Surrogate-based modeling of electrical systems

Ivo Couckuyt
Professor Ir. Tom Dhaene

Outline

- Introduction
 - Surrogate modeling
- Surrogate-based Optimization
- Integrating surrogate models in optimization
- Statistical infill criteria
- Conclusion

A New Science Paradigm

- thousand years ago: experimental science
 - description of natural phenomena
- last few hundred years: theoretical science
 - Newton's laws, Maxwell's equations...
- last few decades: computational science
 - simulation of complex phenomena
- today: e-Science or data-centric science
 - massive computing
 - large data exploration and mining
 - unify: theory, experiment, and simulation

(With thanks to Jim Gray)

Surrogate Modeling Lab – www.surmo.intec.ugent.be
Department of Information Technology (INTEC) - IBCN

Surrogate model?

- system modeling
 - real world
 - I/O system
 - stimulus / response
 - simulation model
 - approximation
 - discretization
 - surrogate model
 - metamodel, RSM, emulator
 - scalable analytical model
 - "model of model"
Adaptive sampling

- traditional approach
 - uniform sampling
 - oversampling
 - undersampling

- adaptive sampling
 - optimal sample distribution
 - Sequential design

Adaptive modeling

- traditional approach
 - local approximation
 - overmodeling
 - undermodeling

- adaptive modeling
 - global approximation
 - optimal model complexity

Methodology

1. Initial data points
2. Run simulation code
3. Identify new data points
4. Create surrogate models
5. Tune parameters
6. Estimate accuracy
7. Improvement?
 - Yes
 - No
 - Accuracy reached?
 - No
 - Yes
 - Terminate

Outline

- Introduction
- Surrogate-based Optimization
 - The basic idea
- Integrating surrogate models in optimization
- Statistical infill criteria
- Use cases
- Conclusion
Surrogate-based Optimization

- Expensive simulation code
 - Reduce the number of simulations

=> Surrogate-Based Optimization (SBO)
 - Surrogate used to expedite search of global optimum
 - Global accuracy of surrogate not a priority
 - Surrogate model is a tool to an end, i.e., optimization

Outline

- Surrogate-based Optimization
- Integrating surrogate models in optimization
- Statistical infill criteria
- Use cases
- Conclusion

Multi-fidelity methods

- Multiple simulation codes for the same problem
 - Varying accuracy (fidelity)

- Exploit!
 - "Fuse" such multi-fidelity models

- Introduce scaling factors
 - Correct low-fidelity model to agree with the high-fidelity model on a set of points
 - Additive or multiplicative factors
 - Zero-order, first-order, etc. scaling
Multi-fidelity methods (cont’d)

- Space mapping
 - Maps the input spaces of the simulation models so that the optima align in the design space
 - Variants: input, output, manifold, ... space mapping
- Efficient
- Not completely black-box

Cokriging
- Inherently a multi-fidelity surrogate model
- Combines low- and high-fidelity data to increase prediction accuracy

Outline

- Surrogate-based Optimization
- Integrating surrogate models in optimization
- Statistical infill criteria
- Use cases
- Conclusion

Methodology

1. Initial data points
2. Run simulation code
3. Identify new data points
4. Create surrogate models
5. Tune parameters
6. Estimate accuracy
7. Improve?
 - Yes: Accuracy reached
 - No: Terminate
8. Yes: Terminate
 - No: Accuracy reached
Methodology (cont'd)

- Surrogate model is cheap
- Sequential design = optimization
 - Select new points based on information that the surrogate model provides
- Surrogate model is a global approximation
 - But not necessarily globally accurate!
- Simple approach
 - Select the optimum of the surrogate as the next sample iterate

Simple Gaussian Process

- Gaussian Process
 - flexible!

Simple Polynomial

- Polynomial
 - Fixed structure (quadratic)

Simple Gaussian Process (cont'd)

- But...
Gaussian Process provides uncertainty!

Kriging
- Gaussian Process-based
 \[Y(x) = f(x) + Z(x) \]
- Hyperparameters theta
 - Equal to number of dimensions
 - Classical optimization problem
- Provides uncertainty about the predicted function values!

=> Statistical infill criteria
- Balances exploration vs exploitation
- Popularized in the Efficient Global Optimization (EGO) method
Illustration Gaussian Process

- Unknown model
- Data points \(f(x) \)
- Minimum over all data points: \(f_{\text{min}} \)
- Surrogate model

\[
Y(x) \sim N(\mu(x), \sigma^2(x))
\]

\[
y = \mu(x), \sigma^2 = \sigma^2(x)
\]

Probability of Improvement

\[
\text{Pol}(x) = P(Y(x) \leq f_{\text{min}}) = \int_{-\infty}^{f_{\text{min}}} \phi(Y(x)) \, dY
\]

Illustration Gaussian Process

- Unknown model
- Data points \(f(x) \)
- Minimum over all data points: \(f_{\text{min}} \)
- Surrogate model
- Gaussian PDF at \(x=0.5 \)
- Prediction mean at \(x=0.5 \)

\[
Y(x) \sim N(\mu(x), \sigma^2(x))
\]

\[
y = \mu(x), \sigma^2 = \sigma^2(x)
\]

Expected Improvement

- Pol is already useful
 - But doesn't quantify the amount of improvement!

- Expected Improvement (EI)
 - The first moment of Pol
 \[
 I(x) = \max(Y(x) - f_{\text{min}}, 0)
 \]

\[
E[I(x)] = \int_{-\infty}^{f_{\text{min}}} I(x) \phi(Y(x)) \, dY
\]

\[
E[I(x)] = \begin{cases}
(f_{\text{min}} - \bar{y}) \cdot \phi \left(\frac{f_{\text{min}} - \bar{y}}{\hat{s}} \right) + \hat{s} \cdot \phi \left(\frac{f_{\text{min}} - \bar{y}}{\hat{s}} \right) & \text{if } \hat{s} > 0 \\
0 & \text{if } \hat{s} = 0
\end{cases}
\]

- Good trade-off between exploitation and exploration
Use case 1

- Branin function
 - 2D benchmark function for optimization

- Experimental setup
 - 21 initial point (latin hypercube)
 - Kriging
 - Expected improvement
 - Stopping criterion: 1% relative error w.r.t. optimum

Use case 1 (cont'd)

- Mathematical function:
 - 3 global optimums
 - \(x^* = (-\pi, 12.275), (\pi, 2.275), (9.42478, 2.475) \)
 - \(f(x^*) = 0.397887 \)
Use case 1 (cont'd)

- Prediction
- Expected Improvement
- Prediction variance

Use case 2

- Textile antenna
 - Inverse problem: identify material properties
- Software: ADS Momentum
- Inputs (2D)
 - Material properties
- Output
 - Error between measurements and simulation

Diagram:
- Input to Simulator
- Output to Error function
- Error function to Cost function

Use case 2 (cont'd)

- Initial design of 14 samples

Chart:
- Minimum cost function value (NFE)
 - kriging (MLE)
 - Final cost function value
 - Number of samples: 15 to 45
Use case 2 (cont'd)

Pareto optimization

- MultiObjective Surrogate-Based Optimization (MOSBO)
 - Perhaps even more promising than SBO!
- ParEGO
 - Traditional EGO approach but...
 - Cost functions are aggregated into a weighted sum
 - Weights randomized every iteration!
- Or extending the concept of Pol and El...

Probability of Improvement

- Improving on one point
 - In f1, f2, both objectives
- Shaded area (P_augm)
- Hatched area (P_dom)

Uniformity of front = the search strategy

Probability of Improvement (cont'd)

- k levels of improvement
 - k=0: augmenting the Pareto front
 - 0<k=N_par: dominating k points
Pareto optimization (cont’d)

- Probability of improvement
 - \(P_{augm} \Rightarrow \text{chance of augmenting current pareto front} \)
 - \(P_{dom} \Rightarrow \text{chance of improving on the current pareto front} \)
 - More general: levels of improvement
 - Chance of improving on at least \(k \) points of the current pareto front
 - 'k levels of improvement': \(k \) needs to be chosen

Irrespective of scale of objectives!

Use case 3

- Veldhuizen and Lamont's MOP2 function (VLMOP2)
 - Multiobjective optimization benchmark problem
 - 2 outputs

- Initial design of 16 samples

- Pareto Expected Improvement

Expected improvement

- Amount of improvement over centroid (moment arm) w.r.t. closest point on pareto front
- Also 2 flavours: dominating or augmenting

Encourages uniformity

Though, scaling still important (unavoidable)
Current work

- Generalization of statistical criterions
 - 'Directly' solve inverse problems
 - Include manufacturing uncertainty
 - Identify quasi-optimal regions
 - ...

- Examples:
 - Generalized Pol
 \[gPol(x) = P(a \leq Y(x) \leq b) = \int_a^b \phi(Y(x)) \, dY \]
 - Expected Distance
 \[D(x) = |Y(x) - \bar{f}_{min}| \]
 \[E[D(x)] = \int_{-\infty}^{\infty} f(x) \, \phi(Y(x)) \, dY \]

Use case 4

- Branin function
- Output range of interest: [20, 35]
 - \(\phi \) = inverse problem
- Initial design of 8 samples (LHD)
- Use gPol to select new samples
 - No optimization possible!
 - \(n=10000 \) and \(k=1 \)

\[\text{Generate n candidates} \rightarrow \text{Select m best candidates} \]
Use case 5

- Differential pair on-board microstrip (above PEC ground)
 - 10kHz -> 10 Ghz

- Inputs
 - Spacing between conductors
 - Width of conductors

- Output
 - Relative error between output and 100 Ohm

- Goal: 100 Ohm differential impedance at HF
 - Relative error < 0.02

- Extra: Manufacturing uncertainty on inputs

Use case 5 (cont'd)

- Add input uncertainty
 - Account for a deviation of epsilon ε over the inputs
 - Due to manufacturing limitations

- Expected gPol
 - \(f(x_0) = \int_A gPoI(x) \cdot \beta(x) dY \)

- A denotes an area in the input space
 - \(A = x_0 - \epsilon \to x_0 + \epsilon \)

Outline

- Surrogate-based Optimization
- Integrating surrogate models
- Statistical infill criteria
- Conclusion

Conclusion

- SBO methods are quite powerful
- Solves real-life problems in an efficient way
 - Minimizes number of evaluations
 - Reduces/Eliminates noise
 - Provides sensitivity, robustness analysis, ...

- Careful! Many traps to fall into...
 - Needs decent understanding of the methodology (in case of failure)
 - Curse of dimensionality
 - ...
International Workshop on

Advances in Modeling and Optimization of High Frequency Structures

August 21-22, 2010

Reykjavik University, Iceland

HÁSKÓLINN Í REYKJAVÍK
REYKJAVIK UNIVERSITY

Engineering Optimization & Modeling Center

EOMC