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In the context of Bayesian probability theory, we discuss a model for estimating the plasma ion
effective charge Zeff, integrating data from both bremsstrahlung spectroscopy and individual
impurity concentrations obtained via charge exchange spectroscopy �CXS�. The validity of the
model, taking into account statistical as well as systematic uncertainties, is shown via the deviance
information criterion. The consistency of the continuum and CXS data regarding Zeff is improved,
as measured by the symmetrized Kullback–Leibler divergence and the geodesic distance between
the respective Zeff marginal posterior densities. © 2010 American Institute of Physics.
�doi:10.1063/1.3464466�

I. INTRODUCTION

In this paper, we apply the framework of integrated data
analysis �IDA� using Bayesian probability theory1 to calcu-
late probabilities associated to the plasma ion effective
charge Zeff. There is a long-standing issue of inconsistency
due to systematic uncertainties between the Zeff value as-
sessed from bremsstrahlung measurements �continuum Zeff�
and the Zeff calculated from impurity density measurements
obtained via charge exchange spectroscopy �CXS� �CX Zeff�.
This is a general problem observed at various machines.2 A
step toward an initial reconciliation of the two Zeff estimates
through the combined analysis of local continuum and CX
data was described in Ref. 1. In the present paper, we build
on the work in Ref. 1 by addressing the issues of model
selection and consistency measurement. These issues are of
fundamental interest in probabilistic data analysis. The pur-
pose of this paper is to demonstrate their relevance to fusion
data analysis through the case study of Zeff estimation.

II. INTEGRATED Zeff ESTIMATION

We discussed the general problem of discrepancy of the
continuum and CX Zeff in detail in Ref. 1. A simple forward
model and an associated probabilistic model were proposed
to estimate Zeff from both the continuum and CX data. Two
artificially constructed local plasma quantities � and � were
considered as measurements. Apart from Zeff, also the elec-
tron density ne was treated as a quantity of interest due to its
strong correlation with Zeff. The following model was pro-
posed:

�� = s�ne
2Zeff + ��

� = s�ne�Zeff − 1� + ��

ne,L = ne + �ne
. � �1�

Here, ne,L refers to the density measurements, while �
���� ,�� ,�ne

�T is an error term, assumed to be Gaussian with
zero correlation. s� and s� are two scale factors that, to a first
approximation, summarize the systematic uncertainties. Suf-
ficient information on the scale factors could be obtained by
the requirement of consistency between two measurement
time slices �levels�, each characterized by stationary plasma
conditions. The joint and marginal posterior densities were
simulated using a Markov chain Monte Carlo �MCMC� al-
gorithm. Good results regarding the estimation of a consis-
tent Zeff were obtained in Ref. 1 with an accuracy approach-
ing ITER requirements.

In this work, for demonstration purposes we performed
the estimation of Zeff from a synthetic data set �assumed
measurement error of 15% on �, 10% on �, and 5% on ne,L�.
The original and estimated parameter values �for each time
slice� are shown in Table I.

III. MODEL COMPARISON AND CONSISTENCY
ANALYSIS

A. Model comparison

We next compare the proposed model in Eq. �1� that
treats the systematic uncertainties with a simpler model that
does not involve the scale factors s� and s� �set equal to 1�.
To evaluate the performance of a model, one needs to weigh
the model fit against the model complexity. This has to be
done on the basis of the MCMC output and in such a case the
deviance information criterion �DIC� is well suited as a
model selection tool. The DIC is based on the concept of
Bayesian deviance D���, defined by3
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D��� = − 2 ln�p�x	��� + K ,

where x and � represent the data and the model parameters,
respectively, and K depends only on the data. Clearly, the
better the data variability is explained by the model with
parameters � �i.e., the higher the likelihood� the lower the

corresponding deviance. Taking the posterior sample mean �̄
as an estimator for the parameter vector �, we have that

DIC � 2D��� − D��̄� = D��� + pD, pD � D��� − D��̄� .

Here, pD can be seen as a degree of model complexity, mea-
suring the effective number of model parameters.3 Models
with a smaller DIC should be preferred over others. Using
the synthetic data, we obtained a DIC of 225 and a pD of
3.98 for the simpler model that deals only with the statistical
sources of uncertainty. For the model including the treatment
of systematic uncertainties, the DIC was 30 with a pD of
�28. We can conclude that first, the model with consider-
ation of the scale factors provides a superior explanation for
the data. Second, pD for the simpler model is about the true
number of parameters because the corresponding posterior is
about normal. Third, pD for the model with scale factors is
negative, which is due to the considerable skewness of the
marginal posteriors for the scale factors.

As a simple example of a comparison with a different
model, we discuss the case where, during estimation, the
systematic uncertainties are not modeled via multiplicative
scale factors, but through an additive term for both the con-
tinuum and CX data. Clearly, the latter model is less appro-
priate to explain our artificial data set that was constructed
using the model with scale factors. Indeed, this fact comes
out of the analysis in the model comparison phase since the
additive model has a DIC of 83 �pD=5.12�, indicating an
inferior model compared to the case with scale factors.

B. Consistency measurement

In order to get a more clear idea of what has really been
gained by modeling the systematic uncertainties, we investi-
gate to what extent the consistency of the continuum and CX
data sets has been improved with respect to their predictions
of the effective charge. Moreover, such a study can help
localize the primary sources of systematic uncertainty. This
can be done by observing the change of data consistency
when one or more of the nuisance parameters describing sys-
tematic uncertainty is left out of the model.

To evaluate the data consistency, we measured the simi-
larity between the marginal posterior densities for Zeff ob-

tained from either the continuum or the CX data. We per-
formed this check once using informative prior information
on the scale factors and once without taking into account the
systematic uncertainties. We first carried out the estimation
of the full model �1� at two levels on the artificial data,
resulting in comparable estimates of s� and s� as the ones
mentioned in Table I. Next, the thus obtained marginal pos-
teriors for the scale parameters were used as prior distribu-
tions in the estimation of Zeff using either the continuum or
the CX data in the first time slice. These prior distributions
were, in view of their substantial skewness, modeled by gen-
eralized extreme value distributions. The resulting con-
tinuum and CX Zeff marginal posteriors were, computation-
ally conveniently, found to be relatively well described by a
normal distribution. Then, the similarity between the con-
tinuum and CX marginal was summarized using two prob-
ability density similarity measures: the symmetrized
Kullback–Leibler divergence �KLD� �Ref. 4� and the Rao
geodesic distance �GD� based on the Fisher information as a
metric tensor on the manifold of probability density function
�PDFs�.5 Both the KLD and GD can be used as a measure of
similarity of the information contained in a PDF, in any ap-
plication where the resemblance of probabilistic models
needs to be assessed. Next, the estimation using either the
continuum or CX data in the first time slice was repeated, but
keeping the scale factors fixed at 1. Finally, again the KLD
and GD between the resulting continuum and CX marginal
Zeff distributions were computed.

Figure 1 presents the thus obtained marginal Zeff poste-
riors. In the case of modeled systematic uncertainties �scale
factors�, the overlap between the continuum and CX distri-
bution is clearly much larger compared to the case without
scale factors. In the former case, the relatively large residual
statistical uncertainty is due to the uncertainty in the priors
on the scale factors. However, note that here data from only
one time slice were used, as opposed to two levels for deriv-
ing the results in Table I. The difference in overlap is con-
firmed through the calculation of the respective similarity
measures. The symmetrized KLD between the Zeff posteriors

TABLE I. A priori chosen and MCMC estimated values for the parameters
of interest in the model �1�, including 68.3% credible intervals.

Parameter
Original

value
Estimated

value
Absolute

error
Relative

error

ne,1 �1013 cm−3� 3.24 3.25 �0.05 �2%
ne,2 �1013 cm−3� 4.52 4.53 �0.06 �1%
Zeff,1 2.19 2.21 +0.25 /−0.39 +11% /−18%
Zeff,2 2.36 2.39 +0.20 /−0.38 +8% /−16%
s� 1.35 1.38 +0.29 /−0.11 +21% /−8%
s� 0.63 0.65 +0.44 /−0.15 +70% /−24%
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FIG. 1. Normal distributions fit to the marginal posteriors for Zeff �synthetic
data�, based on either the continuum or the CX data. The cases are shown
without and with treatment of the systematic uncertainties �scale factors or
additive terms�.
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obtained from the continuum and CX data in the first time
slice, without treatment of the systematic uncertainty, equals
554 while the GD is 7.1. On the contrary, if the systematic
uncertainties are modeled and taking into account the infor-
mative prior information on the scale factors, we obtain a
symmetrized KLD value of 0.26 and a GD of 0.50. This
proves that the consistency of the data, as far as its informa-
tion content about Zeff is concerned, improves drastically if
we allow for the possibility of a systematic deviation.

Again, if the true model includes scale factors, but in-
stead the model used during estimation contains additive nui-
sance parameters, we can perform a similar analysis. The
resulting marginal Zeff posteriors are also shown in Fig. 1.
The obtained Zeff probabilities are comparable to the case of
the model with scale factors, and the consistency of con-
tinuum and CX data is also substantially better �KLD
=0.24, GD=0.48� than in the case where no systematic un-
certainties are considered. Still, the model with scale factors
is to be preferred over the additive model on the basis of the
DIC.

In order to provide a better intuition for the link between
the obtained KLD and GD values and the amount of actual
data consistency, we performed the following simulation
study. Using the values for the density and Zeff at two levels
obtained in Table I, we synthesized a large number of artifi-
cial data sets ��, �, and ne,L�, assuming random values for the
scale factors �0.5�s� ,s��3�. For every data set, we carried
out the same analysis as described above �systematic uncer-
tainties modeled through scale factors� and we obtained sym-
metrized KLD and GD values between Zeff marginal poste-
riors in the first level. The result for the KLD and GD is
displayed in Figs. 2–4, for both the cases with and without
treatment of systematic uncertainties. It can be seen that, as
expected, the more the scale factors differ from unity, the

larger the data inconsistency in terms of Zeff as measured by
the KLD and the GD �some values of s� and s� compensate
each other�. The results from this simulation study can be
used as a scale to which newly obtained KLD and GD values
can be compared, e.g., using real data. In addition, the KLD
seems to be more sensitive to data inconsistency than the
GD, but on the other hand in our experiments the GD ap-
peared to be more faithful to an actual measure of data con-
sistency, compared to the KLD. For instance, the huge asym-
metry in the KLD values with respect to s� and s� when the
scale factors are not included in the model is not well re-
flected in the size of the systematic uncertainties that were
actually introduced in the artificial data. Indeed, as far as Zeff

is concerned, a somewhat less asymmetrical behavior with
respect to s� and s� would be expected, as confirmed by the
GD measurements in Fig. 4. This finding corresponds to
other observations of the KLD and the GD as PDF similarity
measures, where it is seen that the GD better matches the
actual information content of the distributions.6

IV. CONCLUSION

We have discussed the issues of model selection �using
the DIC� and consistency measurement �using the KLD and
the GD� in an integrated analysis for the estimation of a
consistent Zeff from both bremsstrahlung and CX impurity
density measurements, quantifying systematic uncertainties.
In order to evaluate an IDA analysis, it is useful to compare
with alternative models �assess model fit and complexity� as
well as to analyze the resulting consistency of the data. The
methods developed in this work can be applied to issues of
inconsistency encountered with other plasma diagnostics as
well, for other plasma parameters.

1 G. Verdoolaege, R. Fischer, G. Van Oost, and JET EFDA Contributors,
“Potential of a Bayesian integrated determination of the ion effective
charge via bremsstrahlung and charge exchange spectroscopy in tokamak
plasmas,” submitted to IEEE Trans. Plasma Sci.

2 M. von Hellermann, Proceedings of the Third Workshop on Fusion Data
Processing, Validation and Analysis, Cadarache, 2004.

3 D. Spiegelhalter, N. Best, B. Carlin, and A. van der Linde, J. R. Stat Soc.
Ser. B �Stat. Methodol.� 64, 583 �2002�.

4 S. Kullback, Information Theory and Statistics �Dover, New York, 1968�.
5 S.-I. Amari, O. Barndorff-Nielsen, R. Kass, S. Lauritzen, and C. Rao,
Differential Geometry in Statistical Inference, Lecture Notes–Monograph
Series Vol. 10 �Institute of Mathematical Statistics, Hayward, CA, 1987�,
Chap. 5.

6 G. Verdoolaege and P. Scheunders, “Geodesics on the manifold of multi-
variate generalized Gaussian distributions with an application to multi-
component texture discrimination,” submitted to IEEE Trans. Image Pro-
cess.

FIG. 2. �Color online� Plot of the KLD between marginal posterior Zeff

distributions based on either continuum or CX data.

FIG. 3. �Color online� Similar to Fig. 2, but on a logarithmic scale.

FIG. 4. �Color online� Similar to Fig. 2, but for the GD.
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