- Author
- S. Abreu, I. Boikov, M. Goldmann, T. Jonuzi, A. Lupo, Sarah Masaad (UGent) , L. Nguyen, E. Picco, G. Pourcel, A. Skalli, L. Talandier, Benedikt Vettelschoss, E.A. Vlieg, A. Argyris, Peter Bienstman (UGent) , D. Brunner, Joni Dambre (UGent) , L. Daudet, J.D. Domenech, I. Fischer, F. Horst, S. Massar, C.R. Mirasso, B.J. Offrein, A. Rossi, M.C. Soriano, S. Sygletos and S.K. Turitsyn
- Organization
- Project
- Abstract
- We provide a perspective on the fundamental relationship between physics and computation, exploring the conditions under which a physical system can be harnessed for computation and the practical means to achieve this. Unlike traditional digital computers that impose discreteness on continuous substrates, unconventional computing embraces the inherent properties of physical systems. Exploring simultaneously the intricacies of physical implementations and applied computational paradigms, we discuss the interdisciplinary developments of unconventional computing. Here, we focus on the potential of photonic substrates for unconventional computing, implementing artificial neural networks to solve data-driven machine learning tasks. Several photonic neural network implementations are discussed, highlighting their potential advantages over electronic counterparts in terms of speed and energy efficiency. Finally, we address the challenges of achieving learning and programmability within physical substrates, outlining key strategies for future research.
Downloads
-
pub 2999.pdf
- full text (Published version)
- |
- open access
- |
- |
- 3.82 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-01J3FWCYFT4KQEQESA9SAJNEJF
- MLA
- Abreu, S., et al. “A Photonics Perspective on Computing with Physical Substrates.” REVIEWS IN PHYSICS, vol. 12, 2024, doi:10.1016/j.revip.2024.100093.
- APA
- Abreu, S., Boikov, I., Goldmann, M., Jonuzi, T., Lupo, A., Masaad, S., … Turitsyn, S. K. (2024). A photonics perspective on computing with physical substrates. REVIEWS IN PHYSICS, 12. https://doi.org/10.1016/j.revip.2024.100093
- Chicago author-date
- Abreu, S., I. Boikov, M. Goldmann, T. Jonuzi, A. Lupo, Sarah Masaad, L. Nguyen, et al. 2024. “A Photonics Perspective on Computing with Physical Substrates.” REVIEWS IN PHYSICS 12. https://doi.org/10.1016/j.revip.2024.100093.
- Chicago author-date (all authors)
- Abreu, S., I. Boikov, M. Goldmann, T. Jonuzi, A. Lupo, Sarah Masaad, L. Nguyen, E. Picco, G. Pourcel, A. Skalli, L. Talandier, Benedikt Vettelschoss, E.A. Vlieg, A. Argyris, Peter Bienstman, D. Brunner, Joni Dambre, L. Daudet, J.D. Domenech, I. Fischer, F. Horst, S. Massar, C.R. Mirasso, B.J. Offrein, A. Rossi, M.C. Soriano, S. Sygletos, and S.K. Turitsyn. 2024. “A Photonics Perspective on Computing with Physical Substrates.” REVIEWS IN PHYSICS 12. doi:10.1016/j.revip.2024.100093.
- Vancouver
- 1.Abreu S, Boikov I, Goldmann M, Jonuzi T, Lupo A, Masaad S, et al. A photonics perspective on computing with physical substrates. REVIEWS IN PHYSICS. 2024;12.
- IEEE
- [1]S. Abreu et al., “A photonics perspective on computing with physical substrates,” REVIEWS IN PHYSICS, vol. 12, 2024.
@article{01J3FWCYFT4KQEQESA9SAJNEJF, abstract = {{We provide a perspective on the fundamental relationship between physics and computation, exploring the conditions under which a physical system can be harnessed for computation and the practical means to achieve this. Unlike traditional digital computers that impose discreteness on continuous substrates, unconventional computing embraces the inherent properties of physical systems. Exploring simultaneously the intricacies of physical implementations and applied computational paradigms, we discuss the interdisciplinary developments of unconventional computing. Here, we focus on the potential of photonic substrates for unconventional computing, implementing artificial neural networks to solve data-driven machine learning tasks. Several photonic neural network implementations are discussed, highlighting their potential advantages over electronic counterparts in terms of speed and energy efficiency. Finally, we address the challenges of achieving learning and programmability within physical substrates, outlining key strategies for future research.}}, articleno = {{100093}}, author = {{Abreu, S. and Boikov, I. and Goldmann, M. and Jonuzi, T. and Lupo, A. and Masaad, Sarah and Nguyen, L. and Picco, E. and Pourcel, G. and Skalli, A. and Talandier, L. and Vettelschoss, Benedikt and Vlieg, E.A. and Argyris, A. and Bienstman, Peter and Brunner, D. and Dambre, Joni and Daudet, L. and Domenech, J.D. and Fischer, I. and Horst, F. and Massar, S. and Mirasso, C.R. and Offrein, B.J. and Rossi, A. and Soriano, M.C. and Sygletos, S. and Turitsyn, S.K.}}, issn = {{2405-4283}}, journal = {{REVIEWS IN PHYSICS}}, language = {{eng}}, pages = {{25}}, title = {{A photonics perspective on computing with physical substrates}}, url = {{http://doi.org/10.1016/j.revip.2024.100093}}, volume = {{12}}, year = {{2024}}, }
- Altmetric
- View in Altmetric