- Author
- Judith Huygens, Geertrui Rasschaert, Bart Cottyn, Jeroen Dewulf (UGent) , Els Van Coillie, Koen Willekens, Paul Quataert, Ilse Becue, Els Daeseleire and Marc Heyndrickx (UGent)
- Organization
- Abstract
- When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 & mu;g/kg manure), sulfadiazine (1000 & mu;g/kg manure), or lincomycin (1000 & mu;g/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet (Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin.
- Keywords
- Antibiotic residues, Antibiotic resistance, Antibiotic resistance genes, Antibiotic resistant bacteria, Manure, Soil, Crops, Leek, RIBOSOMAL-RNA GENE, PSEUDOMONAS-AERUGINOSA, BACILLUS-CEREUS, ANTIMICROBIAL RESISTANCE, MULTIDRUG EFFLUX, VETERINARY ANTIBIOTICS, INTRINSIC RESISTANCE, NUCLEOTIDE-SEQUENCE, VEGETABLES, MANURE
Downloads
-
hm4.pdf
- full text (Published version)
- |
- open access
- |
- |
- 3.71 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-01HNWDSXJCP78TVBDRTS1JQSYH
- MLA
- Huygens, Judith, et al. “The Impact of Antibiotic Residues on Resistance Patterns in Leek at Harvest.” HELIYON, vol. 9, no. 5, Cell Press, 2023, doi:10.1016/j.heliyon.2023.e16052.
- APA
- Huygens, J., Rasschaert, G., Cottyn, B., Dewulf, J., Van Coillie, E., Willekens, K., … Heyndrickx, M. (2023). The impact of antibiotic residues on resistance patterns in leek at harvest. HELIYON, 9(5). https://doi.org/10.1016/j.heliyon.2023.e16052
- Chicago author-date
- Huygens, Judith, Geertrui Rasschaert, Bart Cottyn, Jeroen Dewulf, Els Van Coillie, Koen Willekens, Paul Quataert, Ilse Becue, Els Daeseleire, and Marc Heyndrickx. 2023. “The Impact of Antibiotic Residues on Resistance Patterns in Leek at Harvest.” HELIYON 9 (5). https://doi.org/10.1016/j.heliyon.2023.e16052.
- Chicago author-date (all authors)
- Huygens, Judith, Geertrui Rasschaert, Bart Cottyn, Jeroen Dewulf, Els Van Coillie, Koen Willekens, Paul Quataert, Ilse Becue, Els Daeseleire, and Marc Heyndrickx. 2023. “The Impact of Antibiotic Residues on Resistance Patterns in Leek at Harvest.” HELIYON 9 (5). doi:10.1016/j.heliyon.2023.e16052.
- Vancouver
- 1.Huygens J, Rasschaert G, Cottyn B, Dewulf J, Van Coillie E, Willekens K, et al. The impact of antibiotic residues on resistance patterns in leek at harvest. HELIYON. 2023;9(5).
- IEEE
- [1]J. Huygens et al., “The impact of antibiotic residues on resistance patterns in leek at harvest,” HELIYON, vol. 9, no. 5, 2023.
@article{01HNWDSXJCP78TVBDRTS1JQSYH, abstract = {{When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 & mu;g/kg manure), sulfadiazine (1000 & mu;g/kg manure), or lincomycin (1000 & mu;g/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet (Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin.}}, articleno = {{e16052}}, author = {{Huygens, Judith and Rasschaert, Geertrui and Cottyn, Bart and Dewulf, Jeroen and Van Coillie, Els and Willekens, Koen and Quataert, Paul and Becue, Ilse and Daeseleire, Els and Heyndrickx, Marc}}, issn = {{2405-8440}}, journal = {{HELIYON}}, keywords = {{Antibiotic residues,Antibiotic resistance,Antibiotic resistance genes,Antibiotic resistant bacteria,Manure,Soil,Crops,Leek,RIBOSOMAL-RNA GENE,PSEUDOMONAS-AERUGINOSA,BACILLUS-CEREUS,ANTIMICROBIAL RESISTANCE,MULTIDRUG EFFLUX,VETERINARY ANTIBIOTICS,INTRINSIC RESISTANCE,NUCLEOTIDE-SEQUENCE,VEGETABLES,MANURE}}, language = {{eng}}, number = {{5}}, pages = {{17}}, publisher = {{Cell Press}}, title = {{The impact of antibiotic residues on resistance patterns in leek at harvest}}, url = {{http://doi.org/10.1016/j.heliyon.2023.e16052}}, volume = {{9}}, year = {{2023}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: