functional analysis by RNAi and ectopic overexpression might indicate whether GmRLK1-GmRLK2 is involved in AON and/or in nodule differentiation.

Table 10.1: qRT-PCR primers used in the analyses.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GmRLK1-GmRLK2</td>
<td>GGAACAAATGCGAAAATGGAGAG</td>
<td>TGTACCTGTGGCCTGATCTCTTC</td>
</tr>
<tr>
<td>GmRLK3-GmRLK4</td>
<td>CTACTCTTGTGATTTGCGCAATG</td>
<td>TGTTTGGAATCTCAACAAAAAGCAG</td>
</tr>
</tbody>
</table>

In contrast to GmRLK1-GmRLK2, GmRLK3-GmRLK4 expression is downregulated in nodule primordia and mature nodules, in comparison to its expression in uninoculated roots (Figure 10.1B). The tissue- or organ-specific expression of GmRLK3-GmRLK4 resembled the expression profile of GmRLK1-GmRLK2, because expression was detected in every tissue analyzed (Figure 10.1D). For GmRLK3-GmRLK4, the highest expression was measured in stems and SAMs. This tissue-specific expression pattern is broadly similar to that of NARK and its homologs in other legumes (Krusell et al., 2002; Schnabel et al., 2005; Nontachaiyapoom et al., 2007).

In addition, in M. truncatula, the expression of SUNN is also downregulated during nodulation (unpublished results). The expression of NARK in the vasculature of the
GmRLKs involved in nodulation

Figure 10.1: Nodulation and tissue-specific expression analysis of nodulation-related *GmRLK* genes. A and B, qRT-PCR on cDNA samples of uninoculated roots (Roots) and of nodules at 2 and 4 wpi. C and D, qRT-PCR on cDNA samples grown without NH$_4$NO$_3$ from roots, root tips, stems, SAMs, cotyledons, mature leaves (leaf) and first leaves (1st leaf). Error bars represent standard deviations (n = 3). The experiments were repeated twice with comparable results. For detailed experimental procedures, see Mortier *et al.* (2011).

Together, the temporal expression during nodulation, as well as the tissue-specific expression pattern of *GmRLK3-GmRLK4* suggest that *GmRLK3-GmRLK4* might interact with *NARK*. Functional and biochemical analyses need to confirm this hypothesis. As the expression during nodulation does not coincide with the expression pattern of nodulation-related GmCLE peptides (Mortier *et al.*, 2011), *GmRLK3-GmRLK4* might probably not play a role in short-distance signaling of the nodulation-related GmCLE peptides.

In conclusion, genome-wide analysis combined with expression analysis identified
two additional LRR-RLKs of subclass XI, of which the expression is modulated by nodulation. Hence, besides NARK, similar receptors might control CLE peptide signaling during nodulation, accordingly to the multiple receptor complexes involved in CLE signal transduction in the SAM and RAM. Based on their opposite nodulation-related expression profiles, GmRLK1-GmRLK2 and GmRLK3-GmRLK4 are likely to function differently: GmRLK3-GmRLK4 might together with NARK control nodule numbers and GmRLK1-GmRLK2 might perceive CLE peptides at short distances to regulate nodule development. Functional analysis of these GmRLK genes by ectopic expression or RNAi analysis should confirm their precise role in nodulation, but biochemical analyses are essential to demonstrate interactions between these receptors and CLE peptides. Finally, because several CLE peptide receptors (e.g. CLV2, CRN/SOL2, RPK2/TOAD2 and ACR4) do not belong to subclass XI of LRR-RLKs, receptors with unrelated sequences might be involved in CLE peptide binding during nodulation and should, therefore, be investigated as well.

Acknowledgements

The authors thank Stéphane Rombauts and Martine De Cock for help with bioinformatics and in preparing the manuscript, respectively. This work was supported by grants from the European Commission Marie Curie International Research Staff Exchange Scheme (IRSES) (grant no. PIRSES-GA-2008-230830), the Ministerie van de Vlaamse Gemeenschap (grant no. CLO/IWT/020714), and the Research Foundation-Flanders (grants no. G.0350.04N and G.0066.07N).

Authors contributions

The main part of the work was done by V. Mortier. B. Fenta was involved in growing plant material for the assays in Pretoria (South-Africa). K. Kunert, S. Goormachtig and M. Holsters were involved in designing the research and revising the manuscript.
Discussion and perspectives

Legumes develop root nodules as a result of a symbiotic interaction with soil borne bacteria, called rhizobia. Inside the nodules the bacteria find the ideal niche to fix atmospheric nitrogen for the plant in return for energy sources. Nodule formation is a complex developmental process that requires the spatio-temporal expression of many plant and bacterial genes. Nodulation can be divided in two developmental pathways, bacterial infection and organ initiation, and the two merge when the bacteria are taken up by the plant cells. Two types of nodules have been characterized, determinate nodules such as originating on soybean (Glycine max) and indeterminate nodules such as observed on Medicago truncatula. Determinate nodules are round-shaped and are terminally differentiated, while indeterminate nodules have a persistent apical meristem. This work mainly focuses on M. truncatula nodule development and therefore, although very often orthologs were studied in other legumes, gene names mentioned in this summary will be from M. truncatula.

Nodule primordia develop after re-initiation of cell division in the root cortex upon sensing the bacterial signal molecules, the Nod Factors (NFs). The putative NF receptors, NFP, LYK3, LYK4 and the early NF signaling components, DMI1, DMI2, DMI3, IPD3, NSP1, NSP2, ERN1 and NIN were shown to be crucial for proper nodule
primordium formation (reviewed by Oldroyd and Downie (2008) and Ferguson et al. (2010)). Central to primordium initiation is cytokinin signaling as has been demonstrated by studies on the cytokinin receptor MtCRE1, which is expressed in cortical cells but not in the epidermis (Lohar et al., 2006; Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007; Plet et al., 2011). How the MtCRE1 receptor is activated in the cortical cells after NF perception is currently unknown. To get more insight in this process, two MtLOG genes, MtLOG1 and MtLOG2, encoding cytokinin riboside 5'-monophosphate phosphoribohydrolases that release active cytokinins from nucleotide precursors, were studied in detail (Chapter 7). The expression of both MtLOG genes was rapidly induced upon nodulation (Figure 11.1) and pMtLOG1:GUS was expressed in the dividing cortical cells, supporting a role for the encoded proteins in the release of active cytokinins for primordium development. In addition, simultaneous knock-down of both genes resulted in a reduced nodule number indicating that the two MtLOGs contribute to the free cytokinin pool that is needed for the establishment of a nodule. However, it is improbable that the cytokinins released via MtLOG1 and possibly MtLOG2 act as a primary cytokinin pool that is sensed by MtCRE1 to initiate nodule formation because the MtCRE1 receptor itself was needed for their expression (Figure 11.1). In addition, pMtLOG1:GUS activity was not detected in the inoculated roots until an early primordium stage was visible, after the first cell divisions had taken place. These data suggest that MtLOG1 and possibly MtLOG2 might rather be involved in a positive feedback loop to maintain high cytokinin levels for continued cell division (Figure 11.1). An interesting hypothesis is that after symplastic continuity is made between the cortex and the vasculature (Complainville et al., 2003), cytokinin precursors might reach susceptible cortex cells to be activated by MtLOG and maintain division. This hypothesis is supported by our observations that ectopic expression of MtLOG1 in uninoculated roots resulted only in more cells in the vasculature and not in the cortex, where no precursors might be available. Careful analysis of other cytokinin biosynthesis genes together with sensitive cytokinin measurements are required to further study the initiation process. How the MtLOG genes are activated is currently unknown. Exogenous application of cytokinins or auxins could not induce the genes. However, given the expression of MtLOG1 in dividing cortical cells, a combination of both hormones or the stele factor uridine (Smit et al., 1995b; Crespi and Galvez, 2000), previously shown to activate cortical cell division, might be the trigger. Although we clearly demonstrate that the two MtLOG genes have a positive role for nodule primordium development, how the MtCRE1 receptor is initially activated upon
Discussion and perspectives

nodulation remains elusive and needs further study.

Apart from cytokinin signaling and tightly intertwined with it, many other hormones control the nodulation process (reviewed in Chapter 1). Here we demonstrate that a group of peptide hormones, CLV3/ESR (CLE) peptides, plays several roles during determinate and indeterminate nodulation. CLE peptide signaling has been related to the balance between cell proliferation and differentiation during shoot and root apical meristem (SAM and RAM, respectively) homeostasis and during vascular development (Fletcher et al., 1999; Fiers et al., 2005; Hirakawa et al., 2008, 2010b; Ito et al., 2006). By specialized searches, we identified 31 MtCLE genes and 39 GmCLE genes in the genomes of M. truncatula and soybean, respectively (Chapter 3, 4 and 8). At least 5 MtCLE genes (MtCLE12, MtCLE13, MtCLE26, MtCLE28 and MtCLE31) and 6 GmCLE (GmCLE06-GmCLE38, GmCLE11-GmCLE34, GmCLE13, GmCLE14-GmCLE39, GmCLE17-GmCLE32 and GmCLE35-GmCLE37) genes were upregulated in nodulated roots. The CLE domain sequences of many of these genes, including MtCLE12 and MtCLE13, and of the nodulation-related CLE genes of Lotus japonicus (LjCLE-RS1 and LjCLE-RS2), have a high degree of similarity, indicative of redundant functions (Hobe et al., 2003; Ito et al., 2006; Strabala et al., 2006; Ni and Clark, 2006; Whitford et al., 2008; Okamoto et al., 2009; Reid et al., 2011). This redundancy was reflected, not only by the similarity in gain-of-function phenotypes observed here, but also by the need of a MtCLE12/MtCLE13 double knock-down mutant to result in any nodulation phenotype (Chapter 3 and 4). Moreover, within nodule tissues overlapping expression patterns were observed (Figure 11.1) (Chapter 3).

Two of the M. truncatula CLE genes (MtCLE12 and MtCLE13) were studied in more detail, and several experiments suggested that one of these, MtCLE13, plays a role in the control of nodule initiation downstream of the early NF signaling pathway and cytokinin signaling. Functional DMI1, DMI2, DMI3, NSP1, NSP2 and NIN are necessary for MtCLE13 transcript accumulation (Figure 11.1) (Chapter 3). Moreover, MtCLE13 transcripts were upregulated after a 3-h cytokinin treatment in a MtCRE1- and NIN-dependent manner, and levels increased with extended treatment (up to 24 h) (Figure 11.1) (Chapter 3 and 4). In agreement, in soybean, the expression of GmCLE14-GmCLE39 and GmCLE35-GmCLE37 was upregulated by exogenous cytokinin application, albeit, only from 24 h on (Chapter 8). pMtCLE13:GUS analysis indicated that, upon cytokinin addition as well as upon inoculation, MtCLE13 transcripts are localized in the cortex, before visible cell divisions were observed, in a gradient with the highest expression in the inner cortex, and a lower expression in the
outer cortex (Figure 11.1) (Chapter 3 and 4). The sites of high MtCLE13 expression correspond with the places of cortical cell divisions for primordium formation. Because MtCLE13 expression is dependent on cytokinin, this expression pattern might visualize the cytokinin sensitive root zone. Hence, MtCLE13 might be involved in the regulation of the balance between cell division and differentiation, similar to what was previously described for other CLE peptides (Simon and Stahl, 2006; Kondo et al., 2006; Ito et al., 2006; Whitford et al., 2008).

After the primordium has been formed, MtCLE13, but also MtCLE12, might further control cell division and differentiation patterns during the development of the primordium into a mature nodule with an apical meristem. Expression analysis indicated that both genes were expressed in primordia and in the apical zone of mature nodules, comprising the nodule meristem and infection zone (Figure 11.1) (Chapter 3). In accordance with an important role in nodule meristem homeostasis, simultaneous knock-down of MtCLE12 and MtCLE13 expression resulted in nodules with a smaller nodule meristem and premature nodule senescence (Chapter 4). Premature nodule senescence might be a consequence of an imbalance between cell division and differentiation leading to aberrant differentiation of infected cells and subsequently senescence. Consumption of the nodule meristem was also reflected by the reduced expression level of the nodule meristem marker gene, MtHAP2-1, in the nodules of these RNAi MtCLE12/MtCLE13 lines (Chapter 4). Hence, the nodulation-related CLE peptides, MtCLE12 and MtCLE13, restrain nodule meristem differentiation, similar to the role described for the CLE peptide TDIF in vascular development (Hirakawa et al., 2008), but opposite to the roles of CLE peptides involved in the maintenance of SAM and RAM homeostasis (Sawa et al., 2006; Ito et al., 2006; Stahl and Simon, 2009). De novo synthesis of cytokinins via MtLOG1 might also account for proper nodule meristem functioning, as pMtLOG1::GUS staining was observed in nodule primordia.

Figure 11.1 (facing page): Overview of the role of MtCLE peptides during indeterminate nodulation. CLE peptides play a main role during several aspects of nodulation, more specifically during the control of nodule numbers and in the balance between cell division and differentiation at the level of nodule initiation, nodule maturation and nodule apical meristem homeostasis. Solid arrows, supported by expression and functional data; dashed arrows, still hypothetical, because of lack of functional data. Magenta, MtCLE13 expression; Stripes, MtCLE12 expression; Dots, MtRLK1 expression; Blue, SUNN expression; NF, Nod Factor; CK, cytokinin; BAP, benzylaminopurine.

268
Discussion and perspectives

Control of nodule numbers

1. Downregulation of auxin?
2. Downregulation of NFP?

Control of cell division and differentiation
and in the meristematic zone and early differentiating nodule cells of mature nodules (Chapter 7). In addition, analysis of the few nodules that formed on 35S:MiLOG1 transgenic roots, revealed no or only a small meristem and a high level of senescence indicating an imbalance between cell division and differentiation (Chapter 7). In 35S:MiLOG roots, MtCLE12 and MtCLE13 were shown to be upregulated, indicating that the three genes might act in the same pathway (Chapter 7). However, these data are very preliminary, raising many questions and requiring further studies. Careful analysis of the nodules on MtLOG1/MtLOG2 RNAi roots and analysis of MtCLE12 and MtCLE13 promoter:GUS expression in 35S:MiLOG1 plants certainly would give more information on the relation between MtLOG1 and MtCLE12/MtCLE13.

Apart from a role in the control of cell division and differentiation, MtCLE12 and MtCLE13 also control nodule numbers (Figure 11.1). As nodulation is an energy-consuming process, plants develop the minimal number of nodules to ensure optimal growth in specific environmental conditions (reviewed in Chapter 2) (Ding and Oldroyd, 2009; Ferguson et al., 2010; Kouchi et al., 2010). One of the mechanisms by which nodule numbers are controlled is called autoregulation of nodulation (AON) and consists of a long-distance feedback mechanism, whereby early nodulation events act to suppress additional nodule formation (Kossak and Bohlool, 1984; Carroll et al., 1985a,b; Delves et al., 1986; Pierce and Bauer, 1983; Nutman, 1952). AON involves the leucine-rich-repeat receptor-like-kinase (LRR-RLK) SUPER NUMERIC NODULES (SUNN), which shares a high similarity with known CLE peptide receptors, such as CLV1, BAM1-3 and TDR (Schnabel et al., 2005). Here, we have shown that MtCLE12 and MtCLE13, produced upon inoculation, might be involved in AON as ectopic expression abolished nodulation in a systemic and SUNN-dependent way (Chapter 4). In addition, a combined knock-down of MtCLE12 and MtCLE13 resulted in elevated nodule numbers and this effect was not additive to the effect of a mutation in the SUNN gene (Chapter 4). Similar results were reported for nodulation-related CLE genes of L. japonicus and soybean, suggesting that a similar control mechanism, involving CLE peptides, regulates determinate and indeterminate nodule numbers (Okamoto et al., 2009; Reid et al., 2011). From these data and the expression data we can propose that after the first nodules are being formed, MtCLE12 and MtCLE13 peptides might signal to the root cortex and epidermis to limit the formation of additional nodules, possibly via the AON mechanism (Figure 11.1). Indeed, several experiments, including the analysis of expression of nodulation-related cortical and epidermal markers, indicated that nodulation on 35S:MtCLE12 and 35S:MtCLE13
roots was totally abolished at the level of NF perception, before the appearance of any epidermal or cortical responses (Chapter 3 and 5). A gene-specific and a micro-array based transcription analysis furthermore revealed that ectopic expression of MtCLE13 resulted in the differential expression of 17 genes, including a downregulation of the NF receptor NFP and two homologous genes, LYK4 and a close homolog of LYK5 (Chapter 5). The 35S:MtCLE13-induced downregulation of NFP in the root susceptible zone was confirmed by histochemical analysis (Chapter 5). Hence, expression of MtCLE13 and possibly MtCLE12 during nodulation might repress the expression of NF-receptors in cells susceptible for nodulation and thereby restrain additional nodule formation (Figure 11.1). In addition to the NF receptors, ectopic overexpression of MtCLE13 also resulted in the differential expression of some more genes among which 2 kelch-repeat containing F-box proteins, which are subunits of E3 ubiquitin ligase complexes, specifying protein substrates for internalization or degradation by the 26S proteasome (Chapter 5) (Pickart, 2001; Koepp et al., 2001; Adams et al., 2000; Sun et al., 2007b). Hence, the kelch-repeat containing F-box proteins might reduce root susceptibility for additional nodulation by degrading or internalizing NF receptors or other components of the early NF signaling pathway. The differential expression of NFP was shown to be SUNN-dependent, suggesting again that the control of nodule numbers by MtCLE12 and MtCLE13 might happen via the AON mechanism and that expression of the NF receptor might be a target of the AON process (Chapter 5). Interestingly only from part of the differentially expressed genes, the changes were shown to be dependent on SUNN (Chapter 5). Hence, MtCLE12 and MtCLE13 signaling activates both SUNN-dependent and SUNN-independent processes (Figure 11.1). Further functional analysis as well as a careful expression analysis might reveal more insights into how CLE peptides act on nodule number and interact with the AON pathway.

The expression of MtCLE12 and MtCLE13 coincides with the activation and progression of AON which has been shown to be activated at the onset of the establishment of the first nodule primordia (Chapter 3) (Li et al., 2009). As SUNN is a LRR-RLK of subclass XI closely related to the CLE peptide receptors, it is generally suggested to bind CLE peptides. Based on our results and recently published data by other groups, it is therefore tempting to speculate that MtCLE12 and MtCLE13 might act as ligands for SUNN in the AON pathway. To do so, the peptides would have to travel to the shoot because grafting experiments have shown that SUNN, although also expressed in the phloem of the root and basal part of the nodule vasculature, is active in the shoot for AON (Chapter 4) (Delves et al., 1986; Jiang and Gresshoff, 2002;
Krusell et al., 2002; Men et al., 2002; Pennmetsa et al., 2003; Francisco and Harper, 1995; Nishimura et al., 2002a). The long-distance root-to-shoot translocation that this hypothesis would entail is in contradiction to the short-distance signaling activities proposed for many CLE peptides (Fukuda et al., 2007; Kurakawa et al., 2007; Whitford et al., 2008; Miwa et al., 2009; Stahl et al., 2009). Alternatively, local perception of MtCLE12 and MtCLE13 in the roots might result in secondary signals that travel to the shoot where they activate other CLE peptides that bind to SUNN to further activate AON. Finally, nodulation-related CLE peptides might control nodule number by acting on the same process as the one on which the SUNN pathway acts, without being intertwined with AON. This central process might be the negative regulation of auxin transport in the vasculature, similar to what was reported for CLE peptides in Arabidopsis (Figure 11.1) (Whitford et al., 2008). Indeed, in wild type plants, nodule inhibition is associated with a reduction in polar auxin transport (PAT) from the shoot to the root (van Noorden et al., 2006). In sunn-1 mutants, no reduction in PAT was seen after inoculation and also a higher auxin flow was measured in sunn-1 mutants before inoculation (van Noorden et al., 2006). Hence, the absence of any 35S:MtCLE13 phenotypes in sunn mutants (Chapter 4), might be because the auxin levels are too high and cannot be suppressed to levels low enough to block nodule development. As transcriptome analysis of 35S:MtCLE13 roots did not reflect any changes in expression of hormone-responsive genes (Chapter 5), it might be interesting to analyze whether nodulation-related CLE peptides have post-translational effects on proteins involved in hormone signaling or on the level of hormone activation/turnover. The analysis of PIN protein localization in relation to CLE signaling might be of primary interest. Previously it has been shown that the negative effect of exogenous nitrate application on nodulation might be mediated by the AON pathway (Kinkema et al., 2006; Jeudy et al., 2010). In accordance to the inhibition of nodulation by nodulation-related CLE peptides, the partial nitrate tolerant phenotype observed in sunn-4 mutants, might also be a consequence of the changes in the auxin landscape observed (Chapter 4). Indeed, in Arabidopsis, a link between nitrate and auxin transport has recently been resolved (Krouk et al., 2010; Beeckman and Friml, 2010). If nitrate addition would inhibit nodulation via reducing auxin levels in the root, higher nitrate concentrations would be required in sunn-4 mutants to reduce the high auxin levels sufficiently to block nodule formation. Whether nitrate inhibition of nodulation involves CLE peptides, is unknown, but several nitrate-induced CLE peptide genes were identified in L. japonicus and soybean, which inhibit nodulation in a HAR1/NARK-dependent way (Okamoto
et al., 2009; Reid et al., 2011). Currently we favor the hypothesis that many CLE peptides, whether they are expressed in nodules or after the addition of nitrate in the root, or whether they are expressed in the shoot and perceived via shoot-localized SUNN, act on a common component, probably auxin flow and levels, from which a critical concentration is needed to allow nodulation. Many questions still need to be resolved to prove this hypothesis. The interaction between CLE and auxin signaling will reveal more insights. In addition, more CLE receptors active in the root should be identified to support the latter hypothesis, although the root-located SUNN in the vasculature might take part. Reciprocal grafts between sunn and wild type in combination with transgenic 35S: MtCLE12 or 35S: MtCLE13 roots might be interesting experiments to perform to further study the relation between MtCLE12, MtCLE13 and SUNN.

In a next step, putative CLE peptide receptors being upregulated during nodulation were searched for based on similarity with SUNN and its orthologs (Chapter 6). In M. truncatula, qRT-PCR and histochemical analysis of promoter:GUS constructs confirmed the nodulation-related expression pattern of MtRLK1. MtRLK1 expression was found in cells adjacent to and partially overlapping with cells in which MtCLE12 and MtCLE13 are expressed in the nodule primordium and nodule apex (Figure 11.1). Hence, as CLE peptides are known as short-distance signaling molecules, MtRLK1 might act as a CLE ligand receptor to control stem cell homeostasis in the nodule meristem. In addition, the expression patterns of MtRLK1 and SUNN are overlapping in the root vasculature, suggesting that in these tissues these receptors might interact, possibly to control the auxin landscape to regulate nodule numbers (Figure 11.1) (Chapter 6). MtRLK1 RNAi as well as overexpression might reveal interesting outcomes. Moreover, biochemical analysis should be performed to confirm the interaction between CLE peptides and these putative receptors and might indicate interaction between different receptors. In soybean, two homologous pairs of GmRLKs (GmRLK1-GmRLK2 and GmRLK3-GmRLK4) were found that are differentially regulated during nodulation (Chapter 9). One pair of GmRLKs had a similar expression pattern as the SUNN ortholog, NARK, and might thus control nodule number. The other gene pair was induced upon inoculation and thus might control nodule homeostasis. Functional analysis is needed to further unravel their role. In addition to CLE peptides, de novo synthesis of cytokinins by MtLOG1 might also be involved in the control of nodule numbers, as we observed that ectopic overexpression of MtLOG1 resulted in a reduced nodule number (Chapter 7). Because MtCLE12 and MtCLE13 were upregulated by 35S: MtLOG1, we initially taught that both would impinge on the same pathway to in-
hibit nodulation. However, the 35S:MtLOG1 inhibition of nodulation was shown to be local and independent of SUNN (Chapter 7). Hence, these results suggest that MtLOG1 might work together with CLE peptides during nodule organogenesis, but not in the control of nodule numbers.

To conclude, in this thesis we have shown that de novo cytokinin activation via LOG proteins is needed for normal nodule development. Moreover, our results clearly indicate that CLE peptides play a main role during several aspects of determinate and indeterminate nodulation, more specifically during the control of nodule numbers and in the balance between cell division and differentiation at the level of nodule initiation, nodule maturation and nodule apical meristem. Moreover, we have identified genes that might be involved in the negative feedback mechanism that controls nodule number. Especially the downregulation of the NF receptor, as a way to control nodule number, is interesting and needs further study. Moreover, the interaction of these CLE peptides with the AON pathway is not completely resolved yet but our results opened new possibilities that should be tested in the future.
Summary

Legumes develop root nodules as a result of a symbiotic interaction with soil borne bacteria, called rhizobia. Inside the nodules the bacteria find the ideal niche to fix atmospheric nitrogen for the plant in return for energy sources. Nodule formation is a complex developmental process that requires the spatio-temporal expression of many plant and bacterial genes. Nodulation can be divided in two developmental pathways, bacterial infection and organ initiation, and the two merge when the bacteria are taken up by the plant cells. Two types of nodules have been characterized, determinate nodules such as originating on soybean (Glycine max) and indeterminate nodules such as observed on Medicago truncatula. Determinate nodules are round-shaped and are terminally differentiated, while indeterminate nodules have a persistent apical meristem. Nodule organogenesis is governed by the bacterially produced Nod factors and downstream of it, cytokinin signaling. As nodulation is an energy-consuming process, legumes developed long distance mechanisms to control nodule number, amongst which autoregulation of nodulation (AON), involving systemic reciprocal signal exchange between the root system and the shoot.

Here, we have shown that structurally related CLE peptides play a main role during several aspects of M. truncatula nodulation. During nodulation, CLE peptide genes are activated downstream of the Nod factor and cytokinin signaling cascade and control the balance between cell division and differentiation at the level of nodule initiation, nodule maturation and nodule apical meristem homeostasis. In addition, we could show that CLE peptides control nodule numbers by interacting with the AON pathway. Although the underlying mechanism of this interaction is not yet resolved, our results opened new possibilities to explain the AON pathway. In addition, genes were identified that might be involved in the CLE peptide dependent negative feedback mechanism that controls nodule number. Especially the downregulation of a NF receptor gene, as a way to control nodule number, is an interesting finding. In parallel, we also found nodulation-
related CLE peptide genes that might control determinate nodulation in soybean. In addition, we identified putative receptors of nodulation-related CLE peptides in the genomes of *M. truncatula* and *G. max*. Finally, our results clearly indicate that de novo cytokinin activation via a cytokinin riboside 5’-monophosphate phosphoribohydrolase LONELY GUY1 (MtLOG1) of *M. truncatula* is needed for normal nodule development and possibly involves CLE signaling.

Together, this work has shown that apart from the classical phytohormones, CLE peptides greatly contribute to nodulation by controlling cell division and differentiation and restricting nodule number.
De symbiotische interactie tussen rhizobia en leguminosen wordt gekarakteriseerd door de ontwikkeling van nieuwe wortelstructuren, de nodules, waarin bacteriën stikstof fixeren voor de plant. In ruil hiervoor levert de plant energierijke koolstofbronnen en een beschermende omgeving aan de bacteriën. Nodules ontstaan door de initiatie van twee parallele processen: bacteriële invasie en corticale celdeling. Beide processen gaan gepaard met de spatio-temporele expressie van verschillende plant- en bacteriële genen en komen samen op het moment dat de bacteriën worden opgenomen door de cellen van het zich ontwikkelende nodule primordium. Twee morfologische types van nodules werden reeds beschreven. Enerzijds gedetermineerde nodules, die onder meer voorkomen op wortels van sojabonen (Glycine max) en anderzijds niet-gedetermineerde nodules, zoals waargenomen op Medicago truncatula. Gedetermineerde nodules hebben een ronde vorm en worden gekenmerkt door terminale differentiatie, terwijl bij niet-gedetermineerde nodules een persistent apicaal meristeem aanwezig is. Nodule organogenese wordt gecontroleerd door de bacterieel geproduceerde Nod factoren, alsook door de Nod factor geïnduceerde cytokinine signalisatie. Omdat nodulatie een energieconsumerend proces is, hebben planten langeafstandsmechanismen ontwikkeld om het nodule aantal te beperken. Autoregulatie van nodulatie (AON) is één van die mechanismen en bestaat uit een systemische, wederzijdse signaaltwisseling tussen het wortelsysteem en de scheut.

In deze studie tonen we aan dat structureel gerelateerde CLE peptiden een centrale rol spelen tijdens verschillende aspecten van nodulatie op M. truncatula. Tijdens nodulatie, worden deze CLE peptide genen neerwaarts van de Nod factor en cytokinine signalisatiereegel op hetgeen gereguleerd. Daar spelen ze een rol in de balans tussen celdeling en differentiatie, en dit niet enkel tijdens nodule initiatie, maar ook tijdens noduleontwikkeling en in het behoud van het nodule apicaal meristeem. Daarenboven, konden we aan tonen dat CLE peptiden bij de controle van nodule aantal betrokken zijn, mogelijks via
Nederlandse samenvatting

interactie met de AON signalisatieweg. Alhoewel de interactie tussen deze nodulatie-gerelateerde CLE peptiden en de AON signalisatieweg nog niet volledig duidelijk is, kunnen uit onze resultaten nieuwe hypothesen afgeleid worden. Daarenboven werden genen geïdentificeerd die mogelijk betrokken zijn bij het negatieve feedbackmechanisme dat het nodule aantal controleert. Voornamelijk de neerregulatie van NFP expressie, zou hierbij een mogelijke manier zijn en moet dus verder onderzocht worden. In een tweede luik van deze thesis hebben we CLE peptide genen geïdentificeerd, die betrokken zijn bij gedetermineerde nodulatie op sojaboon. Bovendien zijn we op zoek gegaan naar mogelijke nodulatie-gerelateerde CLE peptidenreceptoren in het genoom van *M. truncatula* en *G. max*. Tenslotte, tonen onze resultaten aan dat *de novo* cytokinine activatie via een cytokinine riboside 5’-monofosfaat fosforibohydrolase LONELY GUY1 (MtLOG1) van *M. truncatula*, noodzakelijk is voor normale nodule ontwikkeling en dat CLE peptidensignalisatie hier mogelijk bij betrokken is.

Kortom, deze doctoraatsthesis toont aan dat naast de klassieke fytohormonen, ook CLE peptidenhormonen een belangrijke rol spelen tijdens nodule organogenese en in de controle van nodule aantal.
Publications

 See Chapter 10

 See Chapter 9

 See Chapter 4

281

288

292
Bibliography

294

Bibliography

Bibliography

Bibliography

Meng, L. and Feldman, L. J. (2011). “CLE genes may act in a variety of tissues/cells and involve other signaling cascades in addition to CLV3-WUS-like pathways.” Plant signaling & behavior, 6(1).

Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

