Ghent University Academic Bibliography

Advanced

Orthogonal bases of Hermitean monogenic polynomials: an explicit construction in complex dimension 2

Fred Brackx UGent, Hennie De Schepper UGent, Roman Lávička and Vladimír Souček (2010) AIP Conference Proceedings. 1281. p.1451-1454
abstract
In this contribution we construct an orthogonal basis of Hermitean monogenic polynomials for the specific case of two complex variables. The approach combines group representation theory, see [5], with a Fischer decomposition for the kernels of each of the considered Dirac operators, see [4], and a Cauchy-Kovalevskaya extension principle, see [3].
Please use this url to cite or link to this publication:
author
organization
year
type
conference (proceedingsPaper)
publication status
published
subject
keyword
orthogonal basis, Hermitean Clifford analysis
in
AIP Conference Proceedings
AIP Conf. Proc.
editor
Theodore Simos, George Psihoyios and Ch Tsitouras
volume
1281
issue title
ICNAAM 2010 : international conference of numerical analysis and applied mathematics
pages
1451 - 1454
publisher
American Institute of Physics (AIP)
place of publication
Melville, NY, USA
conference name
8th International conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010)
conference location
Rhodes, Greece
conference start
2010-09-19
conference end
2010-09-25
Web of Science type
Proceedings Paper
Web of Science id
000289661501003
ISSN
0094-243X
ISBN
9780735408340
9780735408319
DOI
10.1063/1.3498030
language
English
UGent publication?
yes
classification
P1
copyright statement
I have transferred the copyright for this publication to the publisher
id
1156755
handle
http://hdl.handle.net/1854/LU-1156755
date created
2011-02-20 12:14:50
date last changed
2017-01-02 09:52:27
@inproceedings{1156755,
  abstract     = {In this contribution we construct an orthogonal basis of Hermitean monogenic polynomials for the specific case of two complex variables. The approach combines group representation theory, see [5], with a Fischer decomposition for the kernels of each of the considered Dirac operators, see [4], and a Cauchy-Kovalevskaya extension principle, see [3].},
  author       = {Brackx, Fred and De Schepper, Hennie and L{\'a}vi\v{c}ka, Roman and Sou\v{c}ek, Vladim{\'i}r},
  booktitle    = {AIP Conference Proceedings},
  editor       = {Simos, Theodore and Psihoyios, George and Tsitouras, Ch},
  isbn         = {9780735408340},
  issn         = {0094-243X},
  keyword      = {orthogonal basis,Hermitean Clifford analysis},
  language     = {eng},
  location     = {Rhodes, Greece},
  pages        = {1451--1454},
  publisher    = {American Institute of Physics (AIP)},
  title        = {Orthogonal bases of Hermitean monogenic polynomials: an explicit construction in complex dimension 2},
  url          = {http://dx.doi.org/10.1063/1.3498030},
  volume       = {1281},
  year         = {2010},
}

Chicago
Brackx, Fred, Hennie De Schepper, Roman Lávička, and Vladimír Souček. 2010. “Orthogonal Bases of Hermitean Monogenic Polynomials: An Explicit Construction in Complex Dimension 2.” In AIP Conference Proceedings, ed. Theodore Simos, George Psihoyios, and Ch Tsitouras, 1281:1451–1454. Melville, NY, USA: American Institute of Physics (AIP).
APA
Brackx, Fred, De Schepper, H., Lávička, R., & Souček, V. (2010). Orthogonal bases of Hermitean monogenic polynomials: an explicit construction in complex dimension 2. In Theodore Simos, G. Psihoyios, & C. Tsitouras (Eds.), AIP Conference Proceedings (Vol. 1281, pp. 1451–1454). Presented at the 8th International conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), Melville, NY, USA: American Institute of Physics (AIP).
Vancouver
1.
Brackx F, De Schepper H, Lávička R, Souček V. Orthogonal bases of Hermitean monogenic polynomials: an explicit construction in complex dimension 2. In: Simos T, Psihoyios G, Tsitouras C, editors. AIP Conference Proceedings. Melville, NY, USA: American Institute of Physics (AIP); 2010. p. 1451–4.
MLA
Brackx, Fred, Hennie De Schepper, Roman Lávička, et al. “Orthogonal Bases of Hermitean Monogenic Polynomials: An Explicit Construction in Complex Dimension 2.” AIP Conference Proceedings. Ed. Theodore Simos, George Psihoyios, & Ch Tsitouras. Vol. 1281. Melville, NY, USA: American Institute of Physics (AIP), 2010. 1451–1454. Print.