I. INTRODUCTION

Reservoir Computing is a methodology coming from the field of machine learning and neural networks that has been successfully used in pattern classification problems. Instead of feeding inputs directly into a linear classifier, the classifier takes its input from a reservoir with recurrence where the inputs have been mixed. One classical implementation employs a recurrent neural network with hyperbolic tangent functions in the nodes as a reservoir. On an isolated digit speech recognition task, with 3 dB SNR babble noise added [2], these tanh reservoirs achieve a performance around 7%. In a previous paper we have already shown that a network of Semiconductor Optical Amplifiers (SOA) can be used as a reservoir on a simple signal classification task, making it an interesting hardware implementation [1]. Here, such an SOA network will be used for speech recognition.

II. RESULTS

Figure 1 shows the performance of a simulated network of SOAs, with different delays for the interconnections, on this isolated digit recognition task. It shows that there exists an optimal delay in the network resulting in an optimal performance of around 5%. The dashed line shows the result achieved by classical tanh methods without any delay.

K. Vandoorne is with the Photonics Research Group, Department of Information Technology, Ghent University - imec, Sint-Pietersnieuwstraat 41, 9000 Gent

III. CONCLUSIONS

We have shown that a network of SOAs can be used as a reservoir for reservoir computing on a more complex task and identified delay as an important design parameter.

ACKNOWLEDGMENTS

The authors would like to acknowledge the suggestions and support of Joni Dambre, David Verstraeten and Benjamin Schrauwen of the PARIS group at ELIS, Ghent University. This work has been carried out in the framework of the IAP project Photonics@be of the Belgian Science Policy and the ERC project NaResCo. K. Vandoorne acknowledges the Special Research Fund (BOF) of Ghent University for a specialization grant.

REFERENCES