Advanced search
1 file | 276.46 KB

M2-computable real numbers

Author
Organization
Abstract
The article concerns subrecursive computability of real numbers. Certain significant real numbers are shown to be M2-computable, and the set of the M2-computable real numbers is shown to be closed under the elementary functions of calculus.
Keywords
elementary functions of calculus., subrecursive, Computable real number, Delta(0) definable, COMPUTABILITY, M^2, computable real-valued function

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 276.46 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Skordev, Dimiter , Andreas Weiermann, and Ivan Georgiev. 2012. “M2-computable Real Numbers.” Journal of Logic and Computation 22 (4): 899–925.
APA
Skordev, D., Weiermann, A., & Georgiev, I. (2012). M2-computable real numbers. JOURNAL OF LOGIC AND COMPUTATION, 22(4), 899–925.
Vancouver
1.
Skordev D, Weiermann A, Georgiev I. M2-computable real numbers. JOURNAL OF LOGIC AND COMPUTATION. 2012;22(4):899–925.
MLA
Skordev, Dimiter , Andreas Weiermann, and Ivan Georgiev. “M2-computable Real Numbers.” JOURNAL OF LOGIC AND COMPUTATION 22.4 (2012): 899–925. Print.
@article{1048477,
  abstract     = {The article concerns subrecursive computability of real numbers. Certain significant real numbers are shown to be M2-computable, and the set of the M2-computable real numbers is shown to be closed under the elementary functions of calculus.},
  author       = {Skordev, Dimiter  and Weiermann, Andreas and Georgiev, Ivan},
  issn         = {0955-792X},
  journal      = {JOURNAL OF LOGIC AND COMPUTATION},
  keyword      = {elementary functions of calculus.,subrecursive,Computable real number,Delta(0) definable,COMPUTABILITY,M\^{ }2,computable real-valued function},
  language     = {eng},
  number       = {4},
  pages        = {899--925},
  title        = {M2-computable real numbers},
  url          = {http://dx.doi.org/10.1093/logcom/exq050},
  volume       = {22},
  year         = {2012},
}

Altmetric
View in Altmetric
Web of Science
Times cited: