Presence of extended spectrum β-lactamase producing *Escherichia coli* in wild geese

A. Garmyn*¹, F. Haesebrouck¹, T. Hellebuyck¹, A. Smet¹, F. Pasmans¹, P. Butaye², A. Martel¹

¹Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; 9820 Merelbeke, Belgium, ²Department of Bacteriology and Immunology, CODA-CERVA-VAR, Groeselenberg 99, 1180 Brussels, Belgium.

Short title: ESBLs in wild geese in Belgium

Keywords: epidemiology, antimicrobial resistance, environment

* Corresponding author. Mailing address: Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium. Phone: (32) 9 264 74 34. Fax: (32) 9 264 74 94. E-mail: an.garmyn@UGent.be.
Sir,

Since 2000, extended-spectrum β-lactamase (ESBL) producing bacteria have increasingly been detected in humans and animals. Their impact on human health has drawn much attention worldwide. Many reports exist about the diversity of ESBLs among Enterobacteriaceae from food-producing animals. Also for companion animals, several studies have been described. Recently some surveys have suggested that European wild birds may act as reservoirs of resistant bacteria and might have an epidemiological role in the dissemination of resistance. Therefore, to gain more insight in the role of migratory birds as reservoir in this, a large population of wild geese in Belgium was screened for the presence of ceftiofur resistant *Escherichia coli* (*E. coli*).

For this purpose, cloacal swabs from 396 wild geese (354 *Branta canadensis* and 42 wild *Anser anser domesticus*) originating from 6 wildlife areas in Belgium were collected and within 4 hours inoculated on MacConkey agar plates (Oxoid LTD, Basingstoke, Hampshire, England) supplemented with ceftiofur (8 mg/L). After overnight aerobic incubation at 37°C, suspected *E. coli* colonies were purified on Columbia agar with 5% sheep blood (blood agar, Oxoid) and phenotypically identified. To confirm resistance against the β-lactams, the antimicrobial susceptibility of the *E. coli* isolates against ampicillin (10 µg), ceftiofur (30 µg) and amoxicillin-clavulanic acid (20 + 10 µg) (Neo-sensitabs, Rosco Diagnostica, Taastrup, Denmark) was determined using the disk diffusion test according to the guidelines of the Clinical Laboratory Standards Institute (CLSI, 2008). The β-lactamases of the cultured *E. coli* were characterized by performing polymerase chain reaction (PCR) for detection of genes encoding TEM-, SHV-, CTX-M- and CMY- type enzymes as previously described. To establish the clonal relationship between the *E. coli* isolates, multilocus sequence analysis (MLST) using seven conserved housekeeping genes (*adk, fumC, gyrB, icd, mdh, purA* and
recA) (http://mlst.ucc.ie) was performed. All PCR products were purified using a Nucleospin Extract II kit (Marchery-Nagel GmbH & Co. KG, Düren) and sequenced using GeneAmp PCR 9700 Applied Biosystems sequencer (Foster City, USA). For sequencing, the PCR primers were used. The obtained nucleotide sequences were compared with those previously described for \(\text{bla} \) genes (BLAST database: http://www.ncbi.nlm.nih.gov/BLAST/).

From the 396 faecal samples, 2 ceftiofur resistant \textit{E. coli} isolates were obtained. The isolates originated from geese of the same wildlife area (Donkmeer, Berlare). Characterisation and sequencing of the genes encoding the \(\beta \)-lactamases showed that the first \textit{E. coli} isolate, originating from a Canada goose (\textit{Branta canadensis}), carried a \(\text{bla}_{\text{SHV}} \) gene encoding ESBL SHV-12. The sequence type of the \textit{E. coli} isolate after MLST analysis corresponded to ST 1079. The second isolate, originating from a wild domestic goose (\textit{Anser anser domesticus}), was found to carry a \(\text{bla}_{\text{TEM}} \) gene encoding ESBL TEM-52. This isolate was assigned to ST 1844.

The population of wild domestic and Canada geese in Belgium is estimated at 10000 birds. Since 396 wild geese were swabbed, approximately 4% of the total Belgian population was included in the study. ESBL producing \textit{E. coli} were only isolated out of 2 geese (0.5% of the sampled animals). Analysis of the ESBL profile of the two ceftiofur resistant \textit{E. coli} isolates in this study resulted in the identification of the genes TEM-52 and SHV-12. These genes are often present in ceftiofur resistant \textit{E. coli} from poultry, cattle, pigs and humans. The sequence types of the two \textit{E. coli} isolates already existed in the MLST Database (http://mlst.ucc.ie). ST 1079 was previously isolated from a bovine that died because of extra-intestinal pathogenic \textit{E. coli} (ExPEC) septicaemia in the United Kingdom. ST 1844 was isolated from a healthy human in France. This demonstrates that the MLST-types found in the geese are not restricted to wild birds.
In conclusion, although the role of wild geese as a reservoir of bacteria carrying ESBL encoding genes seems to be limited at present, the results of this study may indicate that these resistance determinants have disseminated in the natural environment.

ACKNOWLEDGEMENTS

The authors would like to thank Sören Decraene & co for their assistance during the sampling of the geese.

FUNDING

This study was supported by internal funding.

TRANSPARENCY DECLARATION

None to declare.

REFERENCES

