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Abstract

An averaging result is presented for local uniform asymptotic stability of nonlinear differential equations without requiring a
fast time-varying vectorfield. The nonlinearity plays a crucial role: close to the origin, the trajectories vary slowly compared
to the time dependence of the vectorfield. The result generalises averaging results which prove stability properties for systems
having a homogeneous vectorfield with positive order. The result is illustrated with several examples.
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1 Introduction

It is well known that a solution of a time-varying system
ẋ (t) = ε f (x (t) , t) may be approximated by the solu-
tion of the averaged system ẋ (t) = ε f (x (t)) on a large
time-scale for ε sufficiently small, [5,10,3]. The averaging
technique also provides a tool to investigate exponential
stability of an equilibrium of ẋ (t) = ε f (x (t) , t) for
ε sufficiently small i.e. exponential stability of the aver-
aged system ẋ (t) = ε f (x (t)) implies exponential sta-
bility of the original time-varying system [1,5]. In other
words, for ε sufficiently small, exponential stability of
the equilibrium point x = 0 of ẋ (t) = f (x (t)) implies
exponential stability of x = 0 of the original fast time-
varying system ẋ (t) = f(x(t), t/ε). Averaging results
are also available for nonsmooth systems when using
dither, where solutions of the averaged system (with re-
spect to dither frequency) approximate solutions of the
original system [4].

The averaging concept is useful not only in relation to
exponential stability, but also when investigating prac-
tical stability properties [9] and uniform asymptotic sta-
bility properties [8]. In [6,7] the averaging technique is
applied to homogeneous systems of order τ = 0. Homo-
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geneous systems with order τ > 0 can also be dealt with:
in [8], it is shown that asymptotic stability of the aver-
aged homogeneous system implies local uniform asymp-
totic stability of the original time-varying homogeneous
system without requiring that the original system is fast
time-varying.

In this paper, the averaging results discussed in [8] are
generalised. Under extra conditions on the differential
equation, but without requiring homogeneity of the sys-
tem, we will show that local asymptotic stability of the
averaged system implies local uniform asymptotic sta-
bility of the original time varying system. This origi-
nal time-varying system need not be fast time-varying.
Appropriate conditions on the vector field in terms of
class K functions imply the local uniform asymptotic
stability property without requiring a fast time-varying
vectorfield or homogeneity with order τ > 0. What is
needed is that, sufficiently close to the equilibrium point
x = 0, the trajectories are slowly varying compared to
the time dependence of the vectorfield. This is usually
accomplished through the introduction of a parameter ε
as indicated above; our main contribution is that in the
averaging approach the role played by εmay be assumed
by the vector field itself.

A number of different examples are included to illustrate
our main result and in particular to indicate how it is a
generalisation of the homogeneous result formulated in
[8].
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2 The main averaging result

Consider

ẋ (t) = f (x (t) , t) (1)
with f : W ×R+ → Rn, W is an open and convex set,
W ⊂ Rn. Let 0 ∈ W and f(0, t) = 0 for all t ∈ R+.
Furthermore, we assume that conditions are imposed on
(1) such that existence and uniqueness of its solutions
are secured (existence and uniqueness is a standard as-
sumption for all the systems considered in this paper).
The system (1) is time-periodic i.e. there exists a T > 0
such that for all x ∈W and for all t ∈ R+,

f (x, t) = f (x, t + T ) . (2)

For all x ∈W , define the averaged system as

ẋ (t) = f (x (t)) (3)

where for all x ∈W ,

f (x) =
1

T

∫ T

0

f (x, t) dt. (4)

We recall when a continuous function is said to belong
to class K or to class KL :

The continuous function α : [0, a)→ R+ (for some a >
0) is a class K function if it is strictly increasing and
α(0) = 0.

The continuous function β : [0, a)×R+ → R+ (for some
a > 0) is a class KL function if:

(1) for each fixed s, β(r, s) is a class K function in r
(2) for each fixed r, the function β(r, s) is decreasing in

s and β(r, s)→ 0 as s→ +∞.

The equilibrium x = 0 of (1) is locally uniformly asymp-
totically stable if there exists a class KL function β and
a positive constant c such that ∀t0 ≥ 0

‖x(t0)‖ < c⇒ ‖x(t)‖ ≤ β(x(t0), t− t0), ∀t ≥ t0. (5)

When for equation (3) there exists t0 ≥ 0 for which (5)
is true, then (5) is true ∀t0 ≥ 0: one says that the zero
equilibrium of (3) is locally asymptotically stable.

For the ε − δ definitions of local (uniform) asymptotic
stability, the reader is referred to [5].

From Liapunov theory we know that the equilibrium
point x = 0 of (3) is locally asymptotically stable when
there exists an open neighborhood U ⊂W of 0 and there

exists a Liapunov function V : U → R such that for all
x ∈ U :

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) , (6)

∂V

∂x
(x) f (x) ≤ −α3 (‖x‖) . (7)

Here, α1, α2, α3 : R+ → R+ are class K functions.

Main theorem: Assume that the following conditions
are satisfied:

• the equilibrium point x = 0 of the averaged system
(3) is locally asymptotically stable, equivalently: (6)
and (7) are satisfied,
• there exists a class K function α4 : R+ → R+ such
that for all x ∈ U∥∥∥∥∂V∂x (x)

∥∥∥∥ ≤ α4 (‖x‖) , (8)

• f is continuously differentiable with respect to x on
W for all t ∈ R+; furthermore: for all x ∈ W and for
all t ∈ R+

∥∥∥∥∂f∂x (x, t)

∥∥∥∥ ≤ α5 (‖x‖) , (9)

where, α5 : R+ → R+ is a class K function with the
additional property that sufficiently close to the origin
α5 (‖x‖ (1 + 2Tα5 (‖x‖))) ≤ 2α5 (‖x‖),

• the function

α6 (‖x‖) ,
α4 (‖x‖)α2

5 (‖x‖) ‖x‖
α3 (‖x‖)

(10)

is a class K function (α6(0) , 0).

Then the equilibrium point x = 0 of the original system
(1) is locally uniformly asymptotically stable.

The three remarks that follow aim to assess the meaning
and significance of condition (9) and (10), and discuss
why conditions (9) and (10) are not compatible with
linear systems.

Remark 1: In order to conclude that local asymptotic
stability of the equilibrium point of the averaged sys-
tem (3) implies local uniform asymptotic stability of
the equilibrium point of the original system (1) with-
out requiring a fast time-varying vectorfield, conditions
(9) and (10) are crucial. Condition (9) implies that suf-
ficiently close to the equilibrium point, the trajectories
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vary slowly in time, compared to the time-dependence
of the vectorfield. Condition (9) generalises the homoge-
neous conditions proposed in [8] where a positive order
τ > 0 is required. Condition (10) is more technical and
plays a crucial role in part VI of the proof.

Remark 2: We discuss the feasibility of the tech-
nical condition that sufficiently close to the origin
α5 (‖x‖ (1 + 2Tα5 (‖x‖))) ≤ 2α5 (‖x‖). In case α5 is
continuously differentiable, it is possible to prove this
technical condition using the mean value theorem. By
continuous differentiability, α′5 is bounded on every ar-
bitrary compact set [ 0, r ]. The mean value theorem im-
plies the existence of a z ∈ (‖x‖ , ‖x‖ (1 + 2Tα5 (‖x‖)))
such that

α5 (‖x‖ (1 + 2Tα5 (‖x‖))) =
α5 (‖x‖) + 2Tα5 (‖x‖) ‖x‖α′5 (z) . (11)

Starting with a fixed r, suppose M is an upper bound
for |α′5| on [ 0, r ]. Taking ‖x‖ sufficiently small such that
‖x‖ (1 + 2Tα5 (‖x‖)) < r, one obtains that |α′5 (z) | ≤
M . With the additional condition that ‖x‖ ≤ 1/2TM
such that 2Tα5 (‖x‖) ‖x‖ |α′5 (z) | ≤ α5 (‖x‖), the tech-
nical condition is satisfied.

Example 1 (see (82)) and Example 2 (see (94)) also il-
lustrate the feasibility of this technical condition.

Remark 3: For a linear system and using a quadratic
Liapunov function V , α3 is a quadratic function and
α4 is a linear function. Condition (9) is not satisfied
since ∂f/∂x is nonzero at the origin. By replacing α5 in
(9) by a constant bound, also expression (10) does not
provide a class K function (one obtains a constant). The
main theorem does not prove stability properties: linear
systems require fast time-varying vectorfields in order to
obtain averaging results [1,5].

Outline of the proof:

First, an appropriate change of variables (21) is defined.
This leads to the system (26) in y which is equivalent
with the original system (1) in x. Since (26) may be
seen as a perturbation of the averaged system (3), the
Liapunov function V is invoked to prove local uniform
asymptotic stability of the equilibrium point of (26).
Formulating this stability property in terms of class KL
functions, and since the change of variables (21) defines
a one-to-one relationship, also the evolution of the tra-
jectories of (1) are bounded by class KL functions. This
implies local uniform asymptotic stability of the equilib-
rium point of (1).

Proof:

I: Preliminary definitions and some useful bounds

For all y ∈W and for all t ∈ R+ define

h (y, t) , f (y, t)− f (y) (12)

and

u (y, t) ,
∫ t

0

h (y, τ) dτ =

∫ t

0

(
f (y, τ)− f (y)

)
d τ .

(13)

Since h(y, t) is T -periodic in t and has zero mean, u(y, t)
is also T -periodic. Indeed, for all t ∈ R+ there exists a
n ∈ N such that 0 ≤ t− nT < T and

u (y, t) =

∫ nT

0

h (y, τ) dτ +

∫ t

nT

h (y, τ) dτ =∫ t

nT

h (y, τ) dτ. (14)

Moreover, u(y, t) is continuous in t.

We first establish some inequalities to be used later on.
Expression (9) and (Lemma 3.1 on pp. 89-90 of [5]) imply
that for all y1, y2 ∈W (W is convex) and for all t ∈ R+

‖f (y1, t)− f (y2, t)‖ ≤
max (α5 (‖y1‖) , α5 (‖y2‖)) ‖y1 − y2‖ . (15)

Indeed, the time-periodic ∂f
∂x exists and is continuous

on the line segment Ly1y2 defined as {αy1 + (1− α)y2 :
α ∈ [0, 1]}. For all y ∈ Ly1y2 ⊂ W , there ex-
ists an α ∈ [0, 1] such that ‖y‖ ≤ α‖y1‖ + (1 −
α)‖y2‖ ≤ max(‖y1‖, ‖y2‖). From (9), this implies
that ‖∂f∂x (x, t)‖|x=y ≤ max(α5(‖y1‖), α5(‖y2‖)) for all
y ∈ Ly1y2 , implying (15).

From (15), one obtains that ‖ f (y, t) ‖≤ α5 (‖ y ‖) ‖ y ‖
for all y ∈W and for all t ∈ R+, implying that

∥∥f (y)∥∥ ≤ 1

T

∫ T

0

‖f (y, τ)‖ dτ ≤

1

T

∫ T

0

α5 (‖ y ‖) ‖y‖ dτ ≤ α5 (‖y‖) ‖y‖ . (16)

From (4) and (9), one obtains that for all y ∈W∥∥∥∥∂ f∂ y (y)

∥∥∥∥ ≤ 1

T

∫ T

0

∥∥∥∥∂f∂y (y, t)

∥∥∥∥ dt ≤
1

T

∫ T

0

α5 (‖y‖) dt = α5 (‖y‖) . (17)

Let n ∈ N be such that 0 ≤ t − nT < T . From (13),
(14), (15) and (16), one obtains that for all y ∈ W and
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for all t ∈ R+

‖u (y, t)‖ ≤
∫ t

nT

(
‖f (y, τ)‖+

∥∥f (y)∥∥) dτ ≤ 2Tα5 (‖y‖) ‖y‖ .

(18)
From (14) one obtains for all y ∈ W and for all t ∈ R+

that

∂u

∂y
(y, t) =

∫ t

nT

(
∂f

∂y
(y, τ)− ∂f

∂y
(y)

)
dτ (19)

and therefore, invoking (9) and (17),

∥∥∥∥∂u∂y (y, t)

∥∥∥∥ ≤ ∫ t

nT

(∥∥∥∥ ∂f∂ y (y, τ)

∥∥∥∥+ ∥∥∥∥∂f∂y (y)

∥∥∥∥) dτ ≤
2Tα5 (‖y‖) . (20)

II: System (1) with a change of variables

With u(y, t) defined in (13), consider the change of vari-
ables

x = y + u (y, t) . (21)
Using this change of variables, the system (1) in x will
be equivalent with (26) in y. Since (26) may be seen as a
perturbation of the averaged system (3), the Liapunov
function V may be used to prove local uniform asymp-
totic stability of the equilibrium point of (26).

Consider the continuous strictly increasing function α7 :
R+ → R+ with α7(r) = r(1 + 2Tα5(r)) for all r ∈ R+.
Take a radius r1 sufficiently small such that the open
ball with centre 0 and radius α7(r1) is a subset of W
(Bα7(r1)(0) ⊂ W ). For each y ∈ Br1(0) ⊂ Bα7(r1)(0) ⊂
W and for all t ∈ R+, y + u(y, t) exists and

‖y + u (y, t)‖ ≤ ‖y‖+ 2T α5 (‖y‖) ‖y‖ = α7 (‖y‖) .
(22)

Then for all t ∈ R+ we consider the change of variables
x = y + u (y, t) for all y ∈ Br1 (0): y ∈ Br1(0) implies
that x ∈ Bα7(r1)(0) ⊂W .

Part VII of the proof will study (21) in more detail
showing that (21) is indeed a change of variables and
defines a one-to-one relationship.

By differentiating both sides of (21) with respect to t,
one obtains that for all y ∈ Br1 (0)

ẋ = ẏ +
∂u

∂ t
(y, t) +

∂u

∂ y
(y, t) ẏ. (23)

Since

ẋ (t) = f (x (t) , t) = f (y (t) + u (y (t) , t)) , (24)

it is possible (for all y ∈ Br1(0)) to rewrite (23) as[
I +

∂u

∂ y
(y, t)

]
ẏ = f (y + u (y, t) , t)− ∂u

∂t
(y, t) ,

(25)[
I +

∂ u

∂ y
(y, t)

]
ẏ = f (y + u (y, t) , t)− f (y, t)+ f (y) .

(26)

III: Some useful expressions

In order to prove that the derivative of the Liapunov
function V along the trajectories of (26) is negative def-
inite, we first consider some inequalities to be used later
on.

Expression (20) implies the existence of a strictly posi-
tive r2 ≤ r1 such that for all y with ‖ y ‖< r2 (the open
ball Br2(0) is sufficiently small: Br2(0) ⊂ Br1(0) ⊂ W
and Br2(0) ⊂ U ⊂W ), the matrix

I +
∂ u

∂ y
(y, t) (27)

is nonsingular and its norm satisfies

0 < 1− 2Tα5(r2) < 1− 2Tα5 (‖y‖) ≤

1−
∥∥∥∥∂u∂y (y, t)

∥∥∥∥ ≤ ∥∥∥∥I + ∂u

∂y
(y, t)

∥∥∥∥ . (28)

Here r2 < α−15 ( 1
2T ). Moreover, assuming y ∈ Br2(0), it

can be verified by computation that

[
I +

∂ u

∂y
(y, t)

]−1
=

I −

[
∂u

∂y
(y, t)−

(
∂u

∂y
(y, t)

)2(
I +

∂u

∂ y
(y, t)

)−1]
(29)

and therefore (with (28))

∥∥∥∥∥∂ u∂ y (y, t) −
(
∂ u

∂ y
(y, t)

)2 (
I +

∂ u

∂ y
(y, t)

)−1∥∥∥∥∥ ≤
2Tα5 (‖y‖)

1− 2Tα5 (‖y‖)
. (30)

Even if (27) is a nonsingular matrix, the right hand side
of (30) may be large in case 2Tα5(‖ y ‖) approaches 1.
Since T is finite and α5 : R+ → R+ is a classK function,
by taking a r3 ≤ r2 sufficiently small 2Tα5(‖ y ‖) can
be made arbitrary small when ‖y‖ < r3. In case 2Tα5(‖
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y ‖) ≤ 0.5, for all y with ‖ y ‖< r3, one obtains that∥∥∥∥∥∂ u∂ y (y, t) −
(
∂ u

∂ y
(y, t)

)2 (
I +

∂ u

∂ y
(y, t)

)−1∥∥∥∥∥ ≤
4Tα5 (‖y‖) . (31)

IV: The evolution of the Liapunov function V
along the transformed system

In order to investigate local uniform asymptotic stabil-
ity properties, the evolution of the Liapunov function
V along the trajectories of the system described by the
differential equation (26) is crucial. This leads to the ex-
pression (for all y ∈ Br2(0) ⊂ (Br1(0) ∩ U))

∂V

∂y
(y) ẏ =

∂V

∂y
(y)

[
I +

∂u

∂y
(y, t)

]−1
.
[
f (y + u (y, t) , t)− f (y, t) + f (y)

]
. (32)

Defining

v (y, t) ,
∂u

∂ y
(y, t)−

(
∂u

∂ y
(y, t)

)2(
I +

∂u

∂ y
(y, t)

)−1
(33)

and invoking (29), we rewrite (32) as (when y ∈ Br2(0)),

∂V

∂y
(y) ẏ =

∂ V

∂y
(y) f (y) + E1 (y, t) + E2 (y, t) (34)

with
E1 (y, t) , −

∂V

∂ y
(y) v (y, t) f (y) , (35)

E2 (y, t) ,
∂V

∂ y
(y) (I − v (y, t)) (f (y + u, t)− f (y, t)) .

(36)
This implies by (7) that for all y ∈ Br2(0)

∂V

∂ y
(y) ẏ ≤ −α3 (‖y‖)+‖E1 (y, t)‖+‖E2 (y, t)‖ . (37)

V: Upper bounds for ‖ E1(y, t) ‖ and ‖ E2(y, t) ‖

In order to prove that the right hand side of inequality
(37) is negative definite, we introduce upper bounds for
‖ E1(y, t) ‖ and ‖ E2(y, t) ‖ that are sufficiently small.

From (8), (31) and (16) one obtains that for all y with
‖ y ‖< r3

‖E1 (y, t)‖ ≤ 4T α4 (‖y‖) α2
5 (‖y‖) ‖y‖ (38)

and that

‖E2 (y, t)‖ ≤
α4 (‖y‖) (1 + 4T α5 (‖y‖)) ‖f (y + u, t)− f (y, t)‖ .

(39)

Since for all y with ‖ y ‖< r3, 2Tα5(‖ y ‖) ≤ 0.5 and
one obtains using (15) that

‖E2 (y, t)‖ ≤ 2α4 (‖y‖) α5 (max (‖y‖ , ‖y + u‖)) ‖u‖ .
(40)

From (18) and (22), (40) can be rewritten as (for all y
with ‖ y ‖< r3)

‖E2 (y, t)‖ ≤ 4Tα4 (‖y‖) .
.α5 (‖y‖ (1 + 2Tα5 (‖y‖)))α5 (‖y‖) ‖y‖ (41)

It is possible to choose r4(r4 ≤ r3) sufficiently small
implying that for all y with ‖ y ‖< r4

α5 (‖y‖ (1 + 2Tα5 (‖y‖))) ≤ 2α5 (‖y‖) . (42)
This implies that for all y with ‖ y ‖< r4

‖E2 (y, t)‖ ≤ 8T α4 (‖y‖) α2
5 (‖y‖) ‖y‖ . (43)

VI: Uniform asymptotic stability in the new co-
ordinates

We are now ready to prove that the equilibrium point of
(26) (the system obtained after performing the change
of variables) is locally uniformly asymptotically stable
by proving that the right hand side of (37) is negative
definite. By combining (37), (38) and (43), one obtains
that for all y with ‖ y ‖< r4

∂V

∂ y
(y) ẏ ≤ −α3 (‖y‖) + 12Tα4 (‖y‖)α2

5 (‖y‖) ‖y‖ .

(44)
∂V

∂ y
(y) ẏ ≤ −α3 (‖y‖) (1− 12Tα6 (‖y‖)) . (45)

A crucial role is played by the technical assumption (10)
on α6: since α6 is a class K function, it is possible to
choose a r5 (r5 < r4) such that for all y with ‖ y ‖≤r5

α6 (‖y‖) ≤
1

24 T
(46)

and
∂V

∂ y
(y) ẏ ≤ −0.5α3 (‖y‖) . (47)

Expression (47) implies local uniform asymptotic stabil-
ity of the equilibrium point y = 0 of the system (26)
with differential equation
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ẏ =

[
I +

∂ u

∂ y
(y, t)

]−1 (
f (y + u (y, t) , t)− f (y, t) + f (y)

)
.

(48)

Since (47) is satisfied for all y with ‖ y ‖≤r5, it follows
that ‖ y(t, t0, y0) ‖≤ r5 for all t0 ∈ R+, for all t ≥ t0 and
for all y0 with ‖y0‖ ≤ r6 = α−12 (α1 (r5)). Moreover,
there exists a class KL function β such that for all y0
with ‖ y0 ‖≤ r6 = α−12 (α1 (r5)), for all t0 ∈ R+and for
all t ≥ t0 ([5], p. 152, Theorem 4.9),

‖ y (t, t0, y0) ‖≤ β (‖ y0 ‖, t− t0) ; (49)

y(t, t0, y0) denotes the solution of the differential equa-
tion (26) (i.e. (48)) at t with initial condition y0 at t0 (or
y(t) for short). The function β : [0, a)×R+ → R+ (for
some a > 0) is a class KL function.

VII: The function x = y + u(y, t) defines a one-to-
one relationship locally

With the help of transformation (21), we will show that
local uniform asymptotic stability of y = 0 of (26) (i.e.
(48)) implies local uniform asymptotic stability of x = 0
of (1). In order to prove that the evolution of all the
trajectories of (1) are bounded by class KL functions, it
is sufficient to show that

• there exists a neighbourhood of x = 0 such that for all
x0 in this neighbourhood and for all t0 there exists a
unique y0 such that x0 = y0+u(y0, t0) (see the current
part VII of the proof)
• the trajectory y (t, t0, y0) of (26) (i.e. (48)) starting at
y0 at t0 corresponds with the trajectory x (t, t0, x0) of
(1) (see part VIII of the proof)
• the boundedness of ‖ y (t, t0, y0) ‖ by a class KL func-
tion implies boundedness of ‖ x (t, t0, x0) ‖ by a class
KL function (see part VIII of the proof).

Consider the function described by x = y+u(y, t). Since
f(y, t) is continuously differentiable with respect to y,
the functions f(y), h(y, t) and u(y, t) are also continu-
ously differentiable with respect to y (for each fixed t).
These continuous differentiability properties hold in W
and therefore also in the open ball Br2(0) and the open
ball Br5(0). Notice that 0 + u(0, t) = 0 for all t ∈ R+.

We now prove that x = y + u(y, t) defines a one-to-one
relationship. It is clear that every y and every t define
one x; we will also prove that each x and t define one y.
First we show that to each x and t there corresponds at
least one y.

Expression (27) is the Jacobian matrix of y + u(y, t),
which is nonsingular in Br2(0); the Jacobian determi-
nant (i.e. the determinant of (27)) is nonzero for all y in
Br2(0).

Using (21) and (18), for all y ∈ Br2(0) and for all t ∈ R+

‖y‖ (1− 2Tα5 (‖y‖)) ≤ ‖y + u (y, t)‖ ≤
‖y‖ (1 + 2Tα5 (‖y‖)) . (50)

For all y with ‖ y ‖<r3, 2T α5 (‖y‖) ≤ 0.5which implies
that for all t ∈ R+ and for all ‖ y ‖< r3 ≤ r2

0.5 ‖y‖ ≤ ‖y + u (y, t)‖ ≤ 1.5 ‖y‖ . (51)

Since r6 ≤ r5 < r4 ≤ r3, this implies that ‖ y+ u(y, t) ‖
is strictly positive on Sr6(0) (defined as the set of all
y with ‖ y ‖= r6). The minimum of the continuous
function ‖ y+u(y, t) ‖ on the compact set Sr6(0) equals
m(t) and m(t) ≥ 0.5r6 > 0 for all t ∈ R+.

Consider now the open ballB0.25r6(0)with radius 0.25r6.
We will prove that for each point x ∈ B0.25r6(0) and for
each t, there exists a point y ∈ (Br6(0) ∪ Sr6(0)) such
that x = y + u(y, t).

Choose x ∈ B0.25r6(0) (and keep x fixed). Define for
each y ∈ (Br6(0) ∪ Sr6(0)) and for every t ∈ R+, the
real valued function

k (y, t) = ‖y + u (y, t)− x‖ . (52)

Notice that for every t ∈ R+ the function k(y, t) is con-
tinuous in y and attains a minimum on the compact set
(Br6(0) ∪ Sr6(0)). We will show that for every t, k(y, t)
attains this minimum somewhere in Br6(0). At y = 0,
we have k(0, t) =‖ x ‖< 0.25r6 ≤ m(t)/2. This implies
that the minimum of k(y, t)must be strictly smaller than
0.25r6 ≤ m(t)/2. At each point y of Sr6(0), using (52)
we have

k (y, t) ≥ ‖y + u (y, t)‖ − ‖x‖ >
‖y + u (y, t)‖ − 0.25r6 ≥ 0.25r6. (53)

Since the minimum of k(y, t) onBr6(0) is strictly smaller
than 0.25r6 and since the minimum of k(y, t) on Sr6(0) is
≥ 0.25r6, the minimum of k(y, t) on Br6(0)∪Sr6(0) will
be attained in Br6(0). Hence, there is an interior point
c in Br6(0) at which k(y, t) attains its minimum which
we will prove to be equal to 0. At this point, k2(y, t) has
also a minimum with

k2 (y, t) = ‖y + u (y, t)− x‖2 =

n∑
r=1

(yr + ur (y, t)− xr)2 .

(54)
Since each partial derivative of k2(y, t) must be zero at
c, it follows that for each k ∈ {1, ..., n} ([2], p. 370)

2

n∑
r=1

∂ (yr + ur (y, t))

∂ yk
(yr + ur (y, t)− xr)

∣∣∣∣
y=c

= 0 .

(55)
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Since (55) is a system of linear equations with nonzero
determinant (i.e. the non-singular Jacobian determinant
of y + u (y, t)), one obtains that

(yr + ur (y, t)− xr) |y=c = 0 (56)

for each r. This implies that c+ u (c, t) = x. This estab-
lishes that for every x ∈ B0.25r6(0) and for every t, there
exists an y ∈ Br6(0) such that y + u(y, t) = x.

We now show that there is only one y satisfying this
condition. Suppose there exists a y1 ∈ Br6(0) and a
different y2 ∈ Br6(0) such that x = y1 + u(y1, t) =
y2 + u(y2, t). This implies that

0 = y1 − y2 + u (y1, t)− u (y2, t) (57)

and by (13)

‖y1 − y2‖ = ‖u (y1, t)− u (y2, t)‖ ≤∥∥∥∥∫ t

0

(
(f (y1, τ)− f (y2, τ))−

(
f (y1)− f (y2)

))
dτ

∥∥∥∥ .
(58)

Using (15), this implies that

‖y1 − y2‖ ≤ 2T max (α5 (‖y1‖) , α5 (‖y2‖)) ‖y1 − y2‖ ≤
2Tα5 (r6) ‖y1 − y2‖ . (59)

Since r6 ≤ r5 < r4 ≤ r3, 2Tα5 (r6) ≤ 0.5 leading to the
contradiction ‖y1 − y2‖ ≤ 0.5 ‖y1 − y2‖ . So, for every
t ∈ R+ and x ∈ B0.25r6(0), there exists one and only one
y ∈ Br6(0) such that y + u(y, t) = x. This implies y +
u(y, t) = x indeed defines a one-to-one relation locally.

VIII: Uniform asymptotic stability of the original
system (1)

Formulating the local uniform asymptotic stability prop-
erty of the equilibrium point of (26) using class KL func-
tions, it is now possible to prove that also the evolution
of the trajectories of (1) are bounded by class KL func-
tions. This implies local uniform asymptotic stability of
the equilibrium point of (1). More precisely, it is suffi-
cient

• to show that the trajectory y (t, t0, y0) of (26) (i.e.
(48)) starting at y0 at t0 corresponds with the trajec-
tory x (t, t0, x0) of (1)
• to show that boundedness of ‖ y (t, t0, y0) ‖ by a class
KL function implies boundedness of ‖ x (t, t0, x0) ‖ by
a class KL function.

First, with an arbitrary x0 ∈ B0.25r6(0) and t0 ∈ R+,
there corresponds one and only one y0 ∈ Br6(0)
such that y0 + u(y0, t0) = x0. Consider the tra-
jectory y(t, t0, y0) of (26) (i.e. (48)) satisfying (49)

with ‖y (t, t0, y0)‖ ≤ r5 < r3 ≤ r1 implying that
2Tα5 (‖y (t, t0, y0)‖) ≤ 0.5. The transformation (21) de-
fines a corresponding function y(t, t0, y0)+u(y(t, t0, y0), t).
Taking its derivative with respect to time and using
(26), one verifies that y(t, t0, y0) + u(y(t, t0, y0), t) =
x(t, t0, x0) where x(t, t0, x0) is a solution of (1).

Secondly, from (21) and (18), for all y ∈ Br2(0) with the
corresponding x

‖y‖ (1− 2Tα5 (‖y‖)) ≤ ‖x‖ ≤ ‖y‖ (1 + 2Tα5 (‖y‖)) .
(60)

Since 2T α5 (‖y (t, t0, y0)‖) ≤ 0.5 in case ‖y (t, t0, y0)‖ ≤
r5, one obtains that

0.5 ‖y (t, t0, y0)‖ ≤ ‖x (t, t0, x0)‖ ≤ 1.5 ‖y (t, t0, y0)‖ .
(61)

Relying on the state transformation (21), the conditions
(49) and (61) imply that the solution of the system (1)
satisfies the inequality

‖x (t, t0, x0)‖ ≤ 1.5β (2 ‖x0‖ , t− t0) . (62)

The inequality (62) is valid for all t0 ∈ R+, for all t ≥ t0
and for all x0 with ‖x0 ‖< 0.25r6. Since the right hand
side of (62) is a class KL function, (62) implies local
uniform asymptotic stability of the equilibrium point
x = 0 of the system (1).

3 The main application and examples

In this section we introduce a class of systems fitting
the assumptions of the main theorem. This in turn leads
to a number of examples. There is no homogeneity as-
sumption, neither is there any assumption on the time-
variance of the vectorfield.

Consider the time-varying periodic system

ẋ (t) = f1 (x (t) , t) (63)

which satisfies the properties listed for (1), except for
(9).

For all x ∈W , define the averaged system

ẋ (t) = f1 (x (t)) (64)

where

f1 (x) =
1

T

∫ T

0

f1 (x, t) dt. (65)

Assume that f1 is continuously differentiable with re-
spect to x and the Jacobian matrix [∂f1/∂x] is bounded
onW , uniformly in t. Then also f1 is continuously differ-
entiable with respect to x onW and its Jacobian matrix[
∂f1/∂x

]
is bounded on W .
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The equilibrium point x = 0 of the averaged system (64)
is assumed to be exponentially stable. Let k1, λ1 and r1
be positive constants. The open ball Bk1r1(0) ⊂W . For
all x0 ∈ Br1(0), for all t0 ∈ R+ and for all t ≥ t0, the
trajectories of (64) satisfy

‖x (t, t0, x0)‖ ≤ k1 ‖x0‖ e−λ1(t−t0). (66)

It follows from a Liapunov converse theorem ([5], The-
orem 4.14), that there exists a Liapunov function V :
Br1(0)→ R such that

c1 ‖x‖2 ≤ V (x) ≤ c2 ‖x‖2 , (67)

∂V

∂x
(x) f1 (x) ≤ − c3 ‖x‖

2
, (68)∥∥∥∥∂V∂x (x)

∥∥∥∥ ≤ c4 ‖x‖ , (69)

for some strictly positive constants c1, c2, c3 and c4.

3.1 Main Application

Consider a continuous positive definite function
h : W → R for which there exist class K functions
αh1, αh2 : R+ → R+ such that for all x ∈W :

αh1 (‖x‖) ≤ h (x) ≤ αh2 (‖x‖) . (70)

Moreover, assume there exists a strictly positive con-
stant c5 such that for all x ∈W ,∥∥∥∥∂h∂x (x)

∥∥∥∥ . ‖x‖ ≤ c5 αh2 (‖x‖) . (71)

Assume further that αh2 : R+ → R+ has the ad-
ditional property that sufficiently close to the origin
αh2 (‖x‖ (1 + 2T αh2 (‖x‖))) ≤ 2αh2 (‖x‖). For all
x ∈ W and for all t ∈ R+, define the time-varying
system

ẋ (t) = f2 (x (t) , t) , h (x (t)) f1 (x (t) , t) . (72)

We assume that h (x) f1 (x, t) is continuously differen-
tiable with respect to x on W for all t ∈ R+.

Assume that

‖x‖ 7→ α2
h2 (‖x‖)
αh1 (‖x‖)

(73)

is a class K function.

Typical candidates for h are h(x) = xTPx, h(x) =
‖x‖g(x) or h(x) = ‖x‖β with β constant. This will be
discussed in more detail in the following sections.

We will show—based on the main theorem and the ex-
istence of a Liapunov function V—that the equilibrium

point x = 0 of the differential equation (72) is locally
uniformly asymptotically stable.

Proof:

The system (72) is time-periodic with period T . Invoking
V , we will first prove asymptotic stability of the origin of

ẋ (t) = f2 (x (t)) , h (x (t)) f1 (x (t)) (74)

which is the averaged system of (72). The Liapunov func-
tion V satisfies (6) and (7). By setting U = Br1(0),
α1 (‖x‖) = c1 ‖x‖2 and α2 (‖x‖) = c2 ‖x‖2, (6) is sat-
isfied. Using (68)

∂V

∂x
(x) .h (x) .f1 (x) ≤ −c3 h (x) ‖x‖

2 ≤ −c3 αh1 (‖x‖) ‖x‖2

(75)
and by setting α3 (‖x‖) = c3 αh1 (‖x‖) ‖x‖2 with U =
Br1(0) (7) is satisfied. This implies asymptotic stability
of the equilibrium point of (74).

We will now verify conditions (8), (9) and (10) which
implies local uniform asymptotic stability of the equilib-
rium point of (72) because of the main theorem.

Considering (69) with U = Br1(0), (8) is satisfied by set-
ting α4 (‖x‖) = c4 ‖x‖. Since f2 (x, t) = h (x) f1 (x, t)
is continuously differentiable with respect to x onW for
all t ∈ R+,∥∥∥∥∂f2∂x (x, t)

∥∥∥∥ ≤ ∥∥∥∥∂h∂x (x)

∥∥∥∥ . ‖f1 (x, t)‖+‖h (x)‖ .∥∥∥∥∂f1∂x (x, t)

∥∥∥∥ .
(76)

Since f1 is continuously differentiable with respect to x
and the Jacobian matrix is bounded onW , uniformly in
t, there exists a bound c6 > 0 such that for all x ∈ W
and for all t ∈ R+:∥∥∥∥∂f1∂x (x, t)

∥∥∥∥ ≤ c6. (77)

Then ( cfr. Lemma 3.1 on pp. 89-90 [5]), one obtains
that for all x ∈W and for all t ∈ R+ that ‖f1 (x, t)‖ ≤
c6 ‖x‖. From (76), together with (70) and (77), one ob-
tains that∥∥∥∥∂f2∂x (x, t)

∥∥∥∥ ≤ ∥∥∥∥∂h∂x (x)

∥∥∥∥ c6 ‖x‖ + c6 αh2 (‖x‖) . (78)

From (71), the following is true on W∥∥∥∥∂f2∂x (x, t)

∥∥∥∥ ≤ c6 (1 + c5) αh2 (‖x‖) , (79)

such that (9) is satisfied by taking α5 (‖x‖) =
c6 (1 + c5)αh2 (‖x‖). This definition implies that suffi-
ciently close to the origin α5 (‖x‖ (1 + 2T α5 (‖x‖))) ≤
2α5 (‖x‖).
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Finally (with an appropriate choice of c7 > 0),

α4 (‖x‖) α2
5 (‖x‖) ‖x‖

α3 (‖x‖)
= c7

α2
h2 (‖x‖)
αh1 (‖x‖)

(80)

such that also (10) is satisfied. This is based on the prop-
erty that (73) is a class K function.

All the conditions required by the main theorem are sat-
isfied; therefore the equilibrium point x = 0 of (72) is
locally uniformly asymptotically stable.

Remark 4: The main application requires the time-
varying system (63) to have an averaged system (64)
with a locally exponentially stable equilibrium point.
The positive definite function h satisfying (70) and (71)
is crucial: it guarantees that close to the equilibrium
point, trajectories of (72) are slowly varying in com-
parison with the vectorfield itself. Actually, h plays a
role similar to the role played by the parameter ε in the
proof that exponential stability of the averaged system
ẋ (t) = ε f (x (t)) implies exponential stability of the
original time-varying system ẋ (t) = ε f (x (t) , t) [1,5].
Notice that because of (70), this classical case is not cov-
ered by the main application, since a constant ε does
not qualify as a particular case of h. This implies also
that e.g. the pendulum discussed in [5], example 10.10,
is not covered by the results presented in this paper. The
reader is referred to Remark 3 for a related remark.

Remark 5: Although extensions relaxing (71) and (73)
may be possible, some constraints will be required. No-
tice that by (70) and (73), the upper and lower bounds
of h are related. This defines a sector constraining h.
Within this sector, (71) imposes additional restrictions
on h by putting constraints on its derivative.

Remark 6: The formulation and proof of the main ap-
plication involve three different systems. First, exponen-
tial stability of (64) implies asymptotic stability of the
time invariant system (74). Since (74) is the averaged
system of (72), local uniform asymptotic stability of the
original time-varying system (72) follows from the main
theorem. Notice that the vectorfield (72) is not fast time-
varying.

3.2 Nonhomogeneous examples

In this section we discuss some examples, obtained as
special cases of the main application presented in the
previous section. They correspond to a specific choice of
h. Notice that the vectorfields involved are not homo-
geneous: their stability properties cannot be established
based on the results presented in [8].

Example 1: Consider the time-varying periodic system
(63) defined in the previous section. The averaged sys-
tem (64) is supposed to satisfy all the conditions required

in the previous section and has an exponentially stable
equilibrium point at the origin. Consider for all x ∈ W
the quadratic function xTPx, with P a positive definite
matrix. Choose h (x) = xTP x, then equation (72) be-
comes for all x ∈W and for all t ∈ R+

ẋ (t) = f2 (x (t) , t) = x (t)
T
P x (t) f1 (x (t) , t) . (81)

Local uniform asymptotic stability of the equilibrium
point x = 0 of (81) follows from the main application.

Proof:

The conditions imposed by the main application are sat-
isfied. Taking αh1 (‖x‖) = λmin (P ) ‖x‖2, αh2 (‖x‖) =
λmax (P ) ‖x‖2, (70) is satisfied. Expression (71) is satis-
fied with c5 = 2.

Since αh2 (‖x‖) = λmax (P ) ‖x‖2, it follows that
αh2 (‖x‖ (1 + 2Tαh2 (‖x‖))) ≤ 2αh2 (‖x‖) with

‖x‖ ≤

√ √
2 − 1

2T λmax (P )
. (82)

The conditions imposed on f1 (x, t) imply that xTPxf1 (x, t)
is continuously differentiable with respect to x onW for
all t ∈ R+. Since

α2
h2 (‖x‖)
αh1 (‖x‖)

=
λ2max (P )

λmin (P )
‖x‖2 (83)

is a class K function, local uniform asymptotic stability
of the equilibrium point x = 0 of (81) follows from the
main application.

Example 2: Consider the nonhomogeneous time-
varying system

ẋ (t) = A (t) x (t) ‖x (t)‖g(x(t)) (84)

defined on some open and convex subset W ⊂
B1(0)⊂ Rn (0 ∈ W ). The exponent g is continu-
ously differentiable with respect to x on W . For all
x ∈ W : 0 < g2 ≤ g(x) ≤ g1 (both g1 and g2 are real
numbers).

There exists an AM > 0 such that for all t ∈ R+:
‖A(t)‖ ≤ AM . Consider the case where the n×nmatrix
A(t) is time-periodic with period T and

A =
1

T

∫ T

0

A (t) dt (85)

is Hurwitz. When for all x ∈ W∥∥∥∥∂ g∂ x (x)

∥∥∥∥ ≤ g3 , (86)
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where g3 ∈ R and 2g2 > g1, local uniform asymptotic
stability of the equilibrium point x = 0 of (84) is a
consequence of the main application.

Proof: Basically, the proof is a verification of the con-
ditions listed in the main application, after introducing
appropriate choices of f1 and h, given by (87) and (89)
respectively. Other choices do not fit the main applica-
tion. Consider

ẋ (t) = f1 (x (t) , t) = A (t)x (t) , (87)

and its corresponding averaged system

ẋ (t) = f1 (x (t)) = A x (t) . (88)

The vector fields f1 and f1 are defined onRn and there-
fore also on W ⊂ B1 (0) ⊂ Rn; f1 is continuously dif-
ferentiable with respect to x and the Jacobian matrix
[∂f1/∂x] = A (t) with ‖A (t) ‖ ≤ AM for all t. Moreover,[
∂f1/∂x

]
= A and ‖A‖ ≤ AM .

The averaged system (88) is globally exponentially sta-
ble. The scalar function h defined by

h (x) = ‖x‖g(x) (89)

for all x ∈ W ⊂ B1(0), satisfies (70) with αh1 (‖x‖) =
‖x‖g1 and αh2 (‖x‖) = ‖x‖g2 .

Since

∂h

∂x
(x) =

∂

∂x

(
‖x‖g(x)

)
= g (x) ‖x‖g(x)−1 ∂

∂x
(‖x‖)(90)

+ ‖x‖g(x) ln (‖x‖) ∂

∂x
(g (x)) ,

one obtains that∥∥∥∥∂h∂x (x)

∥∥∥∥ ‖x‖ ≤ g (x) ‖x‖g(x) ‖ ∂∂x (‖x‖) ‖+

+ ‖x‖g(x)+1 | ln (‖x‖) |‖∂g
∂x

(x) ‖. (91)

For all x ∈W ⊂ B1(0),∥∥∥∥∂h∂x (x)

∥∥∥∥ ‖x‖ ≤ ‖x‖g2 (g1 + ‖x‖| ln (‖x‖) |g3) (92)

For all x with ‖x‖ < 1, ‖x‖.| ln(‖x|)| reaches its
maximum value when ‖x‖ = e−1 implying that
‖x‖.| ln(‖x‖)| ≤ e−1. It follows that

∥∥∥∥∂ h∂ x (x)

∥∥∥∥ ‖ x ‖≤ (
g1 + g3 e

−1) ‖ x ‖g2 = c5αh2 (‖x‖) .

(93)

with c5 = g1 + g3e
−1. This implies that condition (71)

is satisfied. Moreover, taking

‖x‖ ≤ (2T )
− 1

g2

(
2

1
g2 − 1

) 1
g2
, (94)

one obtains that αh2 (‖x‖ (1 + 2T αh2 (‖x‖))) ≤
2αh2 (‖x‖).

Since (73) can be written as

α2
h2 (‖x‖)
αh1 (‖x‖)

= ‖x‖2g2−g1 , (95)

the assumption that 2g2 > g1 implies that the func-
tion defined by (95) is a class K function. Local uniform
asymptotic stability of the equilibrium point x = 0 of
(84) follows from the main application.

Remark 7: In case g1 = g2 > 0, (84) describes a ho-
mogeneous system of positive order. It is shown in [8]
that asymptotic stability of the averaged homogeneous
system implies local uniform asymptotic stability of the
original time-varying homogeneous system when the or-
der is strictly positive. Example 2 (where g1 and g2 may
be different) illustrates that the main theorem and the
main application generalise the results formulated in [8].
Notice further that the homogeneous case can also be
handled by the current results as will be illustrated in
section 3.3.

Remark 8: The stability result of Example 2 is based
on the main application. It is possible to prove the same
result by an immediate use of themain theorem using the
uniform asymptotic stability property of the averaged
system

ẋ (t) = A x(t) ‖x(t)‖g(x(t)) . (96)
Remark 9: The function h in Example 1 and in Exam-
ple 2 is such that h (x) = xTPx, resp. h (x) = ‖x‖g(x).
Assuming that (71) is satisfied, a simple additional ex-
ample is obtained by letting h to be a class K function
α, i.e. for all x ∈ W : h (x) = α (‖x‖). This implies that
αh1 (‖x‖) = αh2 (‖x‖) = α (‖x‖) and that (73) is satis-
fied.

Remark 10: Additional choices for h are possible. We
introduce a class of nonhomogeneous functions h. Let
the real numbers pi > 1 for all i ∈ {1, ..., n}. Let h be

h (x) = |x1|p1 + ... + |xn|pn . (97)

Here, x = (x1, ..., x2)
T and we restrict x to values with

‖x‖ < 1 (Euclidean norm). Let pmin be the minimum of
all pi, and pmax be the maximum of all pi. It is clear that

|x1|pmax+...+|xn|pmax ≤ h (x) ≤ |x1|pmin+...+|xn|pmin .
(98)
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Denote ‖x‖pmax as the pmax-norm and ‖x‖pmin as the
pmin-norm. 1 By equivalence of norms, there exist C1 >
0 and C2 > 0 such that for all x: C1‖x‖ ≤ ‖x‖pmax and
‖x‖pmin ≤ C2‖x‖. From (98), it follows that

Cpmax
1 ‖x‖pmax ≤

‖x‖pmax
pmax

≤ h (x) ≤ ‖x‖pmin
pmin
≤

Cpmin
2 ‖x‖pmin . (99)

Taking αh1 (‖x‖) = Cpmax
1 ‖x‖pmax and αh2 (‖x‖) =

Cpmin
2 ‖x‖pmin , (70) is satisfied. In case 2pmin > pmax,

also (73) is satisfied. We now show that (71) is also
satisfied. Indeed,∥∥∥∥∂h∂x (x)

∥∥∥∥
∞

= max
{
p1|x1|p1−1, ..., pn|xn|pn−1

}
≤

pmax‖x‖pmin−1. (100)

We used the property that for all i ∈ {1, ..., n} : |xi| ≤
‖x‖. Since for all x, ‖x‖ ≤

√
n‖x‖∞, (100) implies that∥∥∥∥∂h∂x (x)

∥∥∥∥ . ‖x‖ ≤ √n pmax‖x‖pmin . (101)

Taking c5 =
√
n pmax/C

pmin
2 , (71) is satisfied.

3.3 Homogeneous examples

When reconsidering Example 2 with the additional as-
sumption that g1 = g2, a homogeneous system is ob-
tained and the main application may be invoked to es-
tablish uniform asymptotic stability properties for sys-
tems covered before (cfr. [8]). This is illustrated in Ex-
ample 3 and Example 4.

Example 3: Consider for all x ∈ W the homogeneous
time-varying system (W ⊂ B1 (0) ⊂ Rn, W is an open
and convex set containing the origin)

ẋ (t) = A (t) x(t) ‖x(t)‖β (102)

with β > 0. Let the matrix A(t) be time-periodic with
period T and let

A =
1

T

∫ T

0

A (t) dt (103)

be Hurwitz. Furthermore, there exists a AM > 0 such
that for all t ∈ R+ : ‖A(t)‖ ≤ AM .

The conditions listed in Example 2 are satisfied ( taking
g1 = g2 = g (x) = β); therefore we obtain local uniform

1 The p-norm of x is defined as ‖x‖p =

(| x1 |p +...+ | xn |p)1/p. In case p = 2, the Euclidean norm
is obtained.

asymptotic stability of the equilibrium point x = 0 of
(102).

Remark 11:When β = 0, we obtain a linear system and
the conditions of Example 2, the main application and
the main theorem are no longer satisfied (0 < g2 ≤ g (x)
is not true implying that conditions (9) and (10) are
not satisfied). The main theorem does not prove uniform
asymptotic stability of the original time-varying system.
Based on [1,5], stability results may be derived when the
vectorfield is fast time-varying.

Remark 12: The stability result of Example 3 is based
on Example 2 and the main application. It is possible to
prove the same result directly from the main theorem,
assuming uniform asymptotic stability property of the
origin of the averaged system

ẋ (t) = A x(t) ‖x(t)‖β . (104)

Example 4: Consider for all x ∈ W the homogeneous
time-varying system (W ⊂ B1 (0) ⊂ Rn, W is an open
and convex set containing the origin)

ẋ (t) = −f (t)x(t) ‖x(t)‖β (105)

with β > 0. Consider the case where the scalar function
f(t) is time-periodic with period T and

f =
1

T

∫ T

0

f (t) dt > 0. (106)

Assume there exists fM > 0 such that for all t ∈ R+:
‖f(t)‖ ≤ fM . Since this is a special case Example 3
(A (t) = −f (t) I), local uniform asymptotic stability of
the equilibrium point x = 0 of (105) follows. This result
has also been covered in [8].

4 Conclusions

This paper extends results obtained before where local
uniform asymptotic stability of an equilibrium of a time-
varying differential equation follows from stability prop-
erties of its averaged version. It generalises existing aver-
aging results where stability properties had been shown
for systems which have a homogeneous vectorfield with
order τ > 0 [8]. We show that averaging techniques may
be useful for systems satisfying appropriate conditions
expressed in terms of class K functions, without requir-
ing a homogeneous or fast time-varying vector field. The
results are extensively illustrated by a class of examples.
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