Advanced search
1 file | 384.78 KB Add to list

Generating sequential space-filling designs using genetic algorithms and Monte Carlo methods

Author
Organization
Abstract
In this paper, the authors compare a Monte Carlo method and an optimization-based approach using genetic algorithms for sequentially generating space-filling experimental designs. It is shown that Monte Carlo methods perform better than genetic algorithms for this specific problem.
Keywords
sequential design, Monte Carlo, surrogate modelling, active learning, genetic algorithm, space-filling

Downloads

  • 4406 i.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 384.78 KB

Citation

Please use this url to cite or link to this publication:

MLA
Crombecq, Karel, and Tom Dhaene. “Generating Sequential Space-Filling Designs Using Genetic Algorithms and Monte Carlo Methods.” LECTURE NOTES IN COMPUTER SCIENCE, edited by K Deb et al., vol. 6457, Springer, 2010, pp. 80–84, doi:10.1007/978-3-642-17298-4_8.
APA
Crombecq, K., & Dhaene, T. (2010). Generating sequential space-filling designs using genetic algorithms and Monte Carlo methods. In K. Deb, A. Bhattacharya, N. Chakraborti, P. Chakroborty, S. Das, J. Dutta, … K. Tan (Eds.), LECTURE NOTES IN COMPUTER SCIENCE (Vol. 6457, pp. 80–84). https://doi.org/10.1007/978-3-642-17298-4_8
Chicago author-date
Crombecq, Karel, and Tom Dhaene. 2010. “Generating Sequential Space-Filling Designs Using Genetic Algorithms and Monte Carlo Methods.” In LECTURE NOTES IN COMPUTER SCIENCE, edited by K Deb, A Bhattacharya, N Chakraborti, P Chakroborty, S Das, J Dutta, SK Gupta, et al., 6457:80–84. Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-17298-4_8.
Chicago author-date (all authors)
Crombecq, Karel, and Tom Dhaene. 2010. “Generating Sequential Space-Filling Designs Using Genetic Algorithms and Monte Carlo Methods.” In LECTURE NOTES IN COMPUTER SCIENCE, ed by. K Deb, A Bhattacharya, N Chakraborti, P Chakroborty, S Das, J Dutta, SK Gupta, A Jain, V Aggarwal, J Branke, SJ Louis, and KC Tan, 6457:80–84. Berlin, Germany: Springer. doi:10.1007/978-3-642-17298-4_8.
Vancouver
1.
Crombecq K, Dhaene T. Generating sequential space-filling designs using genetic algorithms and Monte Carlo methods. In: Deb K, Bhattacharya A, Chakraborti N, Chakroborty P, Das S, Dutta J, et al., editors. LECTURE NOTES IN COMPUTER SCIENCE. Berlin, Germany: Springer; 2010. p. 80–4.
IEEE
[1]
K. Crombecq and T. Dhaene, “Generating sequential space-filling designs using genetic algorithms and Monte Carlo methods,” in LECTURE NOTES IN COMPUTER SCIENCE, Kanpur, India, 2010, vol. 6457, pp. 80–84.
@inproceedings{1140796,
  abstract     = {{In this paper, the authors compare a Monte Carlo method and an optimization-based approach using genetic algorithms for sequentially generating space-filling experimental designs. It is shown that Monte Carlo methods perform better than genetic algorithms for this specific problem.}},
  author       = {{Crombecq, Karel and Dhaene, Tom}},
  booktitle    = {{LECTURE NOTES IN COMPUTER SCIENCE}},
  editor       = {{Deb, K and Bhattacharya, A and Chakraborti, N and Chakroborty, P and Das, S and Dutta, J and Gupta, SK and Jain, A and Aggarwal, V and Branke, J and Louis, SJ and Tan, KC}},
  isbn         = {{9783642172977}},
  issn         = {{0302-9743}},
  keywords     = {{sequential design,Monte Carlo,surrogate modelling,active learning,genetic algorithm,space-filling}},
  language     = {{eng}},
  location     = {{Kanpur, India}},
  pages        = {{80--84}},
  publisher    = {{Springer}},
  title        = {{Generating sequential space-filling designs using genetic algorithms and Monte Carlo methods}},
  url          = {{http://doi.org/10.1007/978-3-642-17298-4_8}},
  volume       = {{6457}},
  year         = {{2010}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: