Marinomonas brasilensis sp. nov. isolated from the coral Mussismilia hispida and reclassification of Marinomonas basaltis as a later synonym of Marinomonas communis

Luciane A. Chimetto1,2,3, Ilse Cleenwerck3, Marcelo Brocchi1, Anne Willems4, Paul De Vos3,4, and Fabiano L. Thompson2*

1Departament of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Brazil
2Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
3BCCM/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
4Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium

*Corresponding author: Fabiano L. Thompson. Phone/FAX: +55-21-25626567. E-mail: fabiano.thompson@biologia.ufrj.br

Running Title: Marinomonas brasilensis sp. nov.

Subject Category: New taxa, Proteobacteria

Footnote: The GenBank/EMBL accession number for the 16S rRNA gene sequence of strain R-40503T is GU929940.
Abstract
A Gram-negative, aerobic bacterium, designated R-40503^T was isolated from mucus of the reef builder coral, *Mussismilia hispida*, located in the São Sebastião Channel, São Paulo, Brazil. Phylogenetic analyses revealed that strain R-40503^T belongs to the genus *Marinomonas*. The 16S rRNA gene sequence similarity of R-40503^T was above 97 % with the type strains of *Marinomonas vaga*, *M. basaltis*, *M. communis* and *M. pontica*, and below 97 % with all other the *Marinomonas* type strains. Strain R-40503^T showed less than 35 % DNA-DNA hybridization (DDH) similarity with the type strains of the phylogenetically closest *Marinomonas* species, demonstrating it should be classified into a novel species. Amplified Fragment Length Polymorphism (AFLP), chemotaxonomic and phenotypic analyses provided further evidence for the classification of the new species. Concurrently, a close genomic relationship between *M. basaltis* and *M. communis* was observed. The type strains of these two species showed 78 % DDH similarity and 63 % AFLP pattern similarity. Their phenotypic features were very similar, and their DNA G+C content was identical (46.3 mol%). Collectively, these data demonstrates unambiguously the synonymy of *Marinomonas basaltis* and *Marinomonas communis*. Several phenotypic features can be used to discriminate *Marinomonas* species. The novel strain R-40503^T is clearly distinguishable species from its neighbours. For instance, it shows oxidase and urease activity, utilizes L-asparagine, has the fatty acid C12:1 3-OH (but lacks C10:0 and C12:0). The name *Marinomonas brasilensis* sp. nov. is proposed (type strain is R-40503^T = LMG 25434^T = CAIM 1459^T). The DNA G+C content of the type strain R-40503^T is 46.5 mol%.
Mussismilia hispida is one of the major reef-builders corals along the northeastern Brazilian coast, and it also has the widest geographic distribution among its genus (from Maranhão to Santa Catarina states, ca. 5000 km) (Leão & Kikuchi, 2005). The ability of Mussismilia to survive in different regions indicates its adaptation to wide environmental gradients, such as temperature, water turbidity and pollution. However, recent studies have revealed that M. hispida and M. braziliensis are threatened by extinction (Castro et al., 2010; Francini-Filho et al., 2008). Microorganisms appear to play a key role in coral health. Microorganisms and the coral compose the holobiont (Rosenberg et al., 2007). The holobiont microbiota appears to protect its host by providing nourishment and antibiotics (Raina et al., 2009; Shnit-Orland & Kushmaro, 2009). It is also recognized that the holobiont harbours a vast microbial diversity. In the last 10 years a growing number of studies have focused on the characterization of the coral microbiota diversity and ecology (Alves et al., 2009; Dinsdale et al. 2008; Rohwer et al. 2001).

The genus Marinomonas was created in 1983 to accommodate Alteromonas communis and Alteromonas vaga (Baumann et al., 1972), which were distinct from the other species of Alteromonas (van Landschoot & De Ley, 1983). The genus Marinomonas comprises 15 species, mainly originating from sea-water of different geographical locations. M. communis and M. vaga (Baumann et al., 1972; van Landschoot & De Ley, 1983), were isolated from the Pacific Ocean, M. pontica (Ivanova et al., 2005) from the Black Sea, M. dokdonensis (Yoon et al., 2005) from the East Sea of Korea, and M. Mediterranea (Solano &
Sanchez-Amat, 1999) and *M. aquimarina* (Macián *et al.*, 2005) from the Mediterranean Sea. *M. polaris* (Gupta *et al.*, 2006) and *M. ushuaiensis* (Prabagaran *et al.*, 2005) were isolated from the subantarctic region, while *M. primoryensis* (Romanenko *et al.*, 2003) and *M. arctica* (Zhang *et al.*, 2008) were isolated from sea-ice. *M. ostreistagni* (Lau *et al.*, 2006) and some *M. aquimarina* strains (Macián *et al.*, 2005) were isolated from oysters. *M. basaltis* (Chang *et al.*, 2008) and *M. arenicola* (Romanenko *et al.*, 2009) were isolated from marine sediment, while *M. balearica* and *M. pollencensis* (Espinosa *et al.*, 2009) were isolated from seagrass *Posidonia oceanica*.

In the present study, one isolate (R-40503T), obtained from mucus of apparently healthy coral *Mussismilia hispida*, located in the rocky shore of Grande beach (coordinate 23°50′25″S; 045°24′59″W) in São Sebastião Channel, São Paulo, Brazil, in the summer of 2005, during a survey of the heterotrophic bacterial diversity associated with cnidarians in São Paulo (Brazil) (Chimetto *et al.*, 2008, 2009), was investigated using a polyphasic taxonomic approach. The strain was isolated using the nitrogen-free (NFb) selective medium supplemented with 3% NaCl after 4 days of incubation at 28 °C.

Five strains (R-236, R-237, R-249, R-256, and R-278) isolated at the time of collection as described in Chimetto *et al.* (2008) clustered together in this new taxa by 16S rRNA gene sequences, but only one strain (R-278 = R-40503T) maintained viability. The 16S rRNA gene sequence of R-40503T (1425 nt), accession number GU929940, was obtained as described previously (Chimetto *et al.*, 2008, 2009). The raw sequence data were transferred to the ChromasPro ver. 1.34 software (Technelysium Pty. Ltd, Tewantin, Australia) where
consensus sequences were determined. The sequence was aligned with
sequences from EMBL using the ClustalW software (Chenna et al., 2003).
Pairwise similarities were calculated with the BioNumerics 4.61 software
(Applied Maths, Sint-Martens-Latem Belgium), using an open gap penalty of
100 % and a unit gap penalty of 0 %. Similarity matrices and phylogenetic trees
were constructed using the MEGA ver. 4.0 (Tamura et al., 2007) and the
BioNumerics 4.61 software (Applied Maths, Belgium). Trees were drawn using
the Neighbour-Joining (Saitou & Nei, 1987) and Maximum Parsimony methods
(Eck & Dayhoff, 1966). The robustness of the topologies of the trees were
checked by bootstrap replications (Felsenstein, 1985). The gene sequence data
obtained in this study are also available through our website TAXVIBRIO
(http://www.taxvibrio.lncc.br/).

The novel strain R-40503T was closely related to *M. vaga*, with 97.9% 16S
rRNA gene sequence similarity. R-40503T had 97.2% 16S rRNA gene
sequence similarity towards *M. basaltis, M. communis, M. aquimarina* (Fig. 1
and Supplementary Figure S2). DNA-DNA hybridizations were performed
between the novel strain R-40503T and the type strains of the closest
phylogenetic neighbours, i.e. *M. vaga, M. basaltis, M. communis* and *M.
aquimarina* (Table 1), using the microplate method described by Ezaki et al.
(1989) with minor modifications (Willems et al., 2001). Hybridizations were
performed at 40.7 °C in the presence of 50 % formamide. Reciprocal reactions
were performed for every DNA pair and their variation was within the limits of
this method (Goris et al., 1998). The DDH relatedness between R-40503T and
the tested type strains was below 70 % (Table 1). The DDH demonstrated that it
represents a novel species in the genus *Marinomonas* (Wayne *et al*., 1987; Stackebrandt & Ebers, 2006). The DDH relatedness between *Marinomonas basaltis* LMG 25279\(^T\) and *Marinomonas communis* LMG 2864\(^T\) was above 70\% (i.e. 78\%), which suggests that these species are synonymous. Chang *et al*. (2008) obtained 56.2\% DDH similarity between the same pair of type strains, but the additional data of the present study (see below) support the value of 78\%. The authenticity of *M. basaltis* LMG 25279\(^T\) (GU929941) and *M. communis* LMG 2864\(^T\) used in this study were verified by means of their 16S rRNA sequences. The sequences of both type strains (1501 nt for LMG 25279\(^T\) and 1499 nt for LMG 2864\(^T\) showed 100\% similarity with those deposited in the GenBank *M. basaltis* J63\(^T\) (EU143359) and *M. communis* LMG 2864\(^T\) (DQ011528) respectively, indicating the authenticity of the LMG strains (Figure 1). The 16S rRNA gene sequence similarity between *M. basaltis* LMG 25279\(^T\) and *M. communis* LMG 2864\(^T\) was 98.7\%. Giving further support for the synonymy between, *Marinomonas basaltis* LMG 25279\(^T\) and *Marinomonas communis* LMG 2864\(^T\) had identical GC contents and related AFLP patterns. DNA G+C contents were determined for R-40503\(^T\), *M. basaltis* LMG 25279\(^T\) and *M. communis* LMG 2864\(^T\) by HPLC as described previously (Mesbah *et al*., 1989). The DNA G+C content of strain R-40503\(^T\) was 46.5 mol\% (Table 1) and 46.3 mol\% of the LMG strains.

AFLP analysis was performed for strain R-40503\(^T\), *M. basaltis* LMG 25279\(^T\), *M. communis* LMG 2864\(^T\), *M. vaga* LMG 2845\(^T\) and three *M. aquimarina* strains (Supplementary Figure S1), as reported by Beaz Hidalgo *et al*. (2008) and Thompson *et al*. (2001). Briefly, 1 μg of DNA was digested with *TaqI* (5’TCGA3’)/
and HindIII (5'AAGCTT3') (Amersham Pharmacia Biotech, Sweden), and subsequently ligated with double-stranded adaptors complementary to the ends of the restriction fragments, with T4 ligase (Amersham Pharmacia Biotech), to generate template DNA for PCR amplification. A selective PCR was then performed with the primers H01-6FAM (5'GACTGCGTACCAGCTTA3', labeled at the 5' end with the fluorescent dye 6-FAM) and T13 (5'GTTTCTTATGAGTCCTGACCGAG3'), using the conditions described by Thompson et al. (2001), in a GeneAmp PCR System 9700 thermocycler (Applied Biosystems, USA). Separation of the selective PCR products was performed using a capillary ABI Prism 3130XL DNA sequencer (Applied Biosystems). The level of reproducibility was controlled by generating the AFLP pattern of Marinomonas brasilensis sp. nov. R-40305T three times, starting from different subcultures. Normalization of the resulting electrophoretic patterns was performed using the Gene Mapper 4.0 software (Applera Co., Norwalk, CT). For subsequent analysis fragments of 20 to 600 base pairs were transferred into the BioNumerics™ 4.61 software (Applied Maths, Belgium). For numerical analysis, the zone from 40- and 580-bp was used. Similarity values were calculated using the Dice coefficient (tolerance value of 0.15 %), and a dendrogram was constructed using the UPGMA algorithm. The similarity between the patterns of R-40503T ranged from 93.0 to 94.4 %. The similarity level chosen to delineate the AFLP clusters was 63 %, as previously proposed by Beaz Hidalgo et al. (2008). Strains with AFLP profiles showing more than 63 % similarity can be considered as members of the same species. The AFLP data supported the DDH data obtained in this study. R-40503T showed at most 46 % pairwise band pattern similarity with its closest phylogenetic neighbours, being below the cut-
off similarity level of 63%, while the type strains of *M. basaltis* and *M. communis* constituted a distinguishable cluster with 69% mutual AFLP pattern similarity (Figure S1). AFLP has been reported as a widely applicable technique with high discriminatory power and reproducibility (Janssen et al., 1996; Savelkoul et al., 1999). It was proven to be useful for discrimination at the species and intraspecies levels for *Aeromonas*, *Acinetobacter*, *Campylobacter*, *Xanthomonas* (Savelkoul et al., 1999), *Vibrionaceae* (Thompson et al., 2001), *Bradyrhizobium* (Willems et al., 2001), *Arcobacter* (On et al., 2003) and *Pantoea* (Brady et al., 2007). The present study provides enough evidence to consider *M. basaltis* (Chang et al., 2008) a later synonym of *M. communis* (Baumann et al., 1972; van Landschoot & De Ley (1983).

Phenotypic characteristics were determined in order to demonstrate that the novel strain R-40503^T^ belongs to a new species. Phenotypic analysis of the novel strains and the type strains of the closest phylogenetic *Marinomonas* species i.e. *M. vaga*, *M. basaltis*, *M. communis* and *M. aquimarina*. Analysis of fatty acid methyl esters was carried out as described by Huys et al. (1994). Cells for fatty acid analysis were grown on MA (Difco) for 24 h at 28 °C under aerobic conditions. Phenotypic characterization was performed using the API ZYM, API 20E and API 20NE kits (bioMérieux, France), and the Biolog GN2 microwell plates (Biolog Inc., USA), according to the manufacturer’s instructions with minor modifications. Cell suspensions for inoculation of the API tests were prepared in a 3% (w/v) NaCl solution, and those for the Biolog GN2 microwell plates showed turbidity (transmission) of 20%. Cells for the suspensions were grown on Biolog medium for 24 h at 28 °C under aerobic conditions. The results of the tests were recorded after 24 to 48 h of incubation at 28 °C. Growth at
different temperatures (4–42 °C) was determined by incubation on TSA (Difco) for 72 h. Growth at different salt concentrations (0–14 % NaCl) was determined by incubation on TSA (Difco) at 28 °C for 72 h. Catalase activity was determined by adding young cells to a drop of a 3 % H₂O₂ solution and observation of O₂ production. Oxidase activity was tested using 1% N,N,N',N'-tetramethyl p-phenylenediamine (Kovacs, 1956).

The novel strain R-40503ᵀ species was differentiated from its closest phylogenetic neighbours by several phenotypic features (Table 2). It grew in medium containing 13 % NaCl, used tween 80, sucrose and L-asparagine but not α-ketoglutaric acid, L-aspartic acid, L-serine, L-ornithine and bromo succinic acid. It had oxidase activity, and was not able to grow at 40 °C (Table 2). This novel strain could be differentiated from its neighbours on the basis of the presence of the fatty acids C₁₂:₁ 3-OH and the absence of the fatty acids C₁₀:₀ and C₁₂:₀. The major cellular fatty acids of R-40503ᵀ were C₁₈:₁ ω7c (48.8 %), summed feature 3 (C₁₅:₀ iso 2-OH and/or C₁₆:₁ ω7c) (19 %), C₁₆:₀ (10.5 %) and C₁₀:₀ 3-OH (8 %) (Supplementary Table S1). Phenotypic features of M. basaltis and M. communis were very similar, except for some features, namely M. communis utilized saccharose, D-fructose, succinamic acid, urocanic acid and putrescine and had urease activity, whereas M. basaltis did not. Some results of the phenotype of M. basaltis obtained in this study are in contrast with those reported by Chang et al. (2008). They reported no growth in less than 1 % or more than 7 % NaCl, no esterase (C4), esterase lipase (C8) and naphthol-AS-BI-phosphohydrolase activities, but activities for trypsin and N-acetyl-β-glucosaminidase, and assimilation of L-arabinose, L-aspartic acid and glycerol.
However, in this study, growth was observed at 0.5 – 11 % NaCl, as well as activities for esterase (C 4), esterase lipase (C8) and naphthol-AS-BI-phosphohydrolase. Trypsin and N-acetyl-β-glucosaminidase activities, and assimilation of L-arabinose, L-aspartic acid and glycerol were not observed. In our hands, no significant phenotypic or genotypic differences were found between *M. communis* and *M. basaltis*.

Based on the phylogenetic, genomic and phenotypic data, the new species *M. brasilensis* sp. nov. is proposed to encompass the strain R-40503T (= LMG 25434T = CAIM 1459T).

Description of *Marinomonas brasilensis* sp. nov.

Marinomonas brasilensis (bra.si.len’sis. N.L. fem. adj. *brasilen’sis* of or belonging to Brazil).

Cells are Gram-negative, aerobic, halophilic, motile, straight rods approximately 1 µm wide and 1.5–3 µm long. Catalase- and oxidase- positive. Colonies on MA are circular, undulate, convex, smooth, beige in colour and 1 mm in size after 1 day of incubation at 28 °C. Prolific growth occurs between 20 and 35 °C and at NaCl concentrations (w/v) ranging from 1 to 11 %. No growth is observed in 0 % NaCl or in ≥ 14 % NaCl, and at ≤ 7 °C or at ≥ 40 °C. The strain has alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-glucosidase, urease and tryptophane deaminase enzyme activities, but it does not have lipase (C14), valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase, arginine dihydrolase, lysine
decarboxylase, ornithine decarboxylase and gelatinase activities. It produces acetoin (Voges Proskauer reaction), but no H$_2$S or indol. It does not ferment glucose, mannitol, inositol, sorbitol, rhamnose, saccharose, melibiose, amygdalin and arabinose. It is negative for nitrate reduction to nitrite or N$_2$ gas.

It is capable to assimilate citrate, tween 40, tween 80, D-fructose, α-D-glucose, D-mannose, sucrose, monomethyl succinate, DL-lactic acid, D-saccharic acid, succinic acid, alaninamide, L-asparagine, L-glutamic acid, L-proline, inosine, uridine, and it is positive for hydrolysis of esculin. It has weak reaction for assimilation of α-cyclodextrin, L-arabinose, cellobiose, turanose, α-hydroxy butyric acid, α-keto butyric acid, urocanic acid and glycerol. It is negative for assimilation of dextrin, glycogen, N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, adonitol, D-arabitol, i-erythritol, L-fucose, D-galactose, gentiobiose, m-inositol, α-lactose, α-D-lactose lactulose, maltose, D-mannitol, D-melibiose, β-methyl D-glucoside, psicose, D-raffinose, L-rhamnose, D-sorbitol, D-trehalose, xylitol, methyl pyruvate, acetic acid, cis-aconitic acid, citric acid, formic acid, D-galactonic acid lactone, D-galacturonic acid, D-gluconic acid, D-glucosaminic acid, D-glucuronic acid, β-hydroxy butyric acid, γ-hydroxy butyric acid, p-hydroxy phenylacetic acid, itaconic acid, α-keto glutaric acid, α-keto valeric acid, malonic acid, propionic acid, quinic acid, sebacic acid, bromosuccinic acid, succinamic acid, glucuronamide, D-alanine, L-alanine, L-alanylglucose, L-aspartic acid, glycyrl-L-aspartic acid, glycyrl-L-glutamic acid, L-histidine, hydroxy L-proline, L-leucine, L-ornithine, L-phenylalanine, L-pyroglutamic acid, D-serine, L-serine, L-threonine, DL-carnitine, γ-aminobutyric acid, thymidine, phenyl ethylamine, putrescine, 2-amino ethanol, 2,3-butanediol, DL-α-glycerol phosphate, glucose-1-phosphate, glucose-6-phosphate,
potassium gluconate, capric acid, adipic acid, malate, and trisodium citrate. The main cellular fatty acids are C\textsubscript{18:1} \omega7c, summed feature 3 (C\textsubscript{15:0} iso 2-OH and/or C\textsubscript{16:1} \omega7c), C\textsubscript{16:0} and C\textsubscript{10:0} 3-OH corresponding to 86 % of the total FAME profile. The following fatty acids are present in small amounts: unknown fatty acid ECL 11.799 (5 %) C\textsubscript{12:1} 3-OH (3.6 %), C\textsubscript{18:0} (2.2 %) and C\textsubscript{14:0} (1.8 %) (Supplementary Table S1). The phenotypic profile of \textit{M. brasilensis} sp. nov. is at present based on one strain. The DNA G+C content of the type strain is 46.5 mol%. The type strain R-40503T (= LMG 25434T = CAIM 1459T) was isolated from mucus of the endemic coral \textit{Mussismilia hispida} located in the São Sebastião channel, São Paulo, Brazil.

Acknowledgements
The authors acknowledge grants from FAPERJ, FAPESP, CNPq, and IFS. L. A. Chimetto acknowledges a PhD scholarship provided by CNPq. The BCCM/LMG Bacteria Collection is supported by the Federal Public Planning Service-Science Policy, Belgium. We thank Marjan De Wachter (LMG/BCCM), Stefanie Van Trappen (LMG/BCCM), Katrien Engelbeen (LMG/BCCM), Alvaro Migotto (CEBIMAR-USP), Bruno Gomez-Gil, and Cristiane C. Thompson for technical assistance and valuable comments.

References

Figure
Figure 1. Neighbour-joining phylogenetic tree showing the phylogenetic position of *M. brasilensis* sp. nov. based on 16S rRNA gene sequences. The evolutionary distances were computed by BioNumerics 4.61 software (Applied Maths, Belgium). Bootstrap values (> 50 %) based on 1000 repetitions are shown. *Vibrio cholerae* was used as outgroup. Bar, 1 % estimated sequence divergence.
Table 1. DNA-DNA hybridization data, 16S rRNA gene sequence similarities and DNA G+C contents of *M. brasilensis* sp. nov. and phylogenetically related *Marinomonas* species

<table>
<thead>
<tr>
<th>Strain</th>
<th>G+C content (mol%)</th>
<th>16S rRNA Similarity (%)</th>
<th>DNA-DNA relatedness values (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1. M. brasilensis sp. nov. R-40503(^{T}) (= LMG 25434(^{T}))</td>
<td>46.5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2. M. vaga LMG 2845(^{T})</td>
<td>47.5</td>
<td>97.9</td>
<td>27</td>
</tr>
<tr>
<td>3. M. basaltis LMG 25279(^{T})</td>
<td>46.3</td>
<td>97.2</td>
<td>18</td>
</tr>
<tr>
<td>4. M. communis LMG 2864(^{T})</td>
<td>46.3</td>
<td>97.2</td>
<td>16</td>
</tr>
<tr>
<td>5. M. aquimarina LMG 25236(^{T})</td>
<td>49</td>
<td>96.7</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2. Phenotypic differences between *Marinomonas brasilensis* sp. nov. and its phylogenetic closest neighbours.

Species: 1, *M. brasilensis* R-40503\(^{T}\) (= LMG 25434\(^{T}\)); 2, *M. vaga* LMG 2845\(^{T}\); 3, *M. basaltis* LMG 25279\(^{T}\); 4, *M. communis* LMG 2864\(^{T}\); 5, *M. aquimarina* LMG 25236\(^{T}\). Data for the reference species were obtained in this study, except when indicated. Abbreviations: +, positive; -, negative; w, weak reaction, NA, not available. All data were obtained in this study (except some data of *M. aquimarina* LMG 25236\(^{T}\)) using the same laboratory conditions.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth with NaCl (%w/v):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>w</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>w</td>
</tr>
<tr>
<td>Growth at (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Activity of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tween 80</td>
<td>+</td>
<td>w</td>
<td>-</td>
<td>-</td>
<td>- (^{a})</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>- (^{a})</td>
</tr>
<tr>
<td>α-D-glucose</td>
<td>+</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>Alaninamide</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>L-asparagine</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>L-arabinose</td>
<td>w</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>w</td>
<td>-</td>
<td>w</td>
<td>w</td>
<td>- (^{a})</td>
</tr>
<tr>
<td>Glycerol</td>
<td>w</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- (^{a})</td>
</tr>
<tr>
<td>Fatty acid</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C10:0</td>
<td>-</td>
<td>2.9</td>
<td>4.3</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>C10:0 3-OH</td>
<td>8</td>
<td>14.2</td>
<td>13.9</td>
<td>14.3</td>
<td>7.6</td>
</tr>
<tr>
<td>C12:0</td>
<td>-</td>
<td>2.5</td>
<td>5.4</td>
<td>5.4</td>
<td>3.5</td>
</tr>
<tr>
<td>C12:0 3-OH</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C14:0</td>
<td>1.8</td>
<td>2.1</td>
<td>2.5</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>C16:0</td>
<td>10.5</td>
<td>10.5</td>
<td>8.5</td>
<td>7.5</td>
<td>11.4</td>
</tr>
<tr>
<td>C18:0</td>
<td>2.2</td>
<td>1.7</td>
<td>-</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>C18:1ω6c</td>
<td>-</td>
<td>-</td>
<td>8.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C18:1ω7c</td>
<td>48.8</td>
<td>45.8</td>
<td>27.6</td>
<td>42.3</td>
<td>47</td>
</tr>
<tr>
<td>Summed feature 3</td>
<td>19</td>
<td>18.7</td>
<td>26.4</td>
<td>23.9</td>
<td>22.5</td>
</tr>
<tr>
<td>Unknown 11,799</td>
<td>5</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Supplementary Figure S1. AFLP DNA fingerprints of *M. brasilensis* sp. nov. R-40503^T and strains of phylogenetically related *Marinomonas* species. The dendrogram was constructed with the UPGMA method after calculation of the band pattern similarity (%) using the DICE coefficient. The cut-off similarity level used to delineate AFLP clusters is 63%. Strains with AFLP profiles showing more than 63% similarity can be considered as members of the same species.
Supplementary Figure S2. Maximum Parsimony phylogenetic tree showing the phylogenetic position of *M. brasilensis* sp. nov. based on 16S rRNA gene sequences. The evolutionary distances were computed by BioNumerics 4.61 software (Applied Maths, Belgium). Bootstrap values (≥ 50 %) based on 100 repetitions are shown. *Vibrio cholerae* was used as outgroup. Bar, 2 % estimated sequence divergence.