Performance Analysis of III-V/SOI Microdisk Based All-Optical Gate for On-chip Interconnects

R.Kumar¹, P.Kumar¹, G. Roelkens¹, L. Liu¹*, P. Regreny², T. de Vries³, D. Van Thourhout¹, R. Baets¹, G. Morthier¹

¹ Photonics Research Group, INTEC department, Ghent University-IMEC, Sint Pietersnieuwstraat 41, 9000 Gent, Belgium
² INL, Site Ecole Centrale de Lyon Batiment F7, 36, Avenue Guy de Collongue, 69134Ecully, France.
³ OED Group, Department of Electrical Engineering, Technische Universiteit Eindhoven, P.O. Box 513 5600 MB EINDHOVEN, The Netherlands
* currently at: Institut for Fotonik, Nanophotonic Devices, Danmarks Tekniske Universitet Ørsteds PladsBygning 345v, rum 1812800 Kgs. Lyngby, Denmark

All-optical devices such as optical filters, (de)multiplexers, switches, modulators and optical buffers etc. have been demonstrated either on silicon or hybrid silicon platform. Power consumption, speed of operation, bandwidth and footprint etc. are important performance metrics for on-chip interconnects. Here we present the experimental and theoretical analysis of the performance of an all-optical gate, realized on III-V/SOI platform, for its applications in on-chip photonic interconnects.

Introduction

Due to the extensive research being done in the optical technology it is set to revolutionize the short-reach interconnects. This research is motivated by the fact that optical interconnects are capable of bringing several major advantages over their electrical counterparts. Most important among these are low power consumption, ultra-high speed (of the orders of tens of GHz), immunity to cross talk, precise clock distribution and system synchronization [1]. Silicon photonics is on the forefront to lead the optical technology for on-chip signal processing due to the availability of the mature and cost-effective CMOS technology. Impressive progress has been made in the past few years to experimentally realize various optical devices, e.g. switches [2-4], modulators [5,6], wavelength filters [7,8], and wavelength convertors [9,10] using CMOS technology. Research on silicon based optical devices is most likely to be continued in the coming years for the performance improvement. But for the realization of fully-functional all-optical chips we also need to realize and integrate the active photonic components and devices on a single chip. Active photonic components require the laser as a transmitter and its derivatives such as memory elements (flip-flops). This is where we need to think hard if it is ever possible to realize the fully-functional optical chips with the use of only silicon material since silicon is not a good gain medium fundamentally limited by its indirect bandgap. The answer may be yes as there have been demonstrations of lasing action in silicon [11], [12]. But for the on-chip interconnects the performance of these lasers is still far below the acceptable level of different metrics including modulation speed, optical bandwidth, footprint and power consumption to compete with the electrical counterparts. Therefore, it has become necessary to work with the hybrid solutions for optical sources by integrating III-V material on top of silicon waveguide circuits. If one hybrid component is necessarily required then other hybrid components must be, and can be, integrated on the same chip with low additional cost. At present, the III-V-on-silicon technology has the most advanced devices and most advanced photonic integrated circuits [13]. All-optical gate
form an important building block for on-chip photonic interconnects. Cascaded all-
optical gates can be used for realizing the multichannel (de)multiplexers. Active
photonic components such as all-optical flip-flops and shift registers need all-optical
gates in combination with bistable lasers [14]. In this paper, we analyze the performance
of an all-optical gate realized with an InP-InGaAsP microdisk resonator heterogeneously integrated onto the SOI waveguide circuit [15].

Transmission Characteristics

Measurement of input to through port transmission response of a 10 micron diameter
disk resonator, as shown in Fig. 1(a), for TE polarized light gives an FSR of 22.68 nm
which in turn gives the group index of 3.5325. The transmission characteristic of
microdisks resonators can be altered using a forward or reverse bias. Fig. 1(b) illustrates
the red shift in the resonance by 0.9nm with the application of a reverse bias voltage of
1Volt. This shift corresponds to an effective index change of 2.10^{-3}. It has already been
demonstrated by many other researchers [e.g. 16] that using the reverse bias reduces the
carrier life time and can be used to improve the speed of all-optical gating which will be
discussed in the next section.

![Figure 1. (a) Schematic of microdisk resonator and (b) its transmission response](image)

Dynamic Performance

All-optical gating is realized in a pump-probe configuration and the working principle
of all-optical gating is explained in [15]. Fig. 2 (b) shows the gating response of the
microdisk under the reverse bias of 1 volt to a pulse train of 10Gb/s as shown in the
Fig. 2(a). Each pulse in the pulse train is of Gaussian shape with duration of 7.5 ps and
has an extinction ratio of more than 20dB. The extinction ratio of the gating output is
4.5dB and is acceptable for on-chip communication. Transient details of the gating
response are shown in the Fig 2(c) and (d). As can be seen from the transient responses
that this device can accommodate a 20 Gb/s data stream since the rise time and fall time
put together are 50 ps. The speed of the device is mainly limited by the fall time of the
device which is attributed to the life time of the free carriers generated by the pump data
stream. By making the carrier life time shorter the speed of the devices can be enhanced
further. When a reverse bias is applied it sweeps out the carriers from the active region
of the microdisk and effectively reduces the carrier life time.

Using a rate equation model, the gating response is simulated, with the carrier life
time a variable parameter. Fig. 3 shows the dependence of the gating fall time on the
carrier life time. It is obvious from this figure that the shorter the carrier life time is, the smaller is fall time and hence the faster is the recovery of the gate.

![Figure 2. Dynamic performance: (a) Pulse train, (b) Gate output, (c) Rising edge transient details and (d) falling edge transient details](image)

Conclusions
As can be seen from the transmission characteristic measurements, the investigated microdisk has a low quality factor of ~4500 and allows the relatively long wavelength range of ~ 0.35nm for gating around the resonance. Further tuning is possible by applying forward or reverse bias. Probe power and pump power in the demonstrated

![Figure 3. Dependence of fall time of gating response on carrier life time](image)
device is 170µW and 4 mW respectively and can be reduced further. Speed limitation imposed by the fall time can be further improved e.g. by ion implantation in the microdisk. Based on the principle of gating, logic functions such as AND, OR and NAND can be realized using the same kind of single microdisks.

References