
Supporting Protocol-Independent Adaptive QoS in Wireless Sensor Networks

Evy Troubleyn, Eli De Poorter, Peter Ruckebusch, Ingrid Moerman, Piet Demeester
Ghent University - IBBT

Department of Information Technology (INTEC)
Gaston Crommenlaan 8, bus 201, 9050 Ghent, Belgium

Email: Evy.Troubleyn@intec.ugent.be

Abstract—Next-generation wireless sensor networks will be
used for many diverse applications in time-varying net-
work/environment conditions and on heterogeneous sensor
nodes. Although Quality of Service (QoS) has been ignored
for a long time in the research on wireless sensor networks,
it becomes inevitably important when we want to deliver an
adequate service with minimal efforts under challenging net-
work conditions. Until now, there exist no general-purpose QoS
architectures for wireless sensor networks and the main QoS
efforts were done in terms of individual protocol optimizations.
In this paper we present a novel layerless QoS architecture
that supports protocol-independent QoS and that can adapt
itself to time-varying application, network and node conditions.
We have implemented this QoS architecture in TinyOS on
TmoteSky sensor nodes and we have shown that the system is
able to support protocol-independent QoS in a real life office
environment.

Keywords-Wireless Sensor Networks; Quality of Service;
Architecture; Layerless Design

I. INTRODUCTION

Next-generation heterogeneous wireless sensor networks
are characterized by dynamic and time-varying (i) node
capabilities and (ii) network conditions. For instance, sensor
nodes can have heterogeneous resources in terms of energy,
memory or computing capacity, and the nodes are often
resource-constrained. Moreover, the wireless links can be
very unpredictable due to fading, shadowing and the pres-
ence of mobile nodes.

Furthermore, these sensor networks may simultaneously
support (iii) diverse applications, each of them having its
own specific Quality of Service (QoS) requirements. For
instance, the next-generation wireless sensor networks will
not only be used for monitoring, tracking or building au-
tomation, but also for more challenging streaming applica-
tions such as voice and video. An example can be found
in the large interdisciplinary IBBT-DEUS project [1] where
academic partners, industry and non-profit organizations are
collaborating on the development of a generic cost-efficient
sensor network platform that can be easily deployed in
diverse user scenarios. In one of the use cases, the sensor
network will assist elderly persons, in particular persons with
dementia, in and around residential care homes. As elderly
people often stray, they are kept in an isolated wing of the
care home today. The DEUS project aims to offer elderly

person more freedom and mobility. To this end several
services need to be deployed on top of the sensor network:
(i) indoor (within the care home) & outdoor (garden and
walking area around the home) positioning, (ii) emergency
call realized through an alarm button on a sensor device
carried by the elderly person, (iii) voice call between the
elderly person and a nurse automatically established upon
an emergency call or when the elderly person is located in
an area where he/she is not allowed to go. These services
have different requirements in terms of reliability, delay and
bandwidth and the sensor network is expected to guarantee
the different QoS requirements despite the dynamic nature
of the wireless environments and the resource constraints
(energy, bandwidth, memory) inherent to sensor networks.

This research paper will focus on QoS at an architec-
tural level. Until now, most QoS efforts in wireless sensor
networks are limited to the protocol level either through
making network protocols QoS-aware or through cross-
layer interactions. For instance, in [2], several QoS-aware
MAC and routing protocols were proposed. However, they
only focus on a few QoS parameters such as reliability
[3] and delay [4], while other parameters such as jitter
and bandwidth are ignored. Additionally, these protocols
are tuned to a specific network environment or a specific
application and also often ignore energy constraints. Since
energy resources are scarce in wireless sensor networks, our
architecture aims to deliver the right QoS guarantees while
adapting itself to energy constraints. By treating QoS at an
architectural level, QoS can be introduced irrespective of the
applied network protocols and applications. This way, QoS
support can be easily turned on/off and is transparent for
protocol and application developers. Supporting protocol-
independent adaptive QoS at an architectural level allows
and simplifies time-varying global QoS optimization.

The remainder of this paper is organized as follows. In
section 2, we give a short overview of the related work on
QoS in networks. Afterwards, in section 3, we motivate
the choice for a layerless architecture as starting point
for our QoS architecture. Next, in section 4, we present
our adaptive QoS architecture in general and discuss the
main architectural building blocks. Section 5 will examine
in more detail the fundamental protocol-independent QoS
mechanisms of the architecture. In section 6, we will discuss



the implementation of the QoS architecture on real sensor
hardware in a real life environment. Some more advanced
QoS mechanisms will be addressed in section 7 on future
work. Finally, we will conclude this paper with a short
summary of our work.

II. RELATED WORK

QoS is in fact a very broad concept and is often defined
as an objective measurement of the services delivered by the
network expressed in terms of bandwidth, delay, reliability
and jitter. However, Quality of Service (QoS) is different
from Quality of Experience (QoE). Quality of Experience
can be defined as the subjective measurement of the services
delivered by the network as observed by the users. Some-
times, a good QoS can give a bad QoE and vice versa. An
example of a QoE measurement is the mean opinion score
(MOS) that expresses the quality of a voice call. Different
codecs will give different mean opinion scores and each
codec will be translated into different QoS parameters. Some
codecs are for example more sensitive for packet errors and
jitter. In the remainder of this paper, we will only focus on
Quality of Service.

Existing QoS-oriented technologies for wired and wireless
networks, such as ATM, MPLS, and IP, cannot directly
be applied to wireless sensor networks. Although ATM
[5] is very suited to support QoS, this connection-oriented
technology is much too complex and not suited to use in
fast-changing network environments as is often the case for
wireless sensor networks.

IP is on the other hand connectionless but only offers best-
effort traffic. However, the following QoS-oriented technolo-
gies are often used: IntServ [6] and DiffServ [7]. In IntServ,
each flow can be treated individually which makes it very
flexible. However, since every node has to maintain per flow
state information, the drawback of IntServ is its scalability
and the fact that it is too complex to use on sensor nodes
with limited capabilities. DiffServ defines on the other hand
some different service classes using the DSCP field. The
advantage of this system is that the complex operations are
moved to the edge routers, while the maintenance in the
core routers remains simpler. The drawbacks are however
that the quantitative information of each flow is lost after the
aggregation in service classes and that in the case of wireless
sensor networks even edge devices have limited capabilities.

MPLS [8] tries to combine the best of both the ATM and
IP world but is still too complex to use on sensor nodes with
limited resources.

Together with these QoS-oriented technologies, several
QoS control and management solutions are available, go-
ing from simple over-provisioning to congestion avoidance,
traffic shaping and resource reservation. Again, most of these
solutions cannot directly be applied to sensor networks for
reasons of network and node conditions and energy consid-
erations. These challenging sensor network characteristics

make it almost impossible to apply currently available end-
to-end QoS solutions in wireless sensor networks.

III. LAYERLESS PROTOCOL ARCHITECTURE

According to the OSI Reference Model [9], supporting
QoS is one of the few network functionalities that is involved
in all the system layers. Advantages of supporting QoS in
such a layered structure are its standardized interface and
its transparency. Many studies [10] argue that the layered
protocol architecture, where each layer is designed and
operated independently and which works very well for
wired networks, seems to be very inefficient when deployed
in wireless networks, which are much more dynamic and
less predictable. Furthermore, this layered approach requires
each layer to define its own QoS header information which
gives much overhead on limited sensor nodes and the
QoS capabilities of each layer are restricted by the QoS
capabilities of the layer above and below.

Many cross-layer design ideas, going from the direct
communication between layers up to complete layerless
architectures, have already been presented [11], [12]. Direct
communication between layers is the most straightforward
way for cross-layer interaction and makes variables at one
layer visible to the other (non-adjacent) layers at run-time.
Another approach is based on a shared database, whereby
the database can be regarded as a new layer, providing the
service of storage/retrieval of information to all layers. The
main challenges are to adapt the single layer protocols taking
into account the information obtained from other layers
and to design interfaces either between layers or between
layers and a shared database. Yet another approach is joint
optimization between adjacent layers. The disadvantage of
such an approach is however its unclear structure and the
inherent difficulty to deal with new layers in a plug and
play manner.

In a layerless architecture, the protocols are organized
in a modular way, enabling plenty of interactions between
the different modules. While the latter approach offers
the greatest flexibility, it is not anymore compatible with
standard layered protocol stacks as is the case for the former
cross-layer approaches. Layerless architectures may however
be very effective for sensor networks, where devices have
constrained memory, processing and battery capabilities. Re-
cently E. De Poorter et al. have introduced a novel layerless
protocol architecture, called information driven architecture
(IDRA) [13]. The IDRA architecture is not based on packets,
but on “information exchanges”. Protocols do not interact
with packets, but only with the information they contain,
meaning that protocols do not need to define complicated
header structures and do not need to provide buffer spaces
for storing the packets. Instead, packet creation and buffer
provisioning are handled by the architecture. A conceptual
representation of this architecture is shown in Fig. 1.

The main characteristics of IDRA are:



1) The system architecture is responsible for packet cre-
ation. Protocols only have to hand over their informa-
tion to the system. This avoids exchanging redundant
information, allows information aggregation and the
protocols do not have to care about header creation.

2) In contrast to traditional systems, where each protocol
has to store-and-forward packets, IDRA has only one
system-wide queue where incoming packets are stored.
The advantages are less processing overhead, less
memory usage, simpler monitoring and management,
and protocols can be kept simpler and smaller.

3) Protocol logic and packet representation are decou-
pled by a packet facade. Since the system is respon-
sible for packet creation, it is very easy to use a
different packet implementation (802.15.4, 6lowpan,
own implementation, etc.) which allows compatibility
with legacy systems. Protocols only have to ask the de-
sired information (for instance the destination) which
is independent of the used packet implementation.

4) The system decides at run-time which protocols have
to be used. This pluggable protocol system makes
it possible to dynamically change between different
routing and MAC protocols.

Pluggable Protocols

System

P
ac

ke
t 

Fa
ca

d
e

Shared Queue

Hardware Abstraction Layer

Interface 1 Interface n…

Protocol 
Selector

Protocol x

Protocol y

…

Routing 1 Routing n

MAC 1 MAC n…

…

6
 lo

w
p

an
8

0
2

.1
5

.4
…

Send
Information

Receive
Information

Figure 1. Information Driven Architecture: conceptual
representation

IDRA is very suited to support QoS at an architectural
level. The advantages are:

• System-wide QoS: since there is only one shared queue,
information can be accessed, controlled and influenced
at each network layer. This way, QoS decisions can be
based on a global network view instead of a single layer
protocol view.

• Transparent QoS: The packet facade and the infor-
mation driven approach ensure that QoS information
can be accessed in a transparent way. It makes it very
easy to add protocol-independent QoS information such

as a global priority level or protocol-independent QoS
attributes such as the information reliability or the
maximum allowed information delay.

• Protocol-independent QoS: Since there is no direct cou-
pling between QoS and the network protocols, QoS can
be simply enabled or disabled in the system depending
on the application and user requirements. Basic QoS,
such as packet priorities, can be enabled even if the
protocols do not support any QoS features.

• QoS-aware data-aggregation: Since protocols hand
over their information to the system, it is much easier
to take QoS requirements into account for information-
aggregation. The system has a global view on which
information has to be routed to which destinations
under which QoS conditions and can easily interact
with the QoS parameters such as delay and reliabil-
ity. In a layered architecture, QoS-based information-
aggregation is almost impossible.

• Heterogeneous QoS support: The pluggable protocol
system allows the QoS system to add new, more
optimized protocols on per-need base. Based on the
node’s capabilities, network and application require-
ments, more or less QoS functionality can be plugged
in or out the system.

This research paper explores the first three advantages. In
future work, we will focus on QoS-aware data-aggregation
and heterogeneous QoS support.

IV. ARCHITECTURE

In this section, we describe how protocol-independent
adaptive QoS can be provided at an architectural level in
a layerless system approach. A conceptual representation is
given in Fig. 2.

Pluggable Protocols

System

Shared Queue

Protocol 
Selector

QoS 
Monitoring

Routing 1 Routing n

MAC 1 MAC n…

…

QoS 
Policies

Application/User
QoS Requirements

QoS Management 
Framework

P
ac

ke
t 

Fa
ca

d
e

Figure 2. Supporting protocol-independent adaptive QoS in
a layerless architecture: conceptual representation



The internal working of this protocol-independent QoS
system is based on two packet-based QoS mechanisms:

• A mandatory packet priority level
• Optional additional packet attributes
Both mechanisms will be explained in more detail in

section V. Until now, it is sufficient to know that all packet-
based QoS interactions discussed in the following sections
will be based on these two mechanisms. We will explain the
QoS architecture based on a specific network scenario: an
elderly monitoring scenario with two traffic flows: a reliable
blood pressure monitoring application and an emergency
voice call application.

A. Application/User QoS Requirements

Application requirements have to be translated into net-
work requirements expressed in terms of end-to-end delay,
reliability, bandwidth and possible jitter. For instance, the
network’s bandwidth will be the sum of the individual
application bandwidths and the network’s delay will be the
most stringent application delay.

B. QoS Policies

The QoS Policies, shown in Fig. 2, define the internal
rules for processing information through the system. As can
be seen in Fig. 3, these rules are working on three levels:

Protocol k

Protocol 2

Protocol 1

…

3) Select Processed Packet For Sending

2) Select Packet For Processing

1) Storing Packet after Pre-Processing

Shared Queue

Figure 3. Conceptual representation of the QoS Policies

1) When a remote packet arrives on a sensor node,
packet-pre-processing can be executed. For instance,
if the shared queue is almost full, a packet can be
dropped in order to keep free spaces for new arriving
packets. The QoS Policies will define which packet
has to be dropped first: the reliable monitoring packet
with the less stringent delay requirements or the voice
packet with the lowest reliability level but with the
most stringent delay requirements, or should it be
a combination of both? The main advantage of the
shared queue approach (from a QoS view) is that not
only packets ready for pre-processing can be dropped,
but even packets that are being currently processed or
that already are fully processed and ready for sending.

2) When the system is ready to process a new packet for
routing, we can select the packet to be processed in
a QoS-aware way. Some packets, such as control and

management messages always need to be processed
first in order to keep the network alive. But for data
packets, this packet selection process can be smartly
controlled. At this stage, some minor modifications
can be made on each packet. For instance, if our
voice packet is processed, we can update the current
delay that our packet already has undergone. Even the
priority level can be changed at this stage. Suppose
there are two voice calls with the same priority level.
The maximum delay of the packets of the first voice
call is almost reached, while the packets of the second
voice call only have experienced a minor delay. In
this case, the QoS Policies can decide to increase the
priority level of the first voice call.

3) After a packet was processed, the control is again
handed over to the shared queue where it stays until
the MAC module is ready to send a new packet. Then,
post-processing can select the most appropriate packet
for sending. For instance, this decision can be based on
the load and the sleep/awake duty cycle of the packet’s
next-hop. Again, the QoS Policies can influence these
packet selection rules.

C. QoS Monitoring

QoS Monitoring can include three parts: Node Monitor-
ing, Neighbor Monitoring and Network Monitoring.

The own Node Monitoring is responsible for monitoring
the node’s own load and energy, its own protocols and its
radio capabilities.

Neighbor Monitoring on the other hand is responsible
for monitoring one-hop neighbor information. Based on the
node capabilities, more or less parameters can be monitored.
Some examples are the load, the energy level and the duty
cycle.

Network Monitoring is the part of the QoS Monitoring
module that is responsible for monitoring (a part of) the
general network load, the available network protocols on the
other nodes and the QoS functionalities of the other network
parts.

The monitoring information is used by the QoS Manage-
ment Framework to intelligently change the rules from the
QoS Policies.

D. QoS Management Framework

The QoS Management Framework (see Fig. 2) has several
responsibilities.

Firstly, it is responsible for mapping the application QoS
requirements to an initial packet QoS priority level. This
can be statically done on design-time or more dynamical
by using more complex learning techniques. Furthermore,
it can add additional QoS attributes to the packets. For
example, consider the scenario with the reliable monitoring
application. In this case, a default priority level will be set
together with additional information about the reliability.



Similarly, in the voice call scenario, a high priority level
will be needed and extra packet-delay information can be
added, for instance the maximum delay that such a packet
is allowed to travel and the current delay already travelled
until now. Initially, this current delay will be set to 0, but this
value will be updated in the intermediate nodes, as explained
in the QoS Policies section.

Secondly, the QoS Management Framework is responsible
for controlling and managing the QoS Policies’ rules. Based
on some QoS Monitoring information and the currently
available applications, it can be useful to change these rules.
For instance, if our energy level becomes low, it could be
better to only drop packets that are in the pre-processing
phase instead of taking all the packets in the shared queue
into account (and thus also the packets that are already fully
processed).

V. PACKET-BASED ADAPTIVE QOS MECHANISMS

When handling the different applications in wireless
sensor networks, we also have to handle the different
traffic/packet flows. Basically, we can make a distinction
between a class-based and a flow-based approach.

In a flow-based approach, such as IntServ in IP networks,
each traffic/packet flow is treated individually. This classifi-
cation is very flexible, but has problems with its scalability
because intermediate nodes have to maintain per flow state
information.

In a class-based approach, such as DiffServ in IP net-
works, several service classes are defined. This approach
is much simpler, but after aggregating the flows in classes,
an individual traffic/packet flow can no longer be identified.
Since sensor networks are used for many diverse applications
deployed in dynamic environments on sensor nodes with
limited resources, wireless sensor networks ideally need a
combination of both:

• The simplicity and scalability of a class-based approach
• The flexibility of a flow-based approach
Therefore, our packet-based adaptive QoS mechanisms

presented in this paper are based on a combination of both.
Since QoS in sensor networks has to be kept simple, a

fixed amount of QoS classes is defined. These classes are
called priority levels and determine the general behavior
of a packet type. They are discussed in more detail in
subsection V-A.

Because sensor networks can cover many diverse appli-
cations, it is very desirable to give the traffic flows a more
individual character. Therefore, some extra attributes can be
added to each flow. These attributes are used for fine-grained
packet control, within the limits of the chosen priority level.
The attributes are discussed in more detail in subsection V-B.

A. Novel QoS Priority Levels

Since sensor networks will support many diverse appli-
cations, each having their specific QoS requirements, it is

not straightforward to fit each application in a predefined
QoS class for processing and routing packets. For instance,
a low priority packet can have a high reliability or, vice
versa, a high priority packet can have a low reliability level.
As a consequence, there is no one-to-one mapping available
between a QoS class and a processing sequence.

We therefore propose a fixed amount of priority levels
as QoS classes. To give each packet more flexibility, QoS
attributes are added.

Table I. QoS Priority Levels

QoS Priority Level Description
7 Reserved (MAC control information)
6 Reserved (Routing control information)
5 Reserved (Monitoring/Management information)
4 Real-Time traffic (critical mode)
3 Real-Time traffic (default mode)
2 Time sensitive traffic (critical mode)
1 Time sensitive traffic (default mode)
0 Best Effort traffic

As can be seen in Table I, eight priority levels are defined.
The three highest priority levels are reserved for control,
management and monitoring messages. These messages will
always have the highest priority in order to prevent deadlock
situations and thus keep the network alive.

Additionally, we see that both the time-sensitive traffic
and the real-time traffic have two modes: a default mode and
a critical mode. Initially, each data packet will have priority
level 0, 1 or 3 based on the application QoS requirements.
It is important to remark that these data characteristics are
defined by the user/application, but that the translation into
a priority level is made by the QoS Management Framework
of the system.

The definition of two modes for the same traffic class
can be justified by the following example. Suppose there
are two simultaneous voice calls with initial priority level 3.
The packets of the first voice call, while travelling through
the sensor network, reach a delay close to the maximum
delay. By allocation a higher priority, we give the packets
of the first voice call a higher chance to still arrive on time.
The priority of the second voice call, which has enough time
left, remains unchanged.

B. QoS Packet Attributes

Since QoS priority levels are not sufficient to build a
flexible QoS architecture, extra QoS attributes can be added
to each packet (see Table II).

For instance, when considering the reliable monitoring
application, a reliability-attribute can be added. Each net-
work protocol supports this attribute to the best of its
abilities. For example, the MAC module can choose to
request acknowledgement messages, and the QoS Policies
can decide not to drop a reliable packet.



Table II. QoS Packet Attributes

Attribute Description Required
Priority Priority of network packets (see Table I) Yes

Current Delay Travelled packet delay until now No
Max Delay Max. allowed end-to-end packet delay No
Reliability Packet reliability indication No

In addition, information about the current delay and the
maximum delay can be added. This information can be used
to drop packets if their deadline is already passed in order
to not occupy the medium with unnecessary packets, or to
allocate temporarily a higher priority level if the deadline is
almost reached.

VI. IMPLEMENTATION AND EVALUATION

In the following, we will present a basic implementation
of the QoS architecture. Currently, the Application/User QoS
Requirements module is implemented as a database entity.
Furthermore, the QoS Policies module and a basic version of
the QoS Management Framework module are implemented.
These modules allow a prioritized routing strategy with an
intelligent packet dropping mechanism.

A. W-ilab.t

The implementation of the QoS architecture is done on
TmoteSky sensor nodes using TinyOS 2.1.0 and nesC as a
programming environment. Furthermore, we use the real life
wireless testbed “W-ilab.t” [14].

Figure 4. W-ilab.t Architecture

The sensor network part of this testbed contains 200
TmoteSky sensor nodes, spread on three floors in a 100m x
15m office building. Each of these sensor nodes is connected
by an environment emulator (EE) and a small Alix computer
(iNode), as can be seen in Fig. 4. The EE allows event
emulation, e.g. sensor events or injection of audio. The
iNodes are responsible for configuring the sensor node and
are connected to a central management system [15].

B. Experimental Setup

In our experiment, half of the third floor of the W-iLab.t
testbed is used. As a MAC protocol, a simple MAC protocol
is used that checks periodically if it has packets to send. As

a routing protocol, an own implementation of the Dynamic
MANET On-Demand (DYMO) routing protocol is used.

Figure 5. Comparison between AODV and DYMO

DYMO [16] is a reactive routing protocol similar to
AODV based on route request (RREQ), route reply (RREP)
and route error (RERR) messages. The main difference
between DYMO and AODV is that DYMO can append
additional intermediate node information (see Fig. 5), and
that its somewhat simpler design makes it more appropriate
for an implementation on resource-limited devices such as
sensor nodes. Our modification to DYMO lays in the fact
that we only forward the RREQ message if our receiver
quality is higher than a certain threshold (1). That way, we
prevent that the network becomes flooded by unnecessary
RREQ messages.

Probforwarding = Probreceiving RSSI>Threshold (1)

C. Results

In the following, the testbed results are shown in two
scenarios. In the first scenario, two traffic flows with QoS
support are considered: 1 high priority traffic flow and 1 low
priority traffic flow. In the second scenario, two traffic flows
without QoS support and thus with the same priority level
are considered. For both scenarios, some throughput/drop
results will be discussed.

1) Scenario 1: with QoS support: In this first scenario,
two traffic flows with QoS support are considered. To
illustrate this QoS support, two traffic flows with different
priority levels are used. Both traffic streams will send a
packet of 70 bytes payload every 150ms and each node
checks every 100ms if it has a packet to send. At the
beginning of the experiment, there is only 1 low priority
traffic flow (flow 1) between sensor nodes 25 and 200. After
a while, a high priority traffic flow (flow 2) is set up between
node 24 and 200. As can be seen in Fig. 6 both flows meet
each other at node 54. Since more packets arrive at node 54
than it can process, some packets will have to be dropped.
The collected database results show that at the end of the
experiment 2017 packets from the low priority traffic flow
were dropped while 0 packets from the high priority traffic
flow were dropped. These results are also shown in the left
part of Fig. 8.

2) Scenario 2: without QoS support: In this second sce-
nario, two traffic flows without QoS support are considered.
In the QoS architecture, this scenario can be simulated by
using two traffic flows with the same priority level. As in



Figure 6. With QoS support: adding a high priority data flow

scenario 1, one traffic flow starts sending between node 25
and 200. After a while, the second traffic flow with the same
priority level is set up between node 24 and node 200. This
time, the collected database results show that 1098 packets
from the first traffic flow were dropped while 1100 packets
from the second traffic flow were dropped (Fig. 7). The right
part of Fig. 8 shows these results.

0

500

1000

1500

2000

2500

with QoS support without QoS support

Number of dropped packets ifo QoS support and traffic flow

Traffic Flow 1

Traffic Flow 2

Figure 8. Number of dropped packets with and without
QoS support

D. Memory Footprint

Table III. Memory Footprint

Module ROM (bytes) RAM (bytes)
IDRA system 20236 5344
Broadcast Routing 390 111
DYMO Routing 5008 312 (+18 per route)
Simple MAC protocol 844 24
Advanced MAC 7136 1264
Neighbor database 8536 2631
QoS Policies 1816 10
QoS Management Framework 3072 238
QoS Application Database 4068 668

Table III shows the memory footprint of the QoS modules
compared to the memory footprint of the other IDRA system
modules. One of the characteristics of IDRA is its low

protocol memory cost, at the price of a somewhat bigger
initial memory cost. When comparing the QoS system in
IDRA using a simple MAC protocol and a broadcast routing
protocol, the total QoS architecture takes about 29% of
the total system’s ROM memory and about 14% of the
system’s RAM memory. This is not negligible and it is
the price we pay for a better overall QoS. However, if
we compare our QoS architecture with an IDRA system
with more advanced modules, for instance when taking
into account DYMO routing in combination with a more
complex MAC protocol with its own neighbor repository, the
absolute QoS footprint remains unchanged, while the relative
QoS footprint is decreased to 18% of the system’s ROM
memory and 9% of the system’s RAM memory. We note
that the implementation of the QoS architecture is protocol-
independent.

VII. FUTURE WORK

Supporting protocol-independent adaptive QoS is only the
first step towards a fully functional wireless sensor network
QoS architecture.

In future work, we will investigate how QoS can trans-
parently interact with network protocols such as MAC and
routing protocols. Again, the layerless approach will be
very useful. Imagine that the QoS Management Framework
will be able to request the number of hops to a certain
destination and can measure the end-to-end delay, it can
use this information to calculate the per-hop delay towards
that destination. Since the QoS Management Framework
is aware of the maximum end-to-end-delay, more stringent
parameter settings can be applied to the network protocols,
e.g. temporary reduce the MAC sleep/awake duty cycle of
the sensor nodes along the path to the destination.

The future QoS architecture will also have a smart mech-
anism for adding or replacing network protocols or adding
other more advanced QoS modules. We could investigate
which network protocol is best suited for a certain traffic
type (reactive vs. proactive routing, contention based vs.
slotted MAC), and we can change these protocols at run-
time in order to gain a better overall QoS.



Figure 7. Without QoS support

VIII. CONCLUSION

In this paper, we have motivated why Quality of Service
has to be supported in wireless sensor networks and we have
presented how this could be done at an architecture level in
a protocol-independent way.

The reason for taking QoS into account in wireless
sensor networks was found in the inherent heterogeneous
nature of wireless sensor networks. Since wireless sensor
networks are subject to dynamic and time-varying node
and network conditions and since they support many and
diverse applications, adapting the network to the right QoS
requirements becomes very important.

The presented architecture is able to support protocol-
independent adaptive QoS in a layerless wireless sensor net-
work architecture. The main system is based on a prioritized
packet processing system that is controllable by a smart
management system. In addition, the existence of several
QoS attributes allows each flow to have a unique behavior,
while keeping the implementation very simple.

We have implemented a basic version of this QoS archi-
tecture and we have evaluated the correct operation on a
real life testbed with TmoteSky sensor nodes in an office
environment. These initial results are very encouraging and,
since QoS is an inherent part of the architecture, they are
irrespective of the applied network protocols and applica-
tions.

ACKNOWLEDGMENT

The research of E. Troubleyn and E. De Poorter is funded
by a Ph.D. grant of The Institute for the Promotion of
Innovation through Science and Technology in Flanders
(IWT-Vlaanderen). This research is also partially funded by
the IBBT-DEUS project and by the FWO Flanders through
projects 3G024310 and 3G029109.

REFERENCES

[1] DEUS, “Deployment and easy use of wireless services,” http:
//ilabt.ibbt.be/.

[2] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey
on wireless multimedia sensor networks,” Computer Net-
works, vol. 51, no. 4, pp. 921–960, 2007.

[3] S. M.-E. Felemban, M.-C.-G. Lee, and M.-E. Ekici, “MM-
SPEED: Multipath Multi-SPEED Protocol for QoS Guarantee
of Reliability and Timeliness in Wireless Sensor Networks,”
IEEE Transactions on Mobile Computing, vol. 5, no. 6, pp.
738–754, 2006.

[4] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo, “An
Implicit Prioritized Access Protocol for Wireless Sensor Net-
works,” in Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS’02). Washington, DC, USA: IEEE Com-
puter Society, 2002, p. 39.

[5] D. E. McDysan and D. L. Spohn, ATM: theory and applica-
tion. New York, NY, USA: McGraw-Hill, Inc., 1994.

[6] IntServ, “Integrated services,” http://www.ietf.org/rfc/rfc1633.
txt.

[7] DiffServ, “Differentiated services,” http://tools.ietf.org/html/
rfc2475.txt/.

[8] MPLS, “Multi protocol label switching,” http://tools.ietf.org/
html/rfc3031.txt/.

[9] H. Zimmermann, “OSI Reference Model - The ISO Model
of Architecture for Open Systems Interconnection,” IEEE
Transactions on Communications, vol. 28, no. 4, pp. 425 –
432, April 1980.

[10] V. Srivastava and M. Motani, “Cross-layer design: a sur-
vey and the road ahead,” Communications Magazine, IEEE,
vol. 43, pp. 112–119, 2005.

[11] S. Kota, E. Hossain, R. Fantacci, and A. Karmouch, “Cross-
layer protocol engineering for wireless mobile networks: Part
1,” IEEE Communications Magazine, vol. 34, no. 12, pp. 110–
111, 2005.

[12] S. Kota, E. Hossain, R. Fantacci, and A. Karmouch, “Cross-
layer protocol engineering for wireless mobile networks: Part
2,” IEEE Communications Magazine, vol. 44, no. 1, pp. 85–
136, 2006.

[13] E. DePoorter, I. Moerman, and P. Demeester, “An information
driven sensornet architecture,” in Proceedings of the 3nd
International Conference on Senor Technologies and Appli-
cations, Athens, Greece, June 2009.

[14] iLab.t Wireless Lab, “W-ilab.t,” http://www.ibbt.be/en/project/
deus.

[15] L. Tytgat, B. Jooris, P. D. Mil, B. Latre, I. Moerman, and
P. Demeester, “Demo abstract: Wilab, a real-life wireless
sensor testbed with environment emulation,” in European con-
ference on Wireless Sensor Networks, EWSN adjunct poster
proceedings (EWSN), Cork, Ireland, February 2009.

[16] DYMO, “Dynamic manet on-demand routing protocol,” http:
//tools.ietf.org/html/draft-ietf-manet-dymo-17/.


