Campylobacter control in poultry by current intervention measures ineffective: urgent need for intensified fundamental research

David Hermansa,‡,*, Kim Van Deuna,‡, Winy Messensb,†, An Martela, Filip Van Immerseela, Freddy Haesebroucka, Geertrui Rasschaertb, Marc Heyndrickxa,b, Frank Pasmansa

Running title: Campylobacter control in poultry

aDepartment of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; bInstitute for Agricultural and Fisheries Research, Technology and Food Unit, Melle, Belgium; †Current address: Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy; ‡These authors contributed equally to this work.

Abstract

Campylobacter-contaminated poultry meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this pathogen and infected birds carry a very high \textit{Campylobacter} load in their gastrointestinal tract, especially the ceca. This results in contaminated carcasses during processing. While hygienic measures at the farm and control measures during carcass processing can have some effect on the reduction of \textit{Campylobacter} numbers on the retail product, intervention at the farm level by reducing colonization of the ceca should be taken into account in the overall control policy. This review gives an up-to-

* Corresponding author: David Hermans, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. Tel.: +329 264 7434; fax: +329 264 7494; e-mail: david.hermans@ugent.be
date overview of suggested on-farm control measures to reduce the prevalence and
colonization of *Campylobacter* in poultry.

Keywords: *Campylobacter*; poultry; cecal colonization; on-farm control measure

Contents

1. Introduction .. 3
2. *Campylobacter* control in poultry .. 4
 2.1. Hygienic and biosecurity farming practices .. 6
 2.2. Drinking water treatment .. 7
 2.3. Plant-derived feed additives .. 8
 2.4. Bacteriophage application ... 11
 2.5. Vaccination ... 12
 2.6. Passive immunization .. 14
 2.7. Prebiotics and probiotics/competitive exclusion .. 15
 2.8. Bacteriocin application .. 17
3. Concluding remarks ... 19
References .. 20
1. Introduction

Today, _Campylobacter_ infections are the leading cause of human bacterial gastroenteritis in many developed countries (EFSA, 2010b). Broiler chickens are a potential reservoir for _Campylobacter_ strains pathogenic to human (Friis et al., 2010) and broiler chicken meat contaminated with this pathogen is believed to be responsible for up to 40% of human campylobacteriosis cases (EFSA, 2010a).

Campylobacter is highly prevalent among broiler flocks with on average 60% to 80% of the analyzed flocks being colonized with the bacterium at slaughter age in the EU (Evans and Sayers, 2000; Herman et al., 2003; Rasschaert et al., 2006; Reich et al., 2008; EFSA, 2010c). Primary infection of broilers probably occurs through horizontal transmission from the environment (Jacobs-Reitsma et al., 1995). Potential sources and vectors for contamination are infected livestock and free-living animals (van de Giessen et al., 1996; Zweifel et al., 2008; Ellis-Iversen et al., 2009), rodents and flies (Hald et al., 2008; Hazeleger et al., 2008), contaminated surface water (Messens et al., 2009) and personnel and farm equipment (Ramabu et al., 2004) at the farm. Also partial thinning of broiler flocks has been implicated as a potential risk factor for _Campylobacter_ colonization of the remainder of the animals, due to difficulties in maintaining biosecurity during thinning (Allen et al., 2008). Most flocks become colonized at an age of two to four weeks only (Jacobs-Reitsma et al., 1995; Evans and Sayers, 2000; Herman et al., 2003; van Gerwe et al., 2009). The majority of the birds in a flock are colonized within only a few days after the first chick is infected (van Gerwe et al., 2009). These broiler chickens carry high _C. jejuni_ numbers in their intestinal tract, especially in the ceca (between 10^6 to 10^8 CFU/g or higher), and remain colonized until slaughter (Beery et al., 1988; Jacobs-Reitsma et al., 1995; Evans and Sayers, 2000).
Intestinal colonization of broiler chickens with *Campylobacter* during rearing is responsible for the contamination of the carcasses after processing (Herman et al., 2003; Rasschaert et al., 2006; Rosenquist et al., 2006; Reich et al., 2008). Worldwide, an average prevalence of *Campylobacter* contamination on poultry carcasses is reported to be in the range of 60% to 80% (Suzuki and Yamamoto, 2009; EFSA, 2010c). Carcass contamination occurs during defeathering and evisceration, by contaminated feces leaking from the cloaca and visceral rupture of the ceca carrying a high *Campylobacter* load (Berrang et al., 2001; Smith et al., 2007; Allen et al., 2008; Boysen and Rosenquist, 2009). In addition, carcasses can become contaminated by cross-contamination of *Campylobacter* strains between slaughtered flocks (Allen et al., 2008; Normand et al., 2008).

2. *Campylobacter* control in poultry

In the past few years, several quantitative risk assessments for *Campylobacter* in poultry meat have been developed as a guidance tool to control the presence of this zoonotic pathogen throughout the poultry meat production chain (Nauta et al., 2009). Although there is considerable variation between countries in the approach of these models, all risk assessments conclude that aiming to reduce the *Campylobacter* levels on broiler carcasses after evisceration is the most effective intervention measure, rather than reducing its prevalence. Besides reducing external surface contamination of broiler carcasses from *Campylobacter*-colonized flocks directly, by physical or chemical means (Rosenquist et al., 2006; Boysen and Rosenquist, 2009), reduced *Campylobacter* numbers on carcasses can also be obtained indirectly. On-farm intervention measures aimed to prevent *Campylobacter* introduction and transmission in poultry flocks or to reduce intestinal *Campylobacter* counts in colonized animals could lead to reduced contamination levels of the carcasses of these animals after
processing. Moreover, because the intestine of living poultry is the only amplification site for *Campylobacter* throughout the entire food chain, reducing the cecal *Campylobacter* load in poultry during primary production is expected to significantly reduce the incidence of human campylobacteriosis (Lin, 2009).

In Denmark, a quantitative microbial risk assessment of human campylobacteriosis associated with thermotolerant *Campylobacter* spp. in broiler chickens was developed. The simulations showed that reducing the number of *Campylobacter* bacteria on chicken carcasses by 2 logs causes a 30-fold reduction in the incidence of campylobacteriosis in humans (Rosenquist et al., 2003). A Belgian risk assessment showed that the incidence in Belgium would be reduced by 48%, 85% and 96% when respectively a one log, two log or three log reduction of the *Campylobacter* contamination on carcasses would be achieved (Messens et al., 2007).

Theoretically, controlling *Campylobacter* colonization in poultry on-farm may be achieved in a number of different ways, including hygienic and biosecurity measures (2.1.), water treatment (2.2.), supplementing plant-derived additives to the feed (2.3.), bacteriophage application (2.4.), vaccination (2.5.), passive immunization (2.6.) and application of pre- and probiotics/competitive exclusion microflora (2.7.) or bacteriocins (2.8). It is important to differentiate between prevention and colonization-reducing measures, which intervene at a different stage of the colonization process. Preventive measures, summarized in Table 1, aim at reducing the probability of birds to become colonized by *Campylobacter*, while colonization-reducing measures, presented in Table 2, strive for a reduced cecal *Campylobacter* load in colonized birds prior to slaughter, thereby reducing surface contamination of the carcasses. Moreover, also by improving health and welfare of the animals colonization might be reduced (Bull et al., 2008). Finally, genetic selection could also contribute in combating *Campylobacter* colonization in poultry (Kapperud et al., 1993), when
poultry lines with improved overall immunological responsiveness, being more resistant to colonization by this pathogen, are developed (Swaggerty et al., 2009). Some antibiotics efficiently reduce *C. jejuni* counts in the broiler chick GI tract (Farnell et al., 2005; Hermans et al., 2010), but their use is controversial due to concerns on development of antibiotic resistance in *C. jejuni*, which may compromise treatment of human campylobacteriosis (Dibner and Richards, 2005; Zhu et al., 2006).

2.1. *Hygienic and biosecurity farming practices*

Good hygienic farming practices constitute a strategy aiming at preventing the introduction of *Campylobacter* into a flock by a combination of hygiene and biosecurity measures. A Belgian quantitative microbial risk assessment showed that the incidence of human campylobacteriosis in Belgium would be reduced by 32%, 53% and 77% when the *Campylobacter* flock prevalence is reduced by 25%, 50% or 75% respectively (Messens et al., 2007). Application of specific hygienic measures during the rearing period, such as washing hands before entering the chicken house, the use of separate boots for each broiler house, footbath disinfection when entering a broiler house and a high standard of cleaning and disinfection of the drinking water equipment may significantly reduce the risk of *Campylobacter* infections in broiler flocks (van de Giessen et al., 1996; Evans and Sayers, 2000). After introduction of hygienic and biosecurity measures, including the control of rodents and insects, in two Dutch broiler farms, the percentage of *Campylobacter*-colonized flocks decreased from 66% at one farm and 100% at the second farm to 22% and 42%, respectively (van de Giessen et al., 1998). In the UK, the implementation of an intervention trial, based on a standard hygiene protocol for personnel and proper disinfection of the broiler house prior to stocking, reduced the prevalence of *Campylobacter* infection in the broiler
population from 80% to < 40% (Gibbens et al., 2001). It has been demonstrated that the prevalence of broiler flocks colonized with *Campylobacter* can be reduced from 51.4% to 15.4% by placing fly screens in broiler houses (Hald et al., 2007). In Denmark, strategies to control *Campylobacter* were intensified in 2003 (Rosenquist et al., 2009). Focus was on biosecurity, allocation of meat from colonized flocks to the production of frozen meat products (having reduced *Campylobacter* counts on their surface due to the freezing procedure) as much as possible and campaigns to inform the consumer. This implemented control strategy lead, at least in part, to a decrease of *Campylobacter*-colonized flocks from 43% in 2002 to 27% in 2007, a reduction in *Campylobacter*-positive samples of chilled broiler meat after processing from 18% in 2004 to 8% in 2007 and a drop in registered human campylobacteriosis cases by 12% from 2002 to 2007. These findings suggest that proper application of biosecurity measures can lead to reduced colonization in poultry. However, because broiler chickens are under a constant contamination pressure, biosecurity measures alone will not be sufficient to solve the problem.

2.2. Drinking water treatment

By treating the drinking water of poultry flocks, the risk of the animals to become infected might be reduced, probably through a reduction in bacterial numbers both in the drinking water and the crop. In this way, *Campylobacter* is less likely to reach the ceca and transmission throughout the flock might be reduced or prevented.

In vitro studies have demonstrated that organic acids have a strong bactericidal effect on *Campylobacter* spp. and addition of these acids to the drinking water on poultry farms could prevent transmission through broiler flocks (Chaveerach et al., 2002; Chaveerach et al., 2004b). Addition of 0.44% (vol/vol) lactic acid in the drinking water during pre-slaughter
feed withdrawal reduced both crop and pre-chill carcasses contamination (Byrd et al., 2001).

Moreover, addition of monacaprín, the mono-acylglycerol of capric acid (Thormar et al., 2006), to drinking water from the last three days before slaughter, resulted in a reduced C. jejuni count on cloacal swabs of both artificially and naturally infected birds (Hilmarsson et al., 2006). This treatment did, however, not prevent Campylobacter spread from artificially infected to non-infected birds. Also chlorinating the drinking water is helpful as it reduces the risk for Campylobacter colonization (Ellis-Iversen et al., 2009). Chlorination of flock drinking water (with 2-5 ppm chlorine) under commercial production practices in the US in 2002 did, however, not result in a reduced Campylobacter prevalence in the birds receiving treated water (Stern et al., 2002).

2.3. Plant-derived feed additives

Changes in the composition of the feed can promote gastrointestinal health and thus contribute to the control of Campylobacter in poultry. Plant-derived antimicrobial feed additives can be administered from day-of-hatch to prevent broiler chickens to become colonized and to reduce Campylobacter transmission throughout the flock. Also in this application, the observed effect is largely due to the anti-Campylobacter effect in the crop of the animals.

Next to their application in drinking water, organic acids might also be used as feed additives to reduce Campylobacter prevalence in poultry. However, in vivo trials demonstrated only a limited effect of feed acidification on C. jejuni prevalence in broiler flocks. At most it could delay the onset of colonization (Heres et al., 2004; Line and Bailey, 2006). Broilers that were fed fermented liquid feed, i.e. a moistened feed with a high number of lactobacilli, a high concentration of lactic/acetic acid and a pH of 4, were less likely to shed
Campylobacter after oral infection (Heres et al., 2003). However, at the end of the trial no significantly different C. jejuni counts in the ceca could be observed compared to chickens on a standard feed. The higher level of lactic acid in combination with a low pH in the crop was suggested to reduce the probability for Campylobacter to reach the ceca. In a later experiment, individually housed chickens that were fed acidified feed were found to be less susceptible to Campylobacter infection compared to control birds, as less chickens became colonized at equal inoculation doses (Heres et al., 2004). Also caprylic acid leads to reduced colonization in 10-day-old chicks when given preventively (Solis de los Santos et al., 2008). In contrast, addition of butyrate to the feed was not able to reduce cecal Campylobacter colonization in a seeder model using two-week-old broilers (Van Deun et al., 2008). Skanseng et al. (2010) found little effect when supplementing only formic acid to the feed, but a combination of 2% formic acid with 0.1% sorbate prevented C. jejuni colonization in chicks. Finally, it was demonstrated that the addition of a medium-chain fatty acid mixture to the feed at 1% reduces the probability of broilers becoming colonized (van Gerwe et al., 2010).

Several other plant-derived compounds are known to posses antimicrobial properties. Thousands of phytochemicals have already been identified to be inhibitory toward microorganisms, including phenolics and essential oils (Cowan, 1999). Friedman et al. (2002) analyzed the in vitro bactericidal activity of 96 essential oils and 23 isolated oil compounds against C. jejuni. Lots of these analyzed compounds were capable of killing the bacterium at relatively low concentrations, especially the cinnamon-oil trans-cinnamaldehyde. The potential use of in-feed trans-cinnamaldehyde to prevent colonization, and/or to reduce the cecal Campylobacter numbers in broilers, has been examined very recently (Hermans et al., 2011). In this study it was shown that, despite its marked activity in vitro, trans-cinnamaldehyde was ineffective in preventing or reducing cecal colonization by C. jejuni in a broiler seeder model, where the compound was administered at 0.3% (wt/wt) to the feed, from
day-of-hatch until euthanasia. Also when directly injected in the ceca of broilers, no reduction in *Campylobacter* numbers was observed after two or 24 hours.

Administration of large molecules that interfere with *Campylobacter* adhesion to the host cell is successful *in vitro* but suffers from premature metabolic breakdown in the broiler chicken gastrointestinal tract (Wittschier et al., 2007). Finally, cecal colonization of birds receiving plant-protein-based feed was significantly lower compared to birds receiving animal-protein-based feed or a combination of plant- and animal-protein sources (Udayamputhoor et al., 2003).

Alternatively, colonized broiler chickens might be fed pulse doses of the additives for a certain period, just before slaughter, aiming at reducing the cecal *Campylobacter* load and reducing carcass contamination after slaughter. Thus, in this application one aims to reduce the *Campylobacter* numbers in the ceca of already colonized birds. To efficiently reach the cecum, additives are often coated on/encapsulated in carrier material that will prevent premature degradation along the gastrointestinal tract and assure efficient release of the active compound into the gut (Van Immerseel et al., 2004).

Hermans et al. (2010), however, found no effect in cecal *Campylobacter* numbers of broilers fed medium-chain fatty acids (caproic, caprylic or capric acid) from three days before euthanization in 28-day-old broilers. Also direct injection in the broiler cecum of a concentrated sodium caprate solution did not prevent colonization, nor was it able to reduce cecal *Campylobacter* numbers. These authors showed that intestinal mucus is likely to protect *C. jejuni* in the broiler cecum against the bactericidal effects of organic acids seen *in vitro*. In contrast, another research group observed a considerable reduction (several logs) in cecal *Campylobacter* numbers when caprylic acid was given from three days before slaughter, in already colonized market-aged broilers (Solis de los Santos et al., 2010). This reduction was strikingly not accompanied by an altered cecal microbial population. Moreover, addition of
monocaprin to the feed from the last three days before slaughter, resulted in a reduced \textit{C. jejuni} count on cloacal swabs of both artificially and naturally infected birds (Hilmarsson et al., 2006).

As the available \textit{in vivo} results are limited and moreover contradictory, it cannot be univocally be determined what the contribution of feed additives will be to control cecal \textit{Campylobacter} colonization. Preventive supplementation from day-of-hatch, rather than to aim for reduced cecal \textit{Campylobacter} numbers in already colonized birds, seems most promising. The ineffectiveness of butyrate and the very promising trans-cinnamaldehyde, however, puts the use of in-feed organic acids and plant-derived antimicrobial compounds to combat cecal \textit{Campylobacter} colonization in poultry in question.

2.4. Bacteriophage application

Bacteriophage application to reduce cecal \textit{Campylobacter} colonization in poultry is promising (Carrillo et al., 2005; Wagenaar et al., 2005). Results indicate an immediate drop of approximately three logs in the number of \textit{Campylobacter} in already-colonized chicken ceca (Wagenaar et al., 2005). After five days, however, bacterial counts stabilized at a level one log lower compared to control birds, an effect also observed when phages were given prophylactically. Also El-Shibiny et al. (2009) observed an immediate (after two days) two-log CFU/g reduction in cecal \textit{Campylobacter} levels. Despite the fact that \textit{Campylobacter}, after a sudden drop, seems to re-establish itself to nearly its original counts, results indicate that bacteriophages can possibly be successfully applied in broilers just before slaughter to reduce the cecal bacterial load. Further research in this area showed that administering phages in the feed is more efficient than oral gavage (Carvalho et al., 2010). This study revealed an initial drop, already after two days, of approximately two logs in the numbers of \textit{C. jejuni} in
the fecal material of infected one-week-old birds. Moreover, *C. jejuni* did not regain its original counts throughout the experimental period, which was ended seven days after phage administration had started.

Although the use of phage products in broilers seems to be a promising way to reduce cecal colonization with *C. jejuni*, questions regarding both immediate and long-term efficacy, consumer safety and application methods arise (Hagens and Loessner, 2010). Safety concerns should not be a main obstacle as phages are highly specific and can only infect a limited range of host bacteria. Moreover, their oral consumption, even at very high levels, is believed to be completely harmless to humans. Answers concerning the efficacy seem to be more complex, especially if long-term efficacy of the phage product has to be ensured. In the study of El-Shibiny et al. (2009) it was shown that 2% of the *Campylobacter* population exposed to virulent phages in the chicken, developed phage-resistance. These resistant types remained a minor component of the population. Carvalho et al. (2010) isolated phage-resistant *Campylobacter* strains from phage-administered chicks at a frequency of 13%. Strikingly, also before phage application resistance was observed, although at a lower frequency (6%), indicating that *Campylobacter* can acquire phage resistance naturally. Nevertheless, an increase in the resistant *Campylobacter* population was observed after applying phages, suggesting that phages might have selected for resistant strains. Because further information on this topic is lacking, long-term efficacy of phages to control *C. jejuni* in poultry cannot be ensured.

2.5. Vaccination

Several vaccination studies aiming at reducing the susceptibility of broiler chickens for *Campylobacter* colonization have been reported, although with variable results. *In ovo*
vaccination by injection of heat-killed *C. jejuni* in the amniotic fluid resulted in an increase in Immunoglobulin A (IgA) antibodies (Noor et al., 1995). However, the consequences on a subsequent challenge were not studied. Intraperitoneal immunizations of chickens with killed *C. jejuni* whole cells at 16 and 29 days of age reduced the intestinal colonization, which was associated with an increase in specific IgY in intestinal secretions (Widders et al., 1996). In addition, Rice et al. (1997) demonstrated some reduction of *Campylobacter* colonization of chicks orally vaccinated with formalin-killed *C. jejuni* whole cells in combination with *Escherichia coli* heat-labile toxin when compared to non-vaccinated control birds.

For subunit vaccines, flagellin and outer membrane proteins have been tested and are considered useful candidates. In a study involving immunization of chickens with heat-killed *C. jejuni*, intestinal colonization upon challenge was reduced, with flagellin and a 67 kDa protein showing up as the immunodominant antigens (Widders et al., 1998). Vaccination of chickens with a hybrid protein containing part of the *C. jejuni* FlaA and the B-subunit of *E. coli* heat-labile toxin elicited specific antibodies against *C. jejuni* flagellin and reduced colonization of the chickens after challenge (Khoury and Meinersmann, 1995). Chickens orally immunized with an avirulent recombinant *Salmonella* strain carrying the *Campylobacter cjaA* gene, encoding a highly immunogenic lipoprotein which is conserved among different *Campylobacter* serotypes, developed serum IgY and mucosal IgA antibody responses against *Campylobacter* and *Salmonella* outer membrane proteins and were protected against cecal colonization with a heterologous wildtype *C. jejuni* strain (Wyszynska et al., 2004). A more recent study evaluated the potential use of a heterologous vaccine for *Campylobacter* control in poultry using substantially more animals (Buckley et al., 2010). Upon vaccination with a *Salmonella* Typhimurium ΔaroA mutant, expressing CjaA as a plasmid-encoded fusion to tetanus toxin, birds had significantly reduced cecal *C. jejuni* counts of approximately \(\log_{10} 1.4 \) CFU/g three and four weeks after *C. jejuni* inoculation, compared
to unvaccinated control birds. This protection was associated with increased levels of CjaA-specific serum IgY and biliary IgA in the vaccinated chicks. Also in this study, a group of chicks receiving a vaccine strain containing the non-recombinant plasmid was incorporated. These animals were not protected, indicating that the protective effect observed in the birds receiving the heterologous vaccine, expressing CjaA, is due to responses directed against CjaA rather than competitive or cross-protective effects mediated by the carrier. Broiler chicks orally gavaged with live *Salmonella*-vectors expressing *Campylobacter* Omp18/CjaD, CjaA and ACE393 at day-of-hatch and inoculated with *C. jejuni* at 21 days of age, had higher serum IgG and mucosal sIgA levels as well as reduced ileal *C. jejuni* counts at day 32, compared with control birds (Layton et al., 2010). Vaccination with the Omp18/CjaD peptide-expressed vector was most effective and *Campylobacter* could not be recovered from ileal samples. However, the cecal *Campylobacter* load, a better indicator for the colonization level in broiler chicks (Beery et al., 1988), was not determined.

Zeng et al. (2009) showed that specific CfrA antibodies can block the function of this protein, diminishing ferric enterobactin-mediated growth promotion under iron-restricted conditions in a dose-dependent way. As inactivation of the *cfrA* gene completely eliminates *Campylobacter* colonization in chicks and CfrA is both expressed and immunogenic in chickens experimentally infected with *C. jejuni*, CfrA could be a promising candidate for a subunit vaccine for *Campylobacter* control in poultry (Zeng et al., 2009), but this hypothesis has yet to be tested.

Despite all this research, an effective vaccine to combat cecal *Campylobacter* colonization in poultry is not yet available.

2.6. Passive immunization
Experimental studies have shown that chick colonization can be inhibited by using antibodies. *Campylobacter*-specific maternal antibodies protect young chickens from colonization (Sahin et al., 2003). Pre-incubation of *Campylobacter* with rabbit hyper-immune antiserum or chicken bile antibodies increased the dose required to colonize the chicken cecum (Stern et al., 1990). Oral administration of bovine or chicken Ig preparations from respectively milk or eggs of hyper-immunized animals, conferred a marked protection against challenge with *C. jejuni* in chickens (Tsubokura et al., 1997). Fecal bacterial counts were reduced by >99% (prophylaxis) or 80%-95% (post-colonization) using an antibody preparation. The mean number of bacteria quickly increased, however, after ending the colonization-reducing addition with antibodies. This strategy might thus be applied to reduce cecal numbers of bacteria immediately before slaughter.

2.7. Prebiotics and probiotics/competitive exclusion

Although the exact exclusion mechanism is not fully understood, experiments have shown that competitive exclusion microflora can prevent *Campylobacter* colonization of the chicken gut. Competitive exclusion is a prophylactic measure that aims at increasing the resistance of chicks to *Campylobacter* infection.

Undefined bacterial mixtures have been demonstrated to effectively control *Campylobacter* infections in young chicks artificially challenged with a chicken *C. jejuni* isolate (Soerjadi et al., 1982; Soerjadi-Liem et al., 1984). In another study, however, this protective effect was not observed (Stern et al., 1988). The efficacy of competitive exclusion depends on cultivation methods and storage of the microbiota. It was found that the efficacy of using competitive exclusion microflora decreased with storage of the cultures (Stern, 1994). Different culture preparation techniques, with respect to the level of anaerobic culture,
degree of epithelial scraping of the ceca, media used for subculturing and incubation
temperature, resulted in different degrees of protection against colonization by *Campylobacter*
spp. (Stern et al., 2001). However, Schoeni and Wong (1994) concluded that protection by
aerobically grown cultures was not statistically different from that obtained with anaerobically
grown cultures.

Later, attempts have been made to develop defined microbiota. A standard feed
supplemented with the yeast *Saccharomyces boulardii* did not significantly affect cecal
Campylobacter colonization of experimentally challenged chickens (Line et al., 1998). The
use of a probiotic containing *Lactobacillus acidophilus* and *Enterococcus faecium* in chicks,
during the first three days of rearing, reduced both *C. jejuni* fecal shedding and jejunal
colonization in colonized market-aged broilers, experimentally infected with *C. jejuni* six
hours after the first oral administration of the probiotic, with 70% and 27%, respectively
(Morishita et al., 1997). Administration of competitive exclusion cultures of *Citrobacter
diversus*, *Klebsiella pneumoniae* and *E. coli* effectively prevented or reduced *C. jejuni*
colonization in chickens after *Campylobacter* inoculation (Schoeni and Wong, 1994). This
protection was enhanced by feeding mannose to the chickens. In a simulated chicken
digestive tract model, addition of *L. acidophilus*, *L. fermentum*, *L. crispatus* and *L. brevis*
have screened thousands of isolates of *Bacillus*, *Paenibacillus*, *Lactobacillus*, *Streptococcus*,
Enterococcus and *Escherichia* and selected hundreds of strains that were active against *C.
jejuni in vitro*. A *Lactobacillus* strain was isolated from an adult chicken gut that showed
bactericidal effects against *Campylobacter in vitro*, probably by the production of organic
acids and an anti-*Campylobacter* peptide (Chaveerach et al., 2004a). Two promising
antagonistic isolates (*L. salivarius* NRRL B-30514 and *Paenibacillus polymyxa* NRRL-B-
30509), acting as probiotics, were ineffective to control *Campylobacter*, whether the isolates
were fed to chicks before or after artificial challenge with *C. jejuni* (Stern et al., 2008). These isolates were, however, able to produce bacteriocins which are able to reduce the *Campylobacter* load in the gut of colonized birds (see further).

It has been demonstrated that it is possible to use combinations of (heterologous) *C. jejuni* chicken isolates for the competitive exclusion of human pathogenic *C. jejuni* strains in poultry (Chen and Stern, 2001). Circulation of uncharacterized environmental *Campylobacter* strains in commercial poultry flocks could possibly be biologically controlled by a characterized hyper-colonizing *C. jejuni* strain. Australian researchers identified such a strain that was capable of displacing other colonizing strains and maintain itself in the chicken GI tract for the entire 56-day broiler production cycle, without being displaced by other (hyper-)colonizing strains, once colonization was established (Calderon-Gomez et al., 2009).

With an approach called antibiotic dissection, day-old turkey poults were inoculated with cecal contents of *Campylobacter*-free adult turkeys after which the microbial communities in these poults were modified by different antibiotic treatments. It was investigated which modified intestinal microbiota was able to outcompete a *Campylobacter* challenge. Molecular examination of the constituents of these communities detected a subtype I of *Megamonas hypermegale* to be specific for a *C. jejuni*-suppressive application (Scupham et al., 2010). *In vivo* competition experiments with *M. hypermegale* isolates of both subtypes will be necessary to prove *C. jejuni* exclusion in poultry.

Finally, addition of mannanoligosaccharide to the feed of naturally infected birds and xylanase to the feed of artificially infected broilers, as prebiotics, resulted both in a minor, although significant decrease in cecal *C. jejuni* counts in these animals (Fernandez et al., 2000; Baurhoo et al., 2009).

2.8. *Bacteriocin application*
Svetoch and Stern (2010) recently reviewed bacteriocin application to reduce the cecal *Campylobacter* counts in broiler chickens of colonized flocks. Applying purified encapsulated bacteriocin from either *L. salivarius* NRRL B-30514 or *P. polymyxa* NRRL-B-30509 to the feed during three days before euthanization led to a reduction of cecal *Campylobacter* colonization in broiler chickens, orally gavaged with *C. jejuni* at day-of-hatch, by at least six logs. However, birds were only seven to ten days of age and birds at slaughter age have not been examined in this study. Further research by these authors led to the identification of two more bacteriocin-producing isolates with marked anti-*Campylobacter* activity: *E. durans/faecium/hirae* (NRRL B-30745) producing bacteriocin BCN E 760 and *E. faecium* (NRRL B-30746) producing BCN E 50-52. Both bacteriocins were able to tremendously lower (> 6 log$_{10}$ CFU/g or below detectable levels) the cecal *C. jejuni* load in inoculated broilers. Also in market-aged broilers naturally infected with *C. jejuni*, these bacteriocins were effective. BCN E 760 reduced the cecal *Campylobacter* load in these animals from an average of log$_{10}$ 6.2 CFU/g to undetectable levels when added to the feed four days before slaughter. BCN E 50-52 at 10.8 mg per bird was able to reduce cecal colonization by > 5 log$_{10}$ CFU/g when added to the drinking water three days before slaughter. Supplementing BCN 760 in drinking water at 3.5 to 25 mg per bird for three days before slaughter was most effective, resulting in a complete elimination of *C. jejuni* in 90% of the cases or else, a reduction of over six logs. The safety of these bacteriocins was confirmed by conducting experiments on monkey and human cell cultures as well as in treated mice and chickens. Italian researchers (Santini et al., 2010) very recently reported both marked *in vitro* and *in vivo* activity for *Bifidobacterium longum* PCB 133 toward *Campylobacter*. After two weeks of daily administration, excreted *B. longum* PCB 133 counts were still high in the feces of
orally gavaged chicks, even after a wash-out period of six days, and *C. jejuni* numbers were significantly reduced by one log after this administration period.

3. Concluding remarks

Despite all efforts during the past decade there is still no effective, reliable and practical intervention measure available to prevent or to reduce *Campylobacter* colonization in broilers (Lin, 2009). As a consequence, neither the overall prevalence of this pathogen in chicken retail products, nor the number of reported poultry meat consumption-related human campylobacteriosis cases have been reduced in recent years (Moran et al., 2009; EFSA, 2009). The incomplete understanding of the chick immune system hampers vaccine development, although the subunit (Omp18/CjaA) *Salmonella*-vectored vaccine seems a promising candidate for further evaluation. Therefore, increased knowledge about the interaction between *C. jejuni* and the chicken immune system is needed to identify colonization factors of *C. jejuni* in the broiler chick which might act as potential targets for vaccine development. The use of bacteriocins and bacteriophages is highly promising and possibly commercially applicable, since safety concerns should not be a main obstacle and their use is ergonomic since they can be easily and efficiently administered to the feed or drinking water. Their potential use, however, still needs further research concerning long-term efficacy. Also, large-scale field trials need to be performed to examine the practical effect of such applications in a commercial poultry production environment. Moreover, successful application of these methods (as well as competitive exclusion, probiotics and even vaccination) might be affected by genomic instability in *C. jejuni* (Ridley et al., 2008) possibly affecting long-term efficacy. Therefore, further research on the abovementioned
topics must be encouraged to demonstrate the genuine contribution of bacteriocin and bacteriophage application in commercial poultry settings.

To conclude, *Campylobacter* control in poultry faces many hurdles to overcome and probably several strategies will have to be combined if one wants to develop a suitable, reliable and effective strategy to eradicate this human pathogen from poultry flocks.

Conflict of interest

None to declare

Acknowledgements

In the authors’ research groups, research on *Campylobacter* is financially supported by the Federal Public Service of Health, Food Chain Safety and Environment (FOD, Brussels, Belgium): project RT08/8-CAMPOUL.

References

Baurhoo B., Ferket P.R., Zhao X., 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development,
cecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88, 2262-2272.

EFSA, 2010a. Panel on Biological Hazards (BIOHAZ), Scientific opinion on quantification of
the risk posed by broiler meat to human campylobacteriosis in the EU, EFSA J. 8, 1437

EFSA, 2010b. The community summary report on trends and sources of zoonoses, zoonotic

EFSA, 2010c. Analysis of the baseline survey on the prevalence of *Campylobacter* in broiler
batches and of *Campylobacter* and *Salmonella* on broiler carcasses in the EU, 2008, Part
A: *Campylobacter* and *Salmonella* prevalence estimates, EFSA J. 8, 1503 [99 pp.]

Application of a group II *Campylobacter* bacteriophage to reduce strains of
Campylobacter jejuni and *Campylobacter coli* colonizing broiler chickens. J. Food Prot.
72, 733-740.

factors for *Campylobacter* colonisation during rearing of broiler flocks in Great Britain.

Campylobacter susceptibility to ciprofloxacin and corresponding fluoroquinolone
concentrations within the gastrointestinal tracts of chickens. J. Appl. Microbiol. 99,
1043-1050.

Campylobacter jejuni and distribution of mucin carbohydrates in the chick intestinal

Stern N.J., Cox N.A., Musgrove M.T., Park C.M., 2001. Incidence and levels of
Campylobacter in broilers after exposure to an inoculated seeder bird. J. Appl. Poult.
Res. 10, 315-318.

Stern N.J., Robach M.C., Cox N.A., Musgrove M.T., 2002. Effect of drinking water
chlorination on *Campylobacter* spp. colonization of broilers. Avian Dis. 46, 401-404.

characteristics of *Campylobacter jejuni* in chick ceca. Avian Dis. 32, 330-334.

host lineage on cecal colonization by *Campylobacter jejuni* in chickens. Avian Dis. 34,
602-606.

mucosal competitive exclusion and competitive exclusion treatment to reduce *Salmonella*
and *Campylobacter* spp. colonization in broiler chickens. Poult. Sci. 80, 156-160.

Stern N.J., Eruslanov B.V., Pokhilenko V.D., Kovalev Y.N., Volodina L.L., Perelygin V.V.,
Mitsevich E.V., Mitsevich I.P., Borzenkov V.N., Levchuck V.P., Svetoch O.E.,
colonization while bacteria producing bacteriocins are ineffective. Microb. Ecol. Health
Dis. 20, 74-79.

Suzuki H., Yamamoto S., 2009. *Campylobacter* contamination in retail poultry meats and by-

Swaggerty C.L., Pevzner I.Y., He H., Genovese K.J., Nisbet D.J., Kaiser P., Kogut M.H.,
2009. Selection of broilers with improved innate immune responsiveness to reduce on-
farm infection by foodborne pathogens. Foodborne Pathog. Dis. 6, 777-783.

