Advanced search
2 files | 1.11 MB Add to list

Inner ideals and structurable algebras : Moufang sets, triangles and hexagons

(2024) ISRAEL JOURNAL OF MATHEMATICS. 259(1). p.33-88
Author
Organization
Project
Abstract
We construct Moufang sets, Moufang triangles and Moufang hexagons using inner ideals of Lie algebras obtained from structurable algebras via the Tits-Kantor-Koecher construction. The three different types of structurable algebras we use are, respectively: (1) structurable division algebras, (2) algebras D & OPLUS; D for some alternative division algebra D, equipped with the exchange involution, (3) matrix structurable algebras M (J, 1) for some cubic Jordan division algebra J. In each case, we also determine the root groups directly in terms of the structurable algebra.
Keywords
General Mathematics, LIE-ALGEBRAS, QUADRANGLES, IDENTITIES, ELEMENTS, E-6

Downloads

  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 604.52 KB
  • 2008.02700v2.pdf
    • full text (Accepted manuscript)
    • |
    • open access
    • |
    • PDF
    • |
    • 507.45 KB

Citation

Please use this url to cite or link to this publication:

MLA
De Medts, Tom, and Jeroen Meulewaeter. “Inner Ideals and Structurable Algebras : Moufang Sets, Triangles and Hexagons.” ISRAEL JOURNAL OF MATHEMATICS, vol. 259, no. 1, 2024, pp. 33–88, doi:10.1007/s11856-023-2491-y.
APA
De Medts, T., & Meulewaeter, J. (2024). Inner ideals and structurable algebras : Moufang sets, triangles and hexagons. ISRAEL JOURNAL OF MATHEMATICS, 259(1), 33–88. https://doi.org/10.1007/s11856-023-2491-y
Chicago author-date
De Medts, Tom, and Jeroen Meulewaeter. 2024. “Inner Ideals and Structurable Algebras : Moufang Sets, Triangles and Hexagons.” ISRAEL JOURNAL OF MATHEMATICS 259 (1): 33–88. https://doi.org/10.1007/s11856-023-2491-y.
Chicago author-date (all authors)
De Medts, Tom, and Jeroen Meulewaeter. 2024. “Inner Ideals and Structurable Algebras : Moufang Sets, Triangles and Hexagons.” ISRAEL JOURNAL OF MATHEMATICS 259 (1): 33–88. doi:10.1007/s11856-023-2491-y.
Vancouver
1.
De Medts T, Meulewaeter J. Inner ideals and structurable algebras : Moufang sets, triangles and hexagons. ISRAEL JOURNAL OF MATHEMATICS. 2024;259(1):33–88.
IEEE
[1]
T. De Medts and J. Meulewaeter, “Inner ideals and structurable algebras : Moufang sets, triangles and hexagons,” ISRAEL JOURNAL OF MATHEMATICS, vol. 259, no. 1, pp. 33–88, 2024.
@article{01HQ0YD4T55NBHGD94JYXXG50R,
  abstract     = {{We construct Moufang sets, Moufang triangles and Moufang hexagons using inner ideals of Lie algebras obtained from structurable algebras via the Tits-Kantor-Koecher construction. The three different types of structurable algebras we use are, respectively: (1) structurable division algebras, (2) algebras D & OPLUS; D for some alternative division algebra D, equipped with the exchange involution, (3) matrix structurable algebras M (J, 1) for some cubic Jordan division algebra J. In each case, we also determine the root groups directly in terms of the structurable algebra.}},
  author       = {{De Medts, Tom and Meulewaeter, Jeroen}},
  issn         = {{0021-2172}},
  journal      = {{ISRAEL JOURNAL OF MATHEMATICS}},
  keywords     = {{General Mathematics,LIE-ALGEBRAS,QUADRANGLES,IDENTITIES,ELEMENTS,E-6}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{33--88}},
  title        = {{Inner ideals and structurable algebras : Moufang sets, triangles and hexagons}},
  url          = {{http://doi.org/10.1007/s11856-023-2491-y}},
  volume       = {{259}},
  year         = {{2024}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: