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Abstract

Nowadays, intelligibility is a popular measure of the severity
of the articulatory deficiencies of a pathological speaker. Usu-
ally, this measure is obtained by means of a perceptual test,
consisting of nonconventional and/or nonconnected words. In
previous work, we developed a system incorporating two Au-
tomatic Speech Recognizers (ASR) that could fairly accurately
estimate phoneme intelligibility (PI). In the present paper, we
propose a novel method that aims to assess the running speech
intelligibility (RSI) as a more relevant indicator of the com-
munication efficiency of a speaker in a natural setting. The
proposed method computes a phonological characterization of
the speaker by means of a statistical analysis of frame-level
phonological features. Important is that this analysis requires
no knowledge of what the speaker was supposed to say. The
new characterization is demonstrated to predict PI and to pro-
vide valuable information about the nature and severity of the
pathology.

Index Terms: objective intelligibility assessment, pathological
speech, phonological features, running speech

1. Introduction

As communication has been acknowledged as an essential part
of life, also for persons with disordered speech, speech in-
telligibility diagnosis and monitoring in the course of ther-
apy have become increasingly important in the past decade.
Where speech intelligibility is traditionally measured in percep-
tual tests with professional listeners (speech therapists), recent
work has demonstrated that an ASR can take over the role of
the human listener and enable the design of an automatic and
objective assessment. In previous work [1, 2], we showed that
it is possible in this way to automate the Dutch Intelligibility
Assessment (DIA) [3, 4], a test in which the listener must iden-
tify for each monosyllabic word utterance the missing phoneme
in a word template. The DIA is shown to yield a reliable intelli-
gibility at the phoneme level, and the automated DIA offers an
objective score which correlates well with that perceptual score.

A first problem with the test is that phoneme intelligibility
(PI) is only correlating moderately with the ability to commu-
nicate in a more realistic situation where running speech is the
speech mode [4, 5]. A second problem is that especially chil-
dren tend to make reading errors because they often misread a
nonsense target word as a more common existing word. These
errors obviously induce a negative bias in the speaker’s intelli-
gibility. Because of these problems, we envisage an automated
test that utilizes running speech and that is robust against read-
ing errors, hesitations, etc. of the speaker.

We contemplate that it would be difficult to use an ASR
in such a test because it would encounter large difficulties to
handle the Out-Of-Vocabulary (OOV) words that are induced
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by reading errors. This is already the case for reading errors
made by normally speaking children [6], let alone for errors
that are made by children with a speech disorder. This is why
we have searched for a novel ASR-free approach.

A first attempt to predict speech intelligibility without an
ASR was made by Bocklet et al. [7]. In that attempt, a speaker
verification approach was adopted: a GMM was trained for ev-
ery speaker, and the parameters of that GMM were used as fea-
tures from which to predict the speaker’s intelligibility. The ap-
proach proposed here relies on phonological feature detectors
that were trained once and for all on a sufficiently large corpus
of normal speech. They offer a phonological feature represen-
tation that is presumed to relate to articulatory dimensions, and
that is therefore potentially interesting for a more detailed as-
sessment of the speaker’s articulation problems.

2. Speech corpus

In order to train and evaluate the envisaged models, we conduct
experiments with a part of the Dutch Corpus of Pathological
and Normal Speech (COPAS). The corpus was constructed in
the project Speech Algorithms for Clinical and Educational ap-
plications (SPACE) [8]. It contains recordings of 318 Flemish
speakers, pathological as well as control speakers. For a ma-
jority of the speakers, only the DIA was recorded, but for 122
speakers, we also have recordings of a read text passage. The
recorded passage is a Dutch equivalent of passages like “Grand-
father” (for English) or “Nordwind und Sonne” (for German).
It contains the Dutch standard text of “Papa en Marloes”, con-
sisting of 8 phonetically rich sentences.

Of the 122 speakers 6 have a voice disorder, 26 have a hear-
ing impairment, 48 have dysarthria, 15 have laryngectomy, 1
has glossectomy and 26 are normal (control) speakers. Per-
ceptual PI scores (derived from the DIA recordings) are avail-
able for all speakers, but no running speech intelligibility (RSI)
scores. More details on the recording conditions and the sever-
ities of the speech disorders can be found in [9].

3. Objective analysis

The system proposed here comprises four processing stages
which are depicted in Figure 1. The incoming speech s(n)
(an utterance of the complete text) is first subjected to a short-
term acoustic analysis. The output vectors X; of that analysis
are converted into phonological feature confidence vectors Y;.
Each phonological feature confidence is subjected to a statisti-
cal analysis with the aim to derive a compact description of the
feature pattern over the whole utterance. The descriptions of
the different features are merged into a vector Z which char-
acterizes the speaker. This vector is finally supplied to an In-
telligibility Prediction Model (IPM) [1] that predicts the RSI, a
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Figure 1: Schematic diagram of speech production.

pathology classifier which determines the type and severity of
the pathology, or a pathology profile extractor which yields a
profile of the speaker in one or more low-dimensional articula-
tory subspaces (see result section).

3.1. Acoustic analysis in the Front-End

The front-end analysis is a standard MFCC-analysis (Mel-
Frequency-Cepstral Coefficients) with a frame size of 30ms,
and a frame shift (hop size) of 10ms. Per frame ¢ it provides
a vector X, consisting of 13 features: 12 MFCC coefficients
and a log-energy. To minimize the influence of the microphone,
Cepstral Mean Subtraction is performed.

3.2. Phonological feature extraction

The vectors X¢_1, X: and X;41 are supplied to a phonologi-
cal feature extractor whose outputs refer to 14 distinct phono-
logical features describing voicing, place of articulation, turbu-
lence, nasality, etc. We only extract phonological features that
can emerge from local information only. This means that mod-
ulation features like “trill” are currently not considered yet.

The phonological feature extractor is composed of Artificial
Neural Networks (ANNs) which have been trained on a corpus
of read speech by 174 normal speakers (GoGeN, [10]). The cor-
pus is supplied with a phonetic segmentation and labeling. To
prepare the training data, we first create a table containing the
canonical values of the 14 phonological features of each phone.
Eleven phonological features, like nasality for instance, are of
a ternary nature: they can either be 1 (feature is on/present),
0 (feature is irrelevant) or -1 (feature is off/absent). Continu-
ously valued features, like the vowel property “front-back”, are
also modeled as ternary features with the zero being used for
all values differing from the extremes. Three features (voicing,
silence and turbulence) are of a binary nature (only having +1
and -1 as acceptable values).

Each ternary feature is represented by two outputs which
are derived by a cascade of two single-output ANNs: the first
ANN discriminates between irrelevant (0) and relevant (-1 or
+1), the second one between absent (-1) and present (+1). We
experienced that this ANN-tandem yields a more accurate dis-
tinction between present and absent than a single ANN.

Given that there are 11 ternary and 3 binary features, the
output Y; consists of 25 continuously valued components, each
representing the degree of confidence for the presence/absence
and the relevance/irrelevance of one phonological feature at
frame ¢.

3.3. Phonological characterization of the speaker

A statistical analysis of each component of Y; is performed in
order to construct a phonological feature vector per speaker.
We hypothesize that the fluctuations in a phonological feature
pattern (over time) can reveal an articulatory deficiency of the
speaker, in spite of the fact that the phonetic nature of the frames
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is unknown (that knowledge would have to come from an ASR).
Obviously, this may not be true anymore if the utterance is too
short to have a phonetic content that is sufficiently representa-
tive of speech in general.

If a component of Y; either describes a binary feature or the
relevancy of a ternary feature, the statistical analysis runs over
all frames. If it is the presence/absence of a ternary feature,
it is only analyzed over the frames with a positive relevancy.
We derive both frame-level and segment-level statistics. To that
end we define relevant (irrelevant) segments as intervals of more
than 2 consecutive frames where ternary feature is relevant (ir-
relevant). Similarly, we define positive (negative) segments as
intervals where a relevant feature is present (absent). For every
component of Y3, the following features are derived:

mean value,

standard deviation,

percentage of relevant/positive frames,

percentage of relevant/positive segments,

mean over all relevant/positive frames,

mean over all irrelevant/negative frames,

mean duration of a relevant/positive segment,

mean duration of an irrelevant/negative segment,

mean of the maximum in a relevant/positive segment,
mean of the minimum in an irrelevant/negative segment,
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mean time needed to reach the maximum within a
relevant/positive segment,

—
[\

. the mean time needed to reach the minimum within an
irrelevant/negative segment.

Most features aim to reveal whether the speaker has difficulties
in realizing clear presence/absence/irrelevance distinctions, but
others are more looking for problems related to the switch be-
tween presence and absence. In total a speaker is characterized
by 25 x 12 =300 features, and one can expect high correlations
between some of them.

4. Experimental study

To test the potential of the above ASR-free phonological feature
generation, we have built and evaluated an IPM for predicting
PI, as well as a classifier for detecting whether there is a pathol-
ogy or not.

Since the training of more detailed classification models
would require more reliable targets than we have available right
now, we do not present finer classification results. Instead, we
have conducted a qualitative analysis of the speaker features to
demonstrate that they effectively encode the type and severity
of the speaker’s pathology.

4.1. Training and validation procedure

For the training and validation of our models we adopt a five-
fold cross validation scheme, and the listed results are averages
(over the five folds) of the root mean square errors (RSME)
between computed and target outputs. To investigate the po-
tential of our newly developed feature set, we have conducted
experiments on 122 speakers. We examine two feature sets:
the new ASR-free phonological features which have been de-
rived from the running speech recordings of the speakers, and
the best ASR-based features [2] that have been derived from
the DIA monosyllabic word recordings of these speakers. The
ASR-based models are now developed on 122 speakers whereas
in [2] they were developed on a larger corpus of 211 speakers.



Table 1: RMSE between the computed and the target PI scores
for the old ASR-based and the new ASR-free method.

| Model [ ASR-based [ ASR-free ‘

Linear regression 8.9 9.8
Support Vector regression 8.8 9.7
The ASR-based features (128 in total) consist of

context-dependent phonological features, derived with a
phonologically-based ASR, and context-independent phonemic
features, derived with a state-of-the-art HMM-based ASR. We
formerly showed [2] that an IPM based on these features can
attain an accurate prediction of PI.

4.2. Prediction of the RSI

We first like to demonstrate that a reliable RSI prediction on the
basis of the new speaker features is possible. However, since
COPAS just provides PI scores we can only gather indirect ev-
idence. Relying on the known correlation between PI and RSI
[11] we contemplate that if our speaker features can be con-
verted to PI, they can be converted to RSI as well, provided
that perceptual RSI scores are available for model training. We
develop two models: one based on ensemble linear regression
with feature selection and one based on Support Vector Regres-
sion (SVR).

For the training of an ensemble linear regression model we
create ten random divisions of the training fold: one part for
regression coefficient estimation and an equally large part for
model assessment. As a result, we get ten models per training
fold. These models are then recombined into one single model
which is finally evaluated on the validation fold. This process
is embedded in an iterative scheme that, starting from the best
subset of 3 features, utilizes the individual model assessments
(on part of the training fold) to identify which is the best fea-
ture to add to the feature subset that was chosen in the previous
iteration.

The SVR is achieved by a Support Vector Machine (SVM)
with a gaussian kernel. During the training of the SVR on a
particular training-validation partition, we select the learning
parameters (kernel parameters, fault threshold) by means of a
grid search based on internal cross validations on five folds de-
fined within the training part.

The results of the different PI prediction models can be
found in Table 1. They confirm that the novel method can pre-
dict PI intelligibility in a reliable way. The ASR-free and the
ASR-based models compete rather well, especially since the
ASR-based method is actually favored because its features are
extracted from the DIA recordings which gave rise to the target
PIs. Another finding is that there are no significant performance
differences between the two statistical learners. Maybe these
differences will pop up when larger datasets become available.

4.3. Detecting speech disorders

Our second objective was to predict from the speaker features
whether the speaker has a speech disorder or not. For this clas-
sification we investigate three modeling strategies: logistic re-
gression, SVM and Ripper [12], a simple rule induction system.
For every SVM training, the learning parameters are selected
according to the method developed by [13].

The results attained by the different models are depicted in
Table 2. Apparently, the features derived from the ASR-based
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Table 2: Error percentage for pathological versus normal
speaker classification based on ASR-based and ASR-free fea-
tures.

[ Model | ASR-based | ASR-free |
Logistic regression 17.2 22.1
SVM 8.2 13.0
Ripper 10.6 22.9

system outperform the new features for all model types. It is not
yet clear right now why this is the case. Although for the ASR-
free features, the Ripper method cannot compete with SVM,
we hope that the very simple and compact rules derived by Rip-
per will help us to gain more insight in the main indicators of
pathology. Take for instance the following rule, extracted for
the case of ASR-free features:

IF (A16 > 0.28) and (A32 > 0.99)
THEN Class=Normal, ELSE Class=Pathologic.

With this rule, 58% of the normal and 99% of the pathologi-
cal speakers are correctly classified. The rule emphasizes the
importance of the relevance related features: A16 (standard de-
viation of relevancy for alveolar) and A32 (maximum relevancy
for nasality). Roughly speaking, the rule points out that patho-
logical speakers have problems to realize sufficiently positive
evidence for the alveolar feature, and that they often sound hy-
pernasalized.

We have also tried to go one step further and to discrimi-
nate between the different pathologies. While a discrimination
between individual pathologies seems to be difficult (error rates
of the order of 35%, probably due to an under representation
of some classes), the discrimination between a specific pathol-
ogy and the control group seems to be feasible. For the two
’large’ groups (dysarthria and hearing impairment), both the
ASR-based or ASR-free features lead to perfect discrimination
using an SVM based classifier.

4.4. Speaker profile extraction

An argument in favor of our approach is that it works with fea-
tures that are closely related to articulatory dimensions, and that
a limited number of features might be sufficient to get a more
detailed characterization of the type and severity of the articu-
latory problems of a certain speaker. In order to get evidence in
support of this argument, we have examined all 2-dimensional
subspaces of the ASR-free speaker feature space. We utilize
Linear Discriminative Analysis (LDA) to learn the distinction
between normal speakers and either hearing impaired speakers
or laryngectomees. We identify interesting subspaces as sub-
spaces in which this distinction can be made with high accuracy.
We observe that for the ASR-free features, classification accu-
racies of up to 92% can be achieved, whereas with ASR-based
features the accuracy is limited to 87%.

Figure 2 shows a scatter plot of the hearing impaired and
the normal speakers in the subspace of “mean of alveolar” and
“mean time to reach the maximum within a relevant segment for
nasality”. The figure confirms the findings of [14, 15] that hear-
ing impaired speakers sound hypernasal. The depicted feature
combination is the best in four of the five folds, and the second
best in the fifth fold.

For the laryngectomees, features for voicing appear to be
very discriminating, as could be anticipated. However, less ex-
pected, all the best feature pairs also contain at least one feature
concerning turbulence, referring to fricative and plosive sounds.



x x H
X
E § 20 ]
EE
£ N
E'g x X
o815 oo ]
°§“6 % x X °
=@ x X x
S e x X x °
S& 100 x x X0 o o o A
€3 o x o
° x Fos & o
X oo ° &
5 ‘ ‘ ‘ o 9 ‘
8.1 0.15 0.2 0.25 0.3 0.35

mean value for alveolar

Figure 2: Scatter plot of control speakers (N) and hearing im-
paired speakers (H) in the most discriminative subspace of the
speaker feature space.

This complies with the fact that in the ASR-based approach, we
found fricative to be an important feature. Although this needs
further investigation, Figure 3 seems to support the hypothesis
that this may have something to do with the inability of laryn-
gectomees to switch between voiced and unvoiced sounds. This
would mean that they have difficulties realizing turbulence dur-
ing a relatively short period in the vicinity of voiced sounds.

5. Conclusions and future work

We have proposed a novel ASR-free methodology for the ob-
jective assessment of pathological speech. The method is based
on phonological features that are closely related to articulatory
dimensions, and it analyses running speech as a natural speech
mode. Important is that it does not require a transcription of
the target speech. This way, the method is anticipated to be re-
sistent to reading errors made by the speaker. Unfortunately, we
have insufficient running speech recordings at our disposal, and
no corresponding running speech intelligibility scores for these
recordings. Therefore, we have only been able to conduct an ex-
ploratory investigation of the potential usability of our method
as the corner stone of a future automated assessment of speech
pathology on the basis of running speech.

At present, our system already achieves a very good pre-
diction of phoneme intelligibility as a proxy for running speech
intelligibility. Furthermore, it can clearly distinguish a specific
type of pathology from normal speech in two-dimensional sub-
spaces that can be identified automatically.

The advantage of our features in terms of knowledge dis-
covery is also exemplified, thereby proving that the ASR-free
phonological features effectively point to specific articulatory
dimensions that might explain the specific pathology.

Future work will focus on the further development of a ro-
bust diagnosing system that offers an intelligibility prediction
as well as a speaker profile. From such a profile one could
then retrieve objective information about the progress of a cer-
tain patient in the course of a therapy. As to enable us to build
more sophisticated intelligibility prediction models we will col-
lect more running speech recordings and collect running speech
intelligibilities for these recordings. We will further improve
our speaker feature extraction and also include segmental fea-
tures (e.g. “trill”) and supra-segmental features (e.g. intonation
patterns) in the analysis.
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