NO-MEDIATED VASCULAR SMOOTH MUSCLE RELAXATION IN SGCA\textsubscript{1} KNOCK-OUT MICE
Nimmegeers1 S., Sips2 P., Buys2 E., Brouckaert2 P., Van de Voorde1 J.

1Department of Physiology and Physiopathology
2Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology, Ghent University, Ghent, 9000, Belgium

Soluble guanylyl cyclase (sGC) is composed of one α and one β subunit, each existing in 2 isoforms (α_1/α_2 and β_1/β_2). The aim of our study was to investigate the functional importance of the sGCα_1-subunit in several sGC-mediated vasorelaxations. Therefore, we studied blood vessels from mice lacking the sGCα_1 subunit. From mice of both genders, segments of the thoracic aorta and femoral artery were mounted in a small vessel myograph for isometric tension recording. Concentration-response curves were established on acetylcholine (ACh) (1 nM–10 μM), sodium nitroprusside (SNP) (1 nM–10 μM), NO gas (1 μM–100 μM), BAY 41-2272 (1 nM–10 μM), and levomakalim (Lev) (1 μM–100 μM) in control conditions and/or in the presence of ODQ. The relaxing influence of endogenous NO (released from the endothelium in response to ACh), exogenous NO (delivered by the NO-donor SNP and NO gas) and BAY 41-2272 (an NO-independent sGC-activator) was significantly reduced in the arteries of the sGCα_1 knock-out mice. However, preparations from sGCα_1 knock-out mice still showed a substantial relaxation in response to exogenous NO and BAY 41-2272. The sGC-inhibitor ODQ strongly diminished the remaining effect of exogenous NO and BAY 41-2272. The sGCα_1 knock-out mice and their wild type littermates showed a similar response to the K_{ATP}-channel opener Lev, indicating that the reduced NO- and BAY 41-2272-induced responses are not aspecific. All observations were similar in both sexes. Taken together, these findings indicate that the sGC$\alpha_1\beta_1$ isoform is involved in the vasorelaxing effect of both endogenous and exogenous NO. However, the substantial relaxation response to exogenous NO still observed in the sGCα_1 knock-out mice suggests the contribution of the sGC$\alpha_2\beta_1$ isoform or other ODQ sensitive mechanism. The vasorelaxing effect of BAY 41-2272 in the sGCα_1 knock-out mice, indicates that both sGC isoforms are present in the blood vessels studied.