Advanced search
2 files | 1.55 MB Add to list

Stabilizer codes over fields of even order

Author
Organization
Project
Abstract
We prove that the natural isomorphism between GF(2^h) and GF(2)^h induces a bijection between stabiliser codes on n quqits with local dimension q=2^h and binary stabiliser codes on hn qubits. This allows us to describe these codes geometrically: a stabiliser code over a field of even order corresponds to a so-called quantum set of symplectic polar spaces. Moreover, equivalent stabiliser codes have a similar geometry, which can be used to prove the uniqueness of a [[4,0,3]]_4 stabiliser code and the nonexistence of both a [[7,1,4]]_4 and an [[8,0,5]]_4 stabiliser code.
Keywords
Codes, Qubit, Stabiliser code, Quantum error-correction, Symplectic polar space, Quantum computing, error correction, geometry, QUANTUM-ERROR-CORRECTION

Downloads

  • AAM stabilisereven.pdf
    • full text (Accepted manuscript)
    • |
    • open access
    • |
    • PDF
    • |
    • 349.46 KB
  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.20 MB

Citation

Please use this url to cite or link to this publication:

MLA
Ball, Simeon, et al. “Stabilizer Codes over Fields of Even Order.” IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 71, no. 5, 2025, pp. 3707–18, doi:10.1109/tit.2024.3454480.
APA
Ball, S., Moreno, E., & Simoens, R. (2025). Stabilizer codes over fields of even order. IEEE TRANSACTIONS ON INFORMATION THEORY, 71(5), 3707–3718. https://doi.org/10.1109/tit.2024.3454480
Chicago author-date
Ball, Simeon, Edgar Moreno, and Robin Simoens. 2025. “Stabilizer Codes over Fields of Even Order.” IEEE TRANSACTIONS ON INFORMATION THEORY 71 (5): 3707–18. https://doi.org/10.1109/tit.2024.3454480.
Chicago author-date (all authors)
Ball, Simeon, Edgar Moreno, and Robin Simoens. 2025. “Stabilizer Codes over Fields of Even Order.” IEEE TRANSACTIONS ON INFORMATION THEORY 71 (5): 3707–3718. doi:10.1109/tit.2024.3454480.
Vancouver
1.
Ball S, Moreno E, Simoens R. Stabilizer codes over fields of even order. IEEE TRANSACTIONS ON INFORMATION THEORY. 2025;71(5):3707–18.
IEEE
[1]
S. Ball, E. Moreno, and R. Simoens, “Stabilizer codes over fields of even order,” IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 71, no. 5, pp. 3707–3718, 2025.
@article{01JN3NZQZ1XQZE39CG6HXTPPPG,
  abstract     = {{We prove that the natural isomorphism between GF(2^h) and GF(2)^h induces a bijection between stabiliser codes on n quqits with local dimension q=2^h and binary stabiliser codes on hn qubits. This allows us to describe these codes geometrically: a stabiliser code over a field of even order corresponds to a so-called quantum set of symplectic polar spaces. Moreover, equivalent stabiliser codes have a similar geometry, which can be used to prove the uniqueness of a [[4,0,3]]_4 stabiliser code and the nonexistence of both a [[7,1,4]]_4 and an [[8,0,5]]_4 stabiliser code.}},
  author       = {{Ball, Simeon and Moreno, Edgar and Simoens, Robin}},
  issn         = {{0018-9448}},
  journal      = {{IEEE TRANSACTIONS ON INFORMATION THEORY}},
  keywords     = {{Codes,Qubit,Stabiliser code,Quantum error-correction,Symplectic polar space,Quantum computing,error correction,geometry,QUANTUM-ERROR-CORRECTION}},
  language     = {{eng}},
  number       = {{5}},
  pages        = {{3707--3718}},
  title        = {{Stabilizer codes over fields of even order}},
  url          = {{http://doi.org/10.1109/tit.2024.3454480}},
  volume       = {{71}},
  year         = {{2025}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: