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Abstract This contribution presents an updated analysis of the evolution of

ribosome-inactivating proteins (RIPs) in plants. All evidence suggests that an

ancestor of modern seed plants developed the RIP domain at least 300 million

years ago. This ancestral RIP domain gave rise to a direct lineage of type 1 RIPs

(i.e., primary type 1 RIPs) still present today in many monocots and at least one

dicot. In a later stage, a plant succeeded in fusing the RIP domain to a duplicated

ricin-B domain acquired from a bacterium. The resulting ancestral type 2 RIP

gave rise to all modern type 2 RIPs and by domain deletion, to different lines of

“secondary” type 1 RIPs and ricin-B type lectins. In the recent past, at least three

other domain fusions took place in the Poaceae family, whereby type AC1 (type 3),

type AC2, and type AD chimeric forms were generated.

1 Introduction

Plant ribosome-inactivating proteins (RIPs) are a fairly extended and heterogeneous

family of proteins characterized by the presence of a domain equivalent to the toxic

A-chain of ricin (or A-subunit of the bacterial Shiga toxins). Basically, the plant

RIPs can be subdivided into holoenzymes and chimero-enzymes. Holoenzymes or

type 1 RIPs consist solely of a RIP domain whereas the chimero-enzymes are built

up of an N-terminal RIP domain linked (at least in the gene) to an unrelated

C-terminal domain. Depending on the nature of the latter chain, the chimeric

forms are referred to as type 2 RIPs (with a lectinic B-chain) and type 3 RIPs
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(with an unidentified C-terminal domain). Both type 1 and type 2 RIPs are quite

common in plants whereas hitherto only a single type 3 RIP has been isolated and

characterized, namely the barley JIP60 (Chaudhry et al. 1994). However, recent

genome and transcriptome data revealed the occurrence of homologs in some other

Poaceae. Moreover, there is also evidence for yet another chimeric form in rice and

Brachypodium distachyon. Since none of these “putative novel” RIPs has been

studied at the biochemical level, it is precocious to introduce a new nomenclature.

Therefore, JIP60 and its homologs will be referred to as type AC proteins, and the

additional form found in rice and Brachypodium as type AD proteins, to emphasize

the fact that they possess a different C-terminal domain.

The issue of the molecular evolution of plant RIPs was already discussed in

numerous research and review papers (Barbieri et al. 1993; Peumans et al. 2001;

Van Damme et al. 2001; Stirpe and Battelli 2006). Though several aspects of the

overall evolution are fairly well understood, some important questions remain to be

answered especially with respect to the origin of the RIP domain, the relationships

between type 1 and type 2 RIPs, and the origin of the type 3 RIP. One of the major

problems encountered in the study of the evolution and phylogeny concerns the

limited number of sequences and the patchy taxonomic distribution of plant RIPs.

Fortunately, the wealth of information provided by genome and transcriptome

sequencing programs allows composing a more detailed overview of the occurrence

of RIPs in plants and reassessing the interrelationships between the different

subgroups. Moreover, the eventual origin of the RIP domain itself as well as the

B-chain of type 2 RIPs could also be revised using the sequence information made

available for bacteria and eukaryotes other than plants.

This contribution aims to make an updated comprehensive analysis of the

overall evolution of plant RIPs. Therefore, an as-complete-as-possible set of

sequences was retrieved from the publicly accessible databases and subsequently

subjected to a preliminary phylogenetic analysis (using CLUSTALW). Consider-

ing the limitations of this method, the results should be interpreted with care.

However, the outlines of the analyses give a fairly accurate idea and place the

overall evolution of RIPs in a novel perspective. Moreover, the data generated here

provide a firm basis for an in-depth phylogenetic analysis with a more performing

program.

2 General Overview of the Taxonomic Distribution of A and B

Domains within the Viridiplantae

According to the data published in previous research and review papers, the

occurrence within the Viridiplantae of both the RIP and the ricin-B domain is

confined to the Magnoliophyta (flowering plants) (Van Damme et al. 1998; 2001).

To check whether these domains possibly occur in other taxa, a comprehensive

analysis of the publicly accessible databases was made. BLAST searches (using
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different type 1 and type 2 RIP sequences1 as queries) in the completed genomes of

Chlamydomonas reinhardtii, Chlorella sp.,Micromonas sp., Ostreococcus sp., and
Volvox carteri yielded no positive hits indicating, though not proving, that Chlor-

ophyta (green algae) genomes acquired neither the RIP nor the ricin-B domain.

Within the Embryophyta, proteins/genes with a RIP domain are apparently confined

to the Spermatophyta (seed plants). No A domain could be identified, indeed, in any

member of the Anthocerotophyta, Bryophyta, Marchantiophyta, or Euphyllophyta

other than Spermatophyta. Though, due to the limited sequence information, one

cannot draw definitive conclusions regarding the possible occurrence of this

domain in these major taxonomic groups, the apparent absence of the RIP domain

in the completed genomes of the moss Physcomitrella patens and the club moss

Selaginella moellendorffii is certainly indicative. Contrary to the A domain, there is

compelling evidence of the expression of proteins with a typical ricin-B domain in

the liverwort Marchantia polymorpha. Analysis of the transcriptome database

revealed that thalli and sexual organs of M. polymorpha express a set of at least

three different proteins comprising two in tandem arrayed ricin-B domains (and

hence can be considered the equivalent of the B-chain of a type 2 RIP). One of these

expressed proteins has -apart from the N-terminal Met residue- exactly the same

sequence as the N-terminus of a galactose-binding lectin isolated from thallus tissue

(EVD unpublished results), which leaves no doubt that this liverwort actually

expresses a carbohydrate-binding protein of the ricin-B family. It should be noted

here that the purified lectin is synthesized without signal peptide and undergoes,

apart from the removal of the methionine, no processing at its N-terminus. This

implies that the Marchantia lectins are unlike all other documented plant lectins of

the ricin-B family (which are synthesized with a signal peptide and follow the

secretory pathway) (Van Damme et al. 2001). Marchantia lectins are synthesized

on free ribosomes in the cytoplasm and accordingly destined to reside in the

cytoplasmic and/or nuclear compartment.

Hitherto, all purified plant RIPs and cloned plant RIP genes were obtained from

Magnoliophyta (flowering plants). No homologs were isolated from or identified

in any other seed plant. Transcriptome analyses also yielded no evidence of

the expression of RIP genes in Coniferophyta (approximately 800,000 entries),

Cycadophyta (22,000 entries), and Ginkgophyta (21,000 entries). In contrast, a

recently deposited transcriptome database of Gnetum gnemon (10,700 entries)

contains a set of three expressed sequence tags (ESTs) encoding two different

type 2 RIPs. The latter finding is important because it demonstrates for the first

time the occurrence of RIP genes in a seed plant outside the flowering plants.

Taking into consideration the very large number of deposited EST sequences (about

800,000 in total) of different Pinus and Picea species, it seems unlikely that RIP

genes are present in the genome of most modern Coniferophyta. Due to the

1Sequences of all RIPs used in this study can be retrieved from: http://www.molecularbiotechnology.

ugent.be/publications/VanDamme2010A/.
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relatively small number of entries no such conclusion can be drawn yet for the

Cycadophyta (22,000 entries) and Ginkgophyta (21,000 entries).

Comprehensive BLAST searches of plant transcriptome databases yielded

several sequences encoding proteins consisting of a single ricin-B domain (i.e.,

corresponding to one half of the B-chain of type 2 RIPs). At first sight, the

identification of these proteins was exciting because it could give valuable hints

with regard to the origin of the B-chain of type 2 RIPs. However, a closer examina-

tion indicated that these sequences are not encoded by the plant genome but by a

contaminating fungus or other eukaryotic symbiont/parasite. For example, a strongly

conserved protein expressed in roots of wheat and poplar, and stolons of potato turns

out to be 94% identical to a large set (>250) of ESTs present in the transcriptome of

Hartmannella vermiformis (a protozoan belonging to the Euamoebida). Hence, it is

almost certain that the sequences encoding these “root-specific” proteins are derived

from a contaminating amoeba.

3 Overview of the Taxonomic Distribution of A and B Domains

within the Magnoliophyta (Flowering Plants)

3.1 “Classical” Type 2 RIPs (AB proteins)

Hitherto, only a relatively small set of type 2 RIPs (<40) has been purified and

characterized. Moreover, since all these proteins were isolated from a rather limited

number of seed plants (Ricinus communis, Abrus sp., Adenia sp., Cinnamomum
camphora, Sambucus sp., Viscum sp., Momordica charantia, Trichosanthes sp.,

Bryonia dioica, Panax ginseng, Ximenia americana, Iris hollandica, and Polygo-
natum multiflorum) belonging to only 13 genera, it is generally believed that type

2 RIPs are scarcely distributed among flowering plants. However, taking this into

consideration, by analogy to other plant lectins, the currently documented taxo-

nomical distribution might well be underestimated. This is because only highly

expressed type 2 RIPs have a reasonable chance of being discovered by routinely

applied techniques. To address this issue, we searched the publicly accessible

databases (mostly transcriptomes) for the occurrence of type 2 RIPs and related

proteins with ricin-B domain(s). Evidence was obtained for the expression of one or

more genuine type 2 RIP homologs in several species with no “RIP history.” The

list of novel species includes flowering plants from most major taxa: Ranuncula-

ceae (Adonis aestivalis); Asteraceae (Helianthus sp., Centaurea sp., Artemisia
annua), Ericales (Actinidiaceae: Actinidia deliciosa or kiwi fruit; Polemoniaceae:

Ipomopsis aggregata; Theaceae: Camellia sinensis or tea plant); Cucurbitaceae

(Cucumis sativus), Rosaceae (Malus domestica or apple); Malvaceae (Gossypium sp.),

Sapindaceae (Paullinia cupana or guarana), Poaceae (Triticum aestivum, Saccharum
officinarum, Sorghum sp., Zea mays, Panicum virgatum), and Arecaceae (Elaeis
guineensis or oil palm).
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3.2 Other Proteins with Ricin-B Domains

Proteins consisting exclusively of polypeptides equivalent to the B-chain of type

2 RIPs have been isolated from several Sambucus species (e.g., fruit lectin SNA-IV)
(Girbés et al. 2004; Van Damme et al. 1997b) and from cucumber (C. sativus) roots
(XSP30) (Masuda et al. 1999). Moreover, it seems quite likely that several lectins

previously isolated from different Euphorbia species are built up of B-chains only

(Stirpe et al. 1993). The searching of databases yielded only a few novel B-type

proteins. Transcriptome analysis confirmed that Euphorbia esula expresses several

proteins consisting of B-chains only. In addition, a set of five different but closely

related B-chain proteins (most of which are expressed) could be identified in the

genome of Populus trichocarpa. The same genome also contains a gene encoding a

protein consisting of a single ricin-B domain, but no corresponding ESTs could be

retrieved.

4 Molecular Evolution of Type 2 RIPs

4.1 General Observations Concerning the Taxonomic
Distribution of Type 2 RIPs and the Occurrence
of Multiple Paralogs

In spite of the tremendous amount of (multidisciplinary) research devoted to ricin

and related proteins, the molecular evolution and especially the evolutionary origin

of type 2 RIPs is still far from understood. At present, no direct evolutionary link

can be made between type 2 RIPs from modern seed plants and any protein from

lower Viridiplantae (or any other organism). It seems likely, therefore, that type

2 RIPs were developed by a direct ancestor of modern seed plants. Until recently

type 2 RIPs were believed to occur exclusively in flowering plants (Van Damme

et al. 2008). However, novel data leave no doubt that genuine homologs are also

expressed in at least one species of the Gnetophyta. On the basis of this updated

taxonomic distribution (summarized in Tables 1 and 2) one can reasonably con-

clude that type 2 RIP gene(s) were already present in the common ancestor of the

Gnetophyta and Magnoliophyta, and accordingly exist for over 300 million years

(Palmer et al. 2004). The reasonably high sequence identity between the homologs

from G. gnemon and those from flowering plants can be perfectly explained by a

classical vertical inheritance along the main evolutionary lineages of the seed

plants. However, there are a few obvious peculiarities. First, the type 2 RIP genes

were apparently not transferred into all daughter lineages of the common ancestor

of all modern seed plants. Second, type 2 RIP genes are certainly not ubiquitous

in all taxa of flowering plants but seem to be patchly distributed. It is certainly

true that (many) other homologs remain to be discovered. However, genome

sequencing clearly demonstrated that they are absent from, e.g., Arabidopsis thaliana,
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P. trichocarpa, Medicago truncatula, Glycine max, Vitis vinifera, Carica papaya,
Oryza sativa, and B. distachyon. Third, within a given taxon/family, type 2 RIPs

might be confined to a single species/genus. For example, apart from two Abrus
species, type 2 RIPs were not found in any other legume species (despite the fact that

the legume family has been extensively explored for the occurrence of lectins).

Fourth, in some species, type 2 RIP genes were (strongly) amplified. For example,

genome analysis revealed that the genome of R. communis contains at least eight type
2 RIP genes. Similarly, the expression of complex mixtures of type 2 RIP in Sambucus
and Viscum species can only be explained by the occurrence of multiple genes.

4.2 Overall Phylogeny of Type 2 RIPs

To further corroborate the evolutionary relationships a phylogenetic analysis was

made of all type 2 RIPs for which a (near) complete sequence is available or can be

assembled from EST sequences. As shown in Fig. 1 the dendrogram of the type

2 RIPs does not reflect the phylogeny of the species in which they occur but exhibits

several obvious anomalies. Only the proteins found in Sorghum sp., S. officinarum,
Z. mays, and P. virgatum form a distinct clade with a “normal” phylogeny. All

other Liliopsida proteins (i.e., those from I. hollandica, E. guineensis, and

P. multiflorum) are placed in two different branches together with homologs from

unrelated Eudicots/Magnoliids. The most striking anomaly concerns the type

Table 1 Summary of the documented occurrence of the four different types of ribosome inacti-

vating proteins within the Embryophyta (terrestrial plants)

Anthocerotophyta
(hornworts)

No sequences found

Bryophyta  
(mosses)

No sequences found; A and B domain are absent from the genome
of Physcomitrella patens

Marchantiophyta (liverworts)
Several proteins comprising two in tandem arrayed ricin B domains
are expressed in Marchantia polymorpha. No expressed protein
with a RIP domain could be retrieved.

Tracheophyta
(vascular plants)

Lycopodiophyta
(club mosses)

No sequences found; A and B domain are absent from the genome
of Selaginella moellendorffii

Euphyllophyta

Moniliformopses
Equisetophyta (horsetails): no sequences found
Filicophyta (ferns): no sequences found

Spermatophyta (seed plants) 
Coniferophyta: no sequences found
Ginkgophyta: no sequences found
Cycadophyta: no sequences found
Gnetophyta: type AB from Gnetum gnemon
Magnoliophyta (flowering plants): A, AB, B, AC and AD*

*See Table 2 for a detailed overview
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2 RIPs from P. multiflorum (Van Damme et al. 2000), which are placed in the same

cluster as the Sambucus nigra proteins. Evidently, the anomalous phylogeny raises

some questions with regard to the evolution of type 2 RIPs in flowering plants. To

check whether the anomalies might be due to pronounced differences between the

evolution of the RIP and the lectin domain, the same phylogenetic analysis was

made using sequences of the respective A and B-chains. Though these analyses

yielded slightly different results, major anomalies persisted (results not shown). For

example, both the A and B-chain of the P. multiflorum proteins were invariantly

placed in the Sambucus cluster.
Summarizing one can conclude that the origin of the type 2 RIP family predates

the common ancestor of the Gnetophyta and the Magnoliophyta. The ancestral gene

Table 2 Summary of the documented occurrence of the four different types of ribosome inacti-

vating proteins in Magnoliophyta (flowering plants)

Eudicotyledons

Stem
Eudicotyledons

*BAeaecalucnunaRselalucnunaR

Core
Eudicotyledons

Asterids

Campanulids Araliaceae
Apiaceae 
Asteraceae
Adoxaceae

AB
A
AB
AB, B

Ericales Actinidiaceae
Ebenaceae
Polemoniaceae
Theaceae

AB, B
B
AB
AB, B

Lamiids Lamiaceae A

Caryophyllales

Aizoaceae
Amaranthaceae
Caryophyllaceae
Nyctaginaceae
Phytolaccaceae

A
A
A
A
A

Santalales Loranthaceae
Olacaceae

AB
AB

Rosids Eurosids I

Cucurbitales Cucurbitaceae AB, A
Fabales Fabaceae AB

Malpighiales
Euphorbiaceae
Passifloraceae
Salicaceae

AB, A, B
AB
A, B

Rosales Cannabaceae
Rosaceae

A
A, AB

Eurosids II Malvales Malvaceae AB
Sapindales Sapindaceae AB

Liliopsida

Asparagales
Agavaceae
Asparagaceae
Iridaceae
Ruscaceae

A
A
AB, A
AB, A

Commelinids

BAeaecacerAselacerA

Poales

Bromeliaceae A

Poaceae

BEP clade Bambuseae
Oryzeae
Pooideae

A 
A, AD
A, AB, AC,
AD

PACCAD
clade

Panicoideae A, AB, AC

BAeaecaruaLselaruaLsdiilongaM

*A: type 1; AB: type 2; AC: type 3; AD: new chimeric RIP; B: lectinic B chain

For more details on taxonomic distribution of ribosome-inactivating proteins, please see Supple-

mentary data 2 on http://www.molecularbiotechnology.ugent.be/publications/VanDamme2010A/
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was vertically transmitted into the daughter lineages but during further evolution

it purged from the genome of most Spermatophyta. This process of gene loss still

occurred in evolutionary recent terms and might possibly continue today (as is

suggested by the patchy distribution in, e.g., the Poaceae family). The retained

genes evolved along with the evolution of the seed plants but it seems that some

events took place that eventually resulted in a few obvious but unexplained

phylogenetic anomalies.

4.3 Special Evolutionary Events: Gene Amplification
and Generation of Type A and Type B Proteins
from Genuine Type 2 RIPs

Apart from the general scheme described above, the molecular evolution of type 2

RIPs includes some peculiar events. In several unrelated species gene amplification

CincaAB1
ElaguAB
RiccoABa
RiccoABb
RiccoABg
VisalAB1a
VisalAB3a
VisalAB2a
IrihoAB1
IrihoAB2
AbrprAB1
PangiAB
GoshiAB
HeltuAB
SamniAB1a
SamniAB2a
SamniAB3a
PolmuAB1
PolmuAB2
SamniAB4a
MomchAB
MaldoAB
SorbiAB
SacofAB
ZeamaAB
PanviAB1

Fig. 1 Phylogenetic analysis of the currently identified type 2 RIPs. Only entries for which complete

sequences are available are included. To reduce the complexity of the dendrogram a number of

highly similar paralogs from a single species or highly similar orthologs from related species are

not included. For more details on the sequences of the ribosome-inactivating proteins and the codes

used for each RIP, please see Supplementary data 1 and 3 on http://www.molecularbiotechnology.

ugent.be/publications/VanDamme2010A/
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has taken place. The occurrence of multiple genes was already inferred from the

fact that some plants like, e.g., Sambucus sp and Viscum album express complex

natural mixtures of “isoforms” (Girbés et al. 2004; Mishra et al. 2004). Full details

about such a gene family were provided by complete sequencing of the castor

bean genome. This genome contains at least eight genuine type 2 RIP genes and

several (at least eight) pseudogenes (with an incomplete or interrupted ORF).

In addition, a type 2 RIP gene could be retrieved that encodes a protein with a

heavily truncated B-chain (only the first 44 amino acid residues are left). Interest-

ingly, a perfectly matching EST sequence is deposited, which indicates that the

truncated protein might be expressed. Though there is no experimental evidence yet

for the presence of the corresponding protein in castor bean tissue, the truncated AB

gene illustrates that a type 1 RIP can be generated from a genuine type 2 RIP

through the deletion of the B domain. This observation is not merely anecdotal but

has important consequences for what concerns the molecular evolution of type 1

RIPs. As was already suggested on several occasions (Peumans et al. 2001; Van

Damme et al. 2001) some type 1 RIPs (e.g., from I. hollandica) (Van Damme et al.

1997a) are more closely related, indeed, to type 2 RIPs from the same or a related

species than to any other (genuine) type 1 RIP. Analysis of the castor bean genome

now provides a firm basis for the formerly predicted “domain-deletion” origin

of some type 1 RIPs and as such urges the reassessment of the evolutionary origin

of the whole group of type A proteins (which is discussed in detail in a separate

section).

Comprehensive biochemical and molecular analyses demonstrated that Sambucus
sp. also express a very complex set of both genuine and truncated type 2 RIP genes

and revealed that within this taxonomic group an evolutionary event took place

whereby a genuine type 2 RIP (called SNA-V) was converted in a type B protein

(SNA-II) through a deletion of the RIP domain (Van Damme et al. 1996, 1997b). To

check whether the origin of the other identified type B proteins relies on a similar

mechanism, a phylogenetic analysis was made of the sequences of these proteins

and the corresponding sequences of the B-chain of type 2 RIPs. According to the

dendrogram shown in Fig. 2, the B-type proteins found in P. trichocarpa cluster

with the type 2 RIP from Adenia volkensii (which belongs to the same order

Malpighiales as poplar) indicated that they are derived, indeed, from a genuine

type 2 RIP through deletion of the A domain – an event that most probably took

place after the Passifloraceae and Adoxaceae diverged from the Euphorbiaceae.

Since the parent type 2 RIP gene is no longer present in poplar, it must have been

purged from the genome during the evolution of the lineage Malpighiales that led to

modern poplars. At the same time, the original gene encoding a B-type protein was

amplified by two in tandem duplications followed by a region/chromosome or

genome wide duplication. In addition to B-type genes,the poplar genome contains

a gene encoding a protein consisting of a single ricin-B domain (or a half B-chain).

The origin of this gene is not clear. It exhibits the highest similarity with the

C-terminal domain of the B-type proteins in poplar but the sequence identity is

relatively low (approximately 35% within the ricin-B domain) indicating that there

is most likely no direct evolutionary link. Possibly the single ricin-B domain gene

Evolution of Plant Ribosome-Inactivating Proteins 9



results from a different evolutionary event whereby both the A domain and the first

half of the B domain were deleted from a genuine type 2 RIP gene.

Taking into consideration the obvious evolutionary origin of the Sambucus and
Populus B-chain proteins, the position in the dendrogram of the homologs from

C. sativus and E. esula also can be reconciled with a similar domain-deletion event.

However, in these two cases the respective evolutionary events took place most

likely in a distant past.

A final important conclusion to be drawn from the dendrogram shown in Fig. 2

concerns the cytoplasmic B-chain proteins expressed in M. polymorpha. These
proteins are apparently unrelated to any other ricin-B protein found in plants and

CucsaB
EupesB2
SorbiAB
SacofAB
ZeamaAB
HeltuAB
SamniaB2a
SamniAB4a
ActdeAB
PolmuAB2
PolmuAB1
MaldoAB
CucsaAB
MomchAB
GoshiAB
AdevoAB
PoptrB1a
PoptrB2a
PoptrB3a
CincaAB1
CamsiAB
ElaguAB
VisalAB1a
ViscoAB5
AbrprAB1
IrihoAB1
IrihoAB2
PangiAB
XimamAB1
RiccoABa
RiccoABb
RiccoABg
GnegeAB
MarpoB1
MarpoB2
MarpoB3

Fig. 2 Phylogenetic analysis of all identified plant B-chain proteins and a selected set of the B-chains

of type 2 RIPs. To reduce the complexity of the dendrogram a number of highly similar type 2 RIP

paralogs from a single species or highly similar orthologs from related species are not included
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accordingly are not likely candidate ancestors of the ricin-B domain found in type

2 RIPs and related proteins. As matter of fact, the liverwort proteins share little

sequence similaritywith any known protein (the bestmatch is ana-galactosidase from
the Actinomycete bacterium Catenulispora acidiphila DSM (gb|EEN35459.1|) and

hence might represent a separate subgroup of the ricin-B family).

4.4 What is the Origin of Type 2 RIP Genes?

Hitherto, no homologs of the type 2 RIPs have been identified outside the seed plants,

which strongly indicates that this chimeric protein was developed within the lineage

leading to the modern Spermatophyta (or alternatively was acquired by non vertical

inheritance from an unidentified organism that lost the corresponding gene or became

extinct). All that can be stated with certainty is that the ancestor of today’s type

2 RIPs already existed before the Gnetophyta and Magnoliophyta lineages diverged

from each other. Evidently, the chimeric structure must result from an evolutionary

event whereby a RIP domain was fused to a duplicated ricin-B domain.

4.4.1 Origin of the B-Chain

On the basis of the widespread distribution over all major prokaryotic and eukary-

otic taxa, one can reasonably assume that the ricin-B fold was developed by

bacteria very early in evolution and transmitted into all major eukaryotic lineages.

Unfortunately, because of the apparent absence of the (sequenced) genomes of

Chlorophyta, it is impossible to trace the origin of the plant ricin-B domain back to

the common ancestor of plants and other eukaryotes. Sequence comparisons

revealed that the B-chain of the type 2 RIPs shares the highest similarity with the

(double ricin-B domain) carbohydrate-binding part of an (extracellular or secreted)

b-glycosidase-like glycosyl hydrolase (gb|EEN27866.1|) and an a-L-arabinofura-
nosidase B family protein (gb|EEN23780.1|) from the Actinomycete bacterium

C. acidiphila. Moreover, all the cysteine (Cys) residues that stabilize (by four

disulfide bonds) the rigid fold of the B-chain of the plant type 2 RIPs are also

present in these bacterial sequences whereas virtually all other eukaryotic ricin-B

domains lack disulfide bonds. The latter fact is not surprising because apart from

type 2 RIPs and related proteins most eukaryotic proteins with ricin-B domains are

synthesized on free ribosomes in the reducing cytoplasm where disulfide bonds are

not usually formed. Hence, all evidence suggests that at a given time (at least

predating Gnetophyta and Magnoliophyta lineages) in the evolution of the lineage

Spermatophyta, a plant acquired a gene encoding a protein consisting of a dupli-

cated Cys-rich ricin-B domain by lateral transfer from a bacterium. Possibly, the

cytoplasmic ricin-B proteins found in M. polymorpha were also acquired by a

similar lateral transfer from a bacterium, but in this case the bacterial gene encoded

a cytoplasmic (Cys-poor) protein.

Evolution of Plant Ribosome-Inactivating Proteins 11



4.4.2 Origin of the A-Chain

The A domain is far less common than the ricin-B domain. Apart from plants, it

seems to be confined to bacteria and viruses of the (entero) bacteriophage group.

Moreover, within the bacteria the prokaryotic homolog of the type 1 RIP (called

Shiga and Shiga-like toxins A component) is rather rare as it is found only in a small

number of species. Proteins were identified in not more than 13 species, including

Streptomyces coelicolor, 11 Enterobacteriaceae sp., and Acinetobacter haemolyticus.
This very narrow taxonomic distribution (especially when compared to the wide-

spread occurrence in plants) raises some questions with regard to the presumed

bacterial origin. An alternative explanation might be that the RIP domain was

developed by plants and acquired by some bacteria through lateral gene transfer.

The latter (admittedly speculative) hypothesis is supported by the fact that the target

of the Shiga toxins (globotriaosylceramide, a typical animal glycolipid), was devel-

oped later in evolution than the RIP domain, which implies that there was no

selective pressure for bacteria to develop the RIP domain before it was already

present in plants. Irrespective of the true origin, the present taxonomic distribution

indicates that the A domain was developed or acquired by an early seed plant before

the Gnetophyta and Magnoliophyta lineages diverged from each other. No type 1

RIP could be found in the transcriptome of G. gnemon but the limited number of

sequences does not allow the conclusion that the corresponding gene is absent.

Unfortunately, this implies that no direct link can be made between the A chain of

the G. gnemon type 2 RIPs and a possible type 1 RIP from the same species.

5 Molecular Evolution of Type 1 RIPs

Type 1 RIPs are not only more common in seed plants they also exhibit a much

higher (sequence) heterogeneity than type 2 RIPs. In the past, type 1 RIPs were

usually subdivided in three groups (Van Damme et al. 2001). The first group

comprises the “classical” type 1 RIPs found in numerous dicotyledons (e.g., in

Cucurbitaceae, Phytolaccaceae, and Amaranthaceae species). All these RIPs are

synthesized on the ER and follow the secretory pathway to their final subcellular

destination (vacuole/extracellular space). The second group is exemplified by the

RIPs that were isolated from wheat, barley, and some other grasses. These Poaceae

RIPs are synthesized without signal peptide and presumably reside in the cyto-

plasm. Members of the third group are also found in Poaceae and more precisely in

Z. mays and related (Panicoideae) species (Walsh et al. 1991; Hey et al. 1995).

What is special about this group is the fact that they are synthesized (on free

ribosomes) as inactive precursors that are converted into an enzymatically active

form through the proteolytic removal of a short peptide at both the N- and

C-terminal end, and the excision of an internal peptide. As a result the active

RIP consists of two different polypeptides and accordingly is also referred to as a

“two-chain” type 1 RIP.
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Most attempts to elucidate the phylogenetic relationships were based on the

assumption that the family of type 1 RIPs is, notwithstanding the obvious heteroge-

neity, monophyletic. However, as earlier work with type 1 and type 2 RIPs from

I. hollandica (Van Damme et al. 1997a) and phylogenetic analyses of type 1 and type

2 RIPs already indicated (Van Damme et al. 2001), sequencing of the castor bean

genome provided firm evidence that type 1 RIPs are generated from parent type 2 RIP

genes. Since these two examples might be indicative of a more general evolutionary

mechanism the phylogeny of type 1 RIPs was reassessed using a novel approach. At

the same time the phylogeny was refined by incorporating recent sequence data.

Taking into account that the type 1 RIPs from Poaceae differ in several aspects from

those found in dicots and monocots other than Poaceae, the two groups were first

analyzed individually. After establishing the phylogenetic relationships within each

group, a comprehensive analysis was made of all plant RIPs using a selected set of

sequences of both groups. Finally, to corroborate the possible link with bacterial

RIPs, a selection of bacterial sequences was included in the final analysis.

5.1 Dicots and Monocots Other Than Poaceae

Due to the large number of sequences, it was virtually impossible to make a

phylogenetic analysis in a single step. Therefore, a reiterative process was followed

whereby smaller sets of sequences from taxonomically related species were ana-

lyzed. To reduce the complexity, highly similar paralogs from single species and/or

orthologs from related species were omitted and the limited set of sequences

combined with similarly reduced sets from other taxonomic groups. Using this

approach, a fairly accurate dendrogram could be generated of the sequences of all

type 1 RIPs except those from the Poaceae species. As shown in Fig. 3, the resulting

dendrogram comprises three distinct clades. The first clade, which groups all

Caryophyllales type 1 RIPs comprises two side branches corresponding to two

distinct forms. Since both forms are found in Beta vulgaris (Amaranthaceae) and

Mesembryanthemum crystallinum (Aizoaceae), they most probably result from

a gene or genome duplication that predates the separation of the different Caryo-

phyllales families. The second major clade comprises all Eurosids I sequences and

consists of two-side branches with a cluster of Euphorbiaceae and Cucurbitaceae

proteins, respectively. The only documented type 1 RIPs from Rosaceae (from

Prunus sp.) and Ericales (from C. sinensis) are also placed in the Cucurbitaceae

cluster. The third clade is well separated from the two other groups – the type 1

RIPs from the dicot P. trichocarpa and the monocots Muscaria, Asparagus, and
Ophiopogon – and thus covers a broader taxonomic range than the other clades. The

main conclusion that can be drawn is that apart from a few exceptions the dendro-

gram of the type 1 RIPs reflects the taxonomy of the dicots. However, the dendro-

gram also reveals the occurrence of a second more distant group found in both

dicots and monocots.
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To corroborate which groups of type 1 RIPs are the products of domain-

deletion (of AB genes), the phylogenetic analysis was extended by incorporating

the A domain (including signal peptide) of type 2 RIPs (Fig. 4). The resulting

dendrogram leaves no doubt that the type 1 RIPs from iris originated from a

conspecific type 2 RIP in an evolutionary recent past. The same applies to the type

1 RIPs from Rosids (Malus and Momordica), but in this case the domain loss

apparently predates the divergence of the Cucurbitales and Rosales. Reasoning

along the same line, it seems likely that the Euphorbiaceae type 1 RIPs also

evolved from type 2 RIPs in a more distant past. The dendrogram leaves some

CamsiA
GynpeA1
MomchA1
TricuA2
MomchA2
TrikiA1a
TrikiA2
PruamA1
RiccoA
RiccoAf
JatcuA1
EupseA1
EupseA2
GelmoA
IrihoA1
IrihoA2
RiccoAg
BetvuA1
MescrA2
BouspA1a
BetvuA5
MirjaA
BetvuA2
CleacA
PhyamA1
PhyamA4
PhyamA6
MescrA1
SapofA1
SapofA2
PoptrA
AspofA1
MusamA1
MusamA4

Fig. 3 Phylogenetic analysis of type 1 RIPs from dicots and monocots other than Poaceae. Highly

similar paralogs from a single species or highly similar orthologs from related species are not

included
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uncertainty with regard to the origin of the homologs from Caryophyllales and

Clerodendron (but as discussed below, they were also derived in a more distant

past from a type 2 RIP gene). This implies that only the sequences in the

“aberrant” clade with Populus, Muscaria, and Ophiopogon are derived from a

genuine type 1 RIP.

RiccoA
RiccoAf
EupseA1
CincaAB1
ElaguAB
RiccoABa
RiccoABb
RiccoABg
VisalAB1a
AdevoAB
IrihoAB1
IrihoA1
PangiAB
HeltuAB
SamniAB1a
CamsiA
PolmuAB1
MomchAB
MaldoAB
PruamA1
MomchA1
MomchA2
AbrprAB1
PanviAB1
ZeamaAB
GoshiAB
RiccoAg
BetvuA1
BetvuA5
BetvuA2
CleacA
PhyamA1
PhyamA6
SapofA1
PoptrA
MusamA1
AspofA1
OphjaA

Fig. 4 Preliminary phylogenetic analysis of a selected set of sequences of type 1 RIPs from dicots and

monocots other than Poaceae and the N-terminal domain (including signal peptide) of type 2 RIPs.

Only sequences relevant for the issue of the B domain loss origin of most dicot type 1 RIPs are

included
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5.2 Poaceae Type 1 RIPs

It has been known for more than a decade that many Poaceae species express

complex mixtures of type 1 RIPs. However, recent genome and transcriptome

sequencing data revealed that the complexity inferred from biochemical and molec-

ular analyses is still an underestimation of the total RIP gene complement. The

following examples illustrate the complexity of the RIP gene family in Poaceae.

5.2.1 O. sativa

In a recent study, Jiang et al. (2008) reported that the “RIP domain family” in

O. sativa comprises 31 different members. A careful reanalysis of the genome

indicated that six presumed RIP genes are pseudogenes or part of a transposon.

Moreover, at least three additional genes could be identified (which are not anno-

tated yet) yielding a total number of 28 genes. Phylogenetic analyses indicated that

the rice genes cluster in four major clades (Fig. 5) and confirmed the conclusion

drawn by Jiang et al. (2008) that the expansion of the RIP gene family is primarily

based on genome-wide duplications and to a lesser extent on tandem duplications.

Os01g06740
Os01g07300
Os02g05590
Os10g24050
Os03g47896
Os10g42060
Os03g47910
Os03g48200
Os03g48220
Os03g48235
Os03g48250
Os03g45120
Os03gX2
Os07g37090
Os03g43080
Os03g47460
Os03gX3
Os11gX1
Os07g09070
Os11g06460
Os11g06490
Os11g06630
Os08g03820
Os08g03900
Os09g03280
Os11g01290
Os12g07520
Os12g35010

Fig. 5 Phylogenetic analysis

of the Oryza sativa RIP

family. Several annotated

sequences have been

corrected. For Os11g06460

and Os11g06490 (which are

AD type chimers) sequences

corresponding to the A

domain were used
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5.2.2 Andropogoneae: Z. mays and Sorghum bicolor

Similar analyses indicated that the RIP gene family in the genomes of Z. mays and
S. bicolor is less extended than in O. sativa, but is still fairly complex. However,

unlike rice these two Andropogoneae species possess a genuine type 2 RIP gene

(Figs. 6–9). In addition, a set of two type AC chimeric genes occurs in the genome

of maize but not in that of sorghum. The dendrogram of the combined maize and

sorghum gene families consists of two major clades one of which comprises three

side branches. Apart from the maize AC type gene, all other types of genes are

present in both species but there are obvious differences in the number of genes in

Os08g03820
Os09g03280
ZeamaA31
TriaeA3a
Os11g01290
Os12g07520
ZeamaAC2a
ZeamaAC2b
AvebaAC2
Os01g06740
TriaeA1a
ZeamaA1
ZeamaA2
Os11g06460
Os11g06490
BracdiAD
TriaeA2
ZeamaA21
HorvuAC1
Os03g45120
Os03g47460
Os03gX3
Os03gX2
Os07g37090
Os11gX1
Os07g09070
Os02g05590
ZeamaA3
Os03g47896
Os03g47910
TriaeA4a
TriaeA4b
Os03g48220
Os03g48250
ZeamaAB

Fig. 6 Phylogenetic analysis of the RIP gene family within the family Poaceae. To reduce the

complexity of the dendrogram three limited sets of sequences from Triticum aestivum, Zea mays,
and Oryza sativa were combined
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each branch. This indicates that the expansion of the RIP gene family in maize and

sorghum was differentially affected by gene duplication.

5.2.3 Pooideae

Hitherto B. distachyon is the only Pooideae species for which a complete family of

RIP genes can be retrieved.2 The RIP gene family consists of four different type 1

and one type AD RIP gene and hence is far less complex than in rice, maize, and

sorghum.

Though no genomic data are available for any other Pooideae species the vast

amount of transcriptome data leave no doubt that, e.g., wheat and barley possess

extended RIP families. The same applies most probably to Secale cereale, Leymus
cinereus, Aegilops speltoides, and Pseudoroegneria spicata.

To corroborate the evolution of the RIP gene families within the Poaceae family

the overall phylogeny was analyzed using three sets of sequences from rice, maize,

and wheat, respectively. To reduce the complexity highly similar orthologs/para-

logs (clustering in a single branch or side branch) were omitted (except one or two).

As shown in Fig. 6, the dendrogram of the combined Poaceae sequences closely

resembles that of the rice RIP gene family except that a branch with a type 2 RIP is

introduced. This confirms the conclusion by Jiang et al. (2008) that the RIP gene

family has largely evolved in parallel to species evolution within the family

Poaceae. However, there seem to be important differences in what concerns the

contribution of tandem duplications in different representatives. Moreover some

species possess genes that are absent in others. For example, the type AB and AC

genes present in and expressed by the maize genome are definitely absent from the

rice genome. This finding indicates that the (still ongoing) evolution of the RIP gene

family within the family Poaceae is to a certain extent determined by gene loss.

5.2.4 Relationships between the RIPs from Poaceae and Other Seed Plants

Though the Poaceae type 1 RIPs are usually regarded as a separate group, one can

reasonably assume that they are somehow related to homologs from both other

monocots and dicots. Therefore, a phylogenetic analysis was made of the combined

sequences of type 1 RIPs from both dicots and all monocots (and supplemented

with the A domain of type 2 RIPs). According to the results shown in Fig. 7, the

issue of overall evolution of type 1 and type 2 RIP genes needs a thorough update.

All sequences, apart from an orphan sequence found in wheat, cluster in two clades.

One of these clades comprises all known dicot type 1 RIPs except that from poplar

and all type 2 RIP sequences, whereas the second clade groups all monocot type 1

2These sequence data were produced by the US Department of Energy Joint Genome Institute,

http://www.jgi.doe.gov/.
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RIPs and the poplar sequence. This overall pattern clearly indicates a double

phylogenetic origin. The second clade most probably represents a lineage that starts

with an ancestral type A gene and leads to the monocot and poplar genes (and hence

can be considered “primary type 1 RIPs” whereas the first clade represents a line of

“secondary” type 1 RIPs that are derived from the type 2 RIP lineage through

multiple B domain loss events.

Os08g03820
Os09g03280
ZeamaA31
TriaeA3a
ZeamaAB
BetvuA1
RiccoAa
RiccoAg
IrihoA1
IrihoAB1
CincaAB1
ElaguAB
RiccoABa
RicooABg
MomchA1
MomchAB
SamniAB1a
PolmuAB1
Os11g01290
Os12g07520
ZeamaAC2a
PoptrA
MusamA1
AspofA1
OphjaA
Os01g06740
TriaeA1a
ZeamaA1
Os11g06460
TriaeA2
ZeamaA21
HorvuAC1
Os02g05590
ZeamaA3
Os03g47896
Os03g48220
TriaeA4a
Os03g45120
Os03g47460
Os11gX1
Os07g09070
Os07g37090

Fig. 7 Phylogenetic analysis of all plant RIPs
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6 What is the Relationship between Plant and Bacterial RIPs?

Several bacterial species (and bacteriophages) possess genes encoding one or

more proteins with an RIP domain. Though it is generally accepted that the

bacterial and plant sequences have a common origin, the exact relationships

remain to be elucidated. Therefore, it seemed worthwhile to include the bacterial

proteins in the same dendrogram as the plant proteins (Fig. 8). Only a limited

number of bacterial proteins with an RIP domain have been identified. The best

known are the Shiga toxin A subunit and (closely) related proteins found in

Escherichia coli, Shigella sp., and some other Enterobacteria. All these proteins

can be considered homologs of plant type 1 RIPs. In addition, a larger chimeric

gene with an N-terminal RIP domain linked to an unrelated domain could be

identified in Micromonospora sp. When added to the set of plant sequences the

bacterial proteins do not cluster in a single prokaryotic clade but are placed at

different positions. For example, the A domain of the Micromonospora protein

forms a small side branch together with one of the type 1 RIP from wheat whereas

the other bacterial proteins represent two small side branches of the type 2 RIP

clade. Additional evidence against a monophyletic origin of the bacterial

sequences comes from the observation that the Micromonospora protein is not

retrieved by BLAST searches using, e.g., the Shiga toxin as a query, but is readily

detected with the Muscaria type 1 RIP sequence. This, taken together with the

narrow and patchly taxonomic distribution, makes it difficult to reconcile with a

prokaryotic origin and therefore strengthens the idea that a few bacteria acquired

the RIP domain by lateral transfer from a plant.

7 Chimeric RIPs Other Than Type 2 RIPs

Besides type 1 and type 2 RIPs two additional types of chimeric RIP proteins have

been identified in Poaceae species.

7.1 JIP60 and Other Type AC Chimeric RIPs

A chimeric RIP protein was isolated from jasmonate treated barley leaves

(Chaudhry et al. 1994). The so-called 60 kDa jasmonate-induced protein (JIP60)

consists of an N-terminal A domain fused to an unrelated domain with no known

function (which will further be referred to as the C domain) and was classified as a

type 3 RIP (or AC-type). Hitherto, no homologs have been isolated but genome and

transcriptome data revealed the occurrence of similar proteins in Z. mays and Avena
barbata. Since there is no evidence for the presence outside the family Poaceae, the

type AC RIP originated most likely within this family. To trace the origin of the RIP

domain of these AC proteins the sequences of their respective A domains were
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incorporated in a representative set of Poaceae type 1 RIPs for a phylogenetic

analysis. As shown in Fig. 9 the RIP domains of AC proteins do not form a separate

cluster but the A domain of HorvuAC (JIP60) and these from Z. mays/A. barbata
are divided over two major branches. Moreover, one of the maize proteins is

apparently more closely related to the oat homolog than to its conspecific paralog.
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MomchAB
SamniAB1a
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TriaeA2
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Os03g47896
Os03g48220
TriaeA4a
Os03g45120
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OphjaA
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Os11g01290
Os12g07520

Fig. 8 Phylogenetic analysis of combined plant and bacterial RIP sequences
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The overall shape of the dendrogram and the obvious phylogenetic anomaly (one

would expect that oat and barley cluster together) are indicative of two different

gene fusion events: one that led to the AC1 type (as in barley) and another that

yielded the oat and maize AC2 type. To check the presumed double origin a parallel

phylogenetic analysis was made of the C domains found in the AC chimers and

their parent genes. BLAST searches revealed that most but certainly not all Poaceae

species possess (expressed) genes encoding a protein equivalent to the C domain of

the type AC RIPs. For example, the C protein is found in wheat, barley, rice, maize,

and Panicum but is absent in the Sorghum genome. Homologs are also expressed

in other monocots (e.g., pineapple) and in some dicots (e.g., P. ginseng and

Theobroma cacao). A phylogenetic analysis of all these sequences confirms that

the barley type AC1 protein on the one hand and the maize and oat homologs on

the other hand result most probably from two independent domain fusion events.

The high sequence similarity between the barley AC1 protein and the C proteins

found in other Poaceae indicates that the JIP60 chimer arose in an evolutionary

recent past through a fusion event between a type 1 RIP gene of the TriaeA2 clade

and a C domain gene. Since there is no information about the presence or absence of

genuine JIP60 orthologs in other Poaceae, it is difficult to date the time point of the

fusion event, but it might have taken place (relatively) recently in an ancestral

Triticeae species. According to the dendrogram of the C domains, the origin of the

AC2 type goes much further back in the time. Moreover, the position of the AC2

proteins in the dendrogram shown in Fig. 9 suggests that a different type 1 RIP gene

was involved as in the fusion leading to the AC1 type chimer.

BradiAD
Os11g06460
Os11g06490
TriaeD
PsespD
LeyciD
TriaeC
LeyciC
ZeamaC
HorvuAC1
PanviC
OrysaC
HorvuC
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AvebaAC2
ZeamaAC2b
ZeamaAC2a
AnacoC
PangiC
ThecaCa
ThecaCb

Fig. 9 Phylogenetic analysis

of the C domain of the type

AC RIPs, the D domain of

type AD RIPs, and C and D

proteins
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7.2 Chimeric RIP with a C-terminal D Domain

BLAST searches in the B. distachyon database (http://www.brachybase.org)

yielded a (genomic) sequence sharing a high sequence similarity with the rice

proteins Os11g06460 and Os11g06490. A perfectly matching (but short) EST

sequence was retrieved indicating that the protein is expressed in Brachypodium.
A closer examination revealed that the Brachypodium protein contains, besides

an N-terminal RIP domain, a long terminal extension that shares a reasonably

high sequence similarity with an unidentified protein (further referred to as the

D protein) expressed in wheat, P. spicata, and L. cinereus. Using the Leymus D

sequence as a model the B. distachyon genomic sequence could be correctly

spliced. Once the exon–intron structure of the Brachypodum AD protein was

determined the genomic rice sequences encoding Os11g06460 and Os11g06490

were reanalyzed and spliced correctly. Both rice proteins share a high sequence

similarity with the Brachypodium AD chimer and comprise a C-terminal domain

equivalent to the D protein from Leymus. The latter protein is still unidentified but

shares sequence identity with the C proteins. For example, the C and D proteins

share 24% identity concentrated in several well conserved regions. Therefore, the

sequences of the AD chimers and the D proteins were included in the same

phylogenetic analysis as the AC chimers and sole C proteins (Fig. 9). According

to the dendrogram shown in Fig. 9 the A domain involved in the gene fusion leading

to the AD chimers belonged to the same clade as the one recruited for the formation

of the barley JIP60 AC1-type RIP. Given the occurrence of genuine orthologs in

Oryza and Brachypodium the origin of the AD type RIP predates the division of the

BEP clade into the Eahrhartoideae and Pooideae lineages.

8 Conclusions

The availability of novel genome and transcriptome data allowed updating the

molecular evolution of the RIP family in plants (Fig. 10). All evidence suggests

that the RIP domain itself was developed in plants before the Gnetophyta and

Magnoliophyta lineages diverged from a common ancestor. Then the ancestral RIP

domain followed two separate routes. A first route led directly to a subset of modern

type 1 RIPs (primary type 1 RIPs). The second route started with a fusion (also

before the Gnetophyta and Magnoliophyta lineages separated) of the RIP domain to

a sugar-binding domain, which might be acquired by lateral transfer from a

bacterium, and subsequently gave rise to (1) modern type 2 RIPs, (2) multiple

lines of (secondary) type 1 RIPs through several domain B deletion events and (3)

several lines of type B lectins through domain A deletion events. In many species,

the RIP genes were purged from the genome whereas other species developed a

whole set of RIP genes by gene and genome wide amplifications. Within the family

Poaceae the original type 1 RIPs gave rise to (1) a complex set of type 1 RIPs
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through multiple gene and genome amplifications and (2) at least two different

chimeric forms by two independent fusion events of a type 1 RIP to a C- and D-type

protein, respectively. All evidence suggests that in the family Poaceae the RIP gene
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Fig. 10 Overall scheme of evolution of the RIP family in plants based on documented occurrence

and phylogeny of type 1, type 2, and type AC and AD RIPs
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family is still evolving by different mechanisms. A final remark concerns the origin

of the bacterial RIP domain. Bacteria most probably did not develop their own RIP

domain but acquired it through (multiple) lateral gene transfers from a plant.
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