Advanced search
1 file | 15.12 MB Add to list

Design of power-dense electrical machines enabled by additive manufacturing

(2024)
Author
Promoter
(UGent) and (UGent)
Organization
Project
Abstract
The art of successful design of electrical machines comes with many challenges in the mass, size, energy efficiency, and thermal management. In the end, a successful design should have an optimal balance between the performance and the manufacturability. This work highlights the importance of additive manufacturing (AM) for the design and fabrication of unconventional motors with higher power density. The technology of 3D printing offers much higher flexibility in dimensions as well as in material engineering. The primary focus of this thesis centers on three key aspects of electrical machines: magnetic materials, windings, and thermal management. These three contributions can improve future electric machines in terms of efficiency and power density. Using AM technology, a series of novel coils and cores is designed and prototyped for high-power density electrical machines. The 3D coil designs combine higher performance and easier manufacturability. Moreover, a new thermal management concept is introduced featuring lower weight and better thermal profile. Overall, the proposed approaches highlight the unique capabilities of AM to overcome traditional manufacturability challenges and enable new design possibilities that contribute to the scalability, reliability, and effectiveness of electrical machines, making them more accessible for various applications.
De kunst van het succesvol ontwerpen van elektrische machines brengt vele uitdagingen met zich mee op het gebied van massa, afmetingen, energie-efficiëntie en thermisch beheer. Uiteindelijk zou een succesvol ontwerp een optimale balans moeten hebben tussen prestaties en maakbaarheid. Dit werk benadrukt het belang van additieve productie (AM) voor het ontwerp en de fabricage van onconventionele motoren met een hogere vermogensdichtheid. De technologie van 3D-printen biedt veel meer flexibiliteit in dimensies en materiaaltechniek. De primaire focus van dit proefschrift ligt op drie belangrijke aspecten van elektrische machines: magnetische materialen, wikkelingen en thermisch beheer. Deze drie bijdragen kunnen toekomstige elektrische machines verbeteren op het gebied van efficiëntie en vermogensdichtheid. Met behulp van de AM-technologie worden een reeks nieuwe spoelen en kernen ontworpen en gemaakt als prototype voor elektrische machines met een hoge vermogensdichtheid. De 3D-spoelontwerpen combineren hogere prestaties en gemakkelijkere maakbaarheid. Bovendien wordt er een nieuw concept voor thermisch beheer geïntroduceerd met een lager gewicht en een beter thermisch profiel. Over het algemeen benadrukken de voorgestelde benaderingen de unieke mogelijkheden van AM om traditionele maakbaarheidsuitdagingen te overwinnen en nieuwe ontwerpmogelijkheden mogelijk te maken die bijdragen aan de schaalbaarheid, betrouwbaarheid en efficiëntie van elektrische machines, waardoor ze toegankelijker worden voor verschillende toepassingen.

Downloads

  • (...).pdf
    • full text (Published version)
    • |
    • UGent only (changes to open access on 2029-04-01)
    • |
    • PDF
    • |
    • 15.12 MB

Citation

Please use this url to cite or link to this publication:

MLA
Selema, Dr. ir. Ahmed. Design of Power-Dense Electrical Machines Enabled by Additive Manufacturing. Ghent University. Faculty of Engineering and Architecture, 2024.
APA
Selema, Dr. ir. A. (2024). Design of power-dense electrical machines enabled by additive manufacturing. Ghent University. Faculty of Engineering and Architecture, Ghent, Belgium.
Chicago author-date
Selema, Dr. ir. Ahmed. 2024. “Design of Power-Dense Electrical Machines Enabled by Additive Manufacturing.” Ghent, Belgium: Ghent University. Faculty of Engineering and Architecture.
Chicago author-date (all authors)
Selema, Dr. ir. Ahmed. 2024. “Design of Power-Dense Electrical Machines Enabled by Additive Manufacturing.” Ghent, Belgium: Ghent University. Faculty of Engineering and Architecture.
Vancouver
1.
Selema Dr ir. A. Design of power-dense electrical machines enabled by additive manufacturing. [Ghent, Belgium]: Ghent University. Faculty of Engineering and Architecture; 2024.
IEEE
[1]
Dr. ir. A. Selema, “Design of power-dense electrical machines enabled by additive manufacturing,” Ghent University. Faculty of Engineering and Architecture, Ghent, Belgium, 2024.
@phdthesis{01HT5DQ0C7T6WNJZ4F1VZPP1KX,
  abstract     = {{The art of successful design of electrical machines comes with many challenges in the mass, size, energy efficiency, and thermal management. In the end, a successful design should have an optimal balance between the performance and the manufacturability. This work highlights the importance of additive manufacturing (AM) for the design and fabrication of unconventional motors with higher power density. 

The technology of 3D printing offers much higher flexibility in dimensions as well as in material engineering. The primary focus of this thesis centers on three key aspects of electrical machines: magnetic materials, windings, and thermal management. These three contributions can improve future electric machines in terms of efficiency and power density.
Using AM technology, a series of novel coils and cores is designed and prototyped for high-power density electrical machines. The 3D coil designs combine higher performance and easier manufacturability. Moreover, a new thermal management concept is introduced featuring lower weight and better thermal profile.
Overall, the proposed approaches highlight the unique capabilities of AM to overcome traditional manufacturability challenges and enable new design possibilities that contribute to the scalability, reliability, and effectiveness of electrical machines, making them more accessible for various applications.}},
  author       = {{Selema, Dr. ir. Ahmed}},
  isbn         = {{9789463558105}},
  language     = {{eng}},
  pages        = {{XXXII, 199}},
  publisher    = {{Ghent University. Faculty of Engineering and Architecture}},
  school       = {{Ghent University}},
  title        = {{Design of power-dense electrical machines enabled by additive manufacturing}},
  year         = {{2024}},
}