Objective: Intestinal inflammation is associated with enhanced mucosal hypoxia, which contributes to the ongoing inflammatory process and hampers appropriate mucosal healing. We questioned whether local treatment with an oxygen-carrying and -releasing molecule (oxygenated perfluorodecalin, O₂-PFD) could positively influence the course of experimental colitis.

Design: The impact of intrarectal treatment with O₂-PFD was tested using the murine dextran sodium sulfate (DSS)-induced model of distal colitis, both in preventive and therapeutic settings. Colonic mucosal hypoxia was visualized by pimonidazole-staining. Colonic permeability was evaluated with FITC-dextran.

Results: In the preventive study, mice treated with O₂-PFD were protected against DSS colitis compared to saline-treated mice, as demonstrated by reduced shortening of colon length, reduced colonic TNF-α levels and a lower histological inflammation score (P<0.05 for all parameters). In the therapeutic study, administration of O₂-PFD resulted in accelerated recovery of colitis compared to saline-treated littermates, and this was reflected by a better weight evolution, lower myeloperoxidase activity and a lower histological inflammation score (P<0.05 for all parameters).

It was found that O₂-PFD established its therapeutic effects through (i) intrinsic anti-inflammatory effects of the PFD molecule and (ii) O₂-induced preservation and healing of the intestinal epithelial surface. Further in vitro and in vivo studies showed that the barrier-protective activity of O₂-PFD was obtained through prevention of colonocyte apoptosis and stimulation of colonocyte proliferation during inflammatory hypoxia.

Conclusions: These data show that intrarectal treatment with oxygenated PFD promotes colitis healing by the combined actions of direct anti-inflammatory effects and O₂-induced restitution of the epithelial barrier. As such, O₂-PFD enemas could be an attractive treatment option for patients with distal IBD.